Modèle pour conception/ optimisation d un moteur Stirling à pistons libres «mécanique»

Documents pareils
Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques

ALFÉA HYBRID DUO FIOUL BAS NOX

Énergie décentralisée : La micro-cogénération

Saisie des chauffe-eau thermodynamiques à compression électrique

Performances énergétiques de capteurs solaires hybrides PV-T pour la production d eau chaude sanitaire.

L énergie de l air extérieur pour une eau chaude sanitaire naturellement moins chère

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension

Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre.

Économie d énergie dans les centrales frigorifiques : La haute pression flottante

ÉJECTEURS. CanmetÉNERGIE Juillet 2009

La relève de chaudière, une solution intermédiaire économique et fiable.

Propriétés thermodynamiques du mélange. Eau-Ammoniac-Hélium

Le turbo met les gaz. Les turbines en équation

CAP CAMION A ASSISTANCE PNEUMATIQUE

1. GENERALITES OBJET DU MARCHE DUREE DU MARCHE REGLEMENTATION SECURITE ASTREINTE ET GESTION DES

2.0. Ballon de stockage : Marque : Modèle : Capacité : L. Lien vers la documentation technique :

1,2,3 SOLEIL EN AVANT PREMIERE

QU EST-CE QU UN CHAUFFE-EAU THERMODYNAMIQUE?

Pompe à chaleur Air-Eau. Confort et économies

ELEC2753 Electrotechnique examen du 11/06/2012

SARM: Simulation of Absorption Refrigeration Machine

Nouvelle réglementation

Projet SETHER Appel à projets Adrien Patenôtre, POWEO

Auré. AuréaSystème. Les solutions solaires. Chauffe-Eau Solaire. Combiné Solaire Pulsatoire 90% Système solaire AUTO-VIDANGEABLE et ANTI-SURCHAUFFE

SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite

Leader belge en énergies renouvelables. Etudes de financement, conception, installation, exploitation et maintenance

P7669 MACHINE A VAPEUR MINIATURE P7669R A mouvement alternatif P7669T Turbine

pur et silencieux dentaire

Fiche commerciale. Pompes à chaleur. Arcoa duo Arcoa bi-bloc MT pompes a chaleur bi-bloc INNOVATION bi-bloc MT

au gaz naturel! GrDF vous aide dans votre projet de construction de maison

Robert Guichet. Conférence DERBI Juin 2008

ÉCOCONCEPTION ET ÉTIQUETAGE ÉNERGÉTIQUE

Formation Bâtiment Durable :

Le séchage des ateliers :

LES RÉFÉRENTIELS RELATIFS AUX ÉDUCATEURS SPÉCIALISÉS

ASSEMBLAGE DE NOEUDS SOCIO-ÉNERGÉTIQUES : CHAINES DE DÉCISIONS ET APPROCHES EXTRA- ELECTRIQUES

SOLAIRE BALLERUP LA VILLE CONTEXTE. (Danemark) Ballerup

Une conférence-débat proposée par l Institut National de la Recherche Agronomique

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

Multichronomètre SA10 Présentation générale

NOTICE D INSTALLATION

Etude numérique et expérimentale du processus de recompression le long d un éjecteur supersonique

Multisplit premium Duo / DC Inverter

Chapitre 1 Régime transitoire dans les systèmes physiques

36% T.Flow VMC hygroréglable & chauffe eau thermodynamique QUAND LA VENTILATION RÉINVENTE L EAU CHAUDE. BÉNÉFICIEZ DE

Maison Modèle BIG BOX Altersmith

Profitez au mieux de votre logement économe en énergie. Bâtiment basse consommation. Ce qu il faut savoir et comment vous adapter

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Formation à la C F D Computational Fluid Dynamics. Formation à la CFD, Ph Parnaudeau

Apports thermiques avec collecteurs solaires pour de l eau chaude sanitaire dans la Maison de retraite Korian Pontlieue

Monitoring continu et gestion optimale des performances énergétiques des bâtiments

Yutampo La solution 100 % énergie renouvelable

CHAUFFAGE PAR LE BOIS ESPACE AQUALUDIQUE DE CARHAIX PREMIER RETOUR D EXPERIENCE APRES TROIS ANNEES DE FONCTIONNEMENT

Varset Direct. Batteries fixes de condensateurs basse tension Coffrets et armoires. Notice d utilisation. Armoire A2

Grenoble ZAC de Bonne

Actions de réduction de bruit sur un moteur poids lourd

Prescriptions techniques et de construction pour les locaux à compteurs

Zone Région de Bruxelles Capitale

COURS DE THERMODYNAMIQUE

Le confort toute l année

Accumuler la chaleur avec des ballons système individuels.

Vanne " Tout ou Rien" à siège incliné Type 3353

Efficacité Energétique Diminuez vos coûts de production. Programme Energy Action pour l industrie

Chapitre 3. Les distributions à deux variables

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Bilan thermique et social simplifié

Analyse de la dynamique d un lit fluidisé gaz-solide en interaction acoustique avec son système de ventilation : comparaison théorie/expérience.

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

Daikin. DAIKIN ALTHERMA BI-BLOC, Solution pour le tertiaire et le résidentiel collectif. Pompes à chaleur Air / Eau. Inverter. » Economies d énergie

supports métalliques basse fréquence gamme "Polycal-Ressort" standard définition R P

Production d eau chaude sanitaire thermodynamique, que dois-je savoir?

Page : 1 de 6 MAJ: _Chaudieresbuches_serie VX_FR_ odt. Gamme de chaudières VX avec régulation GEFIcontrol :

STI2D : Enseignements Technologiques Transversaux

Bilan thermique et social simplifié

Chaudières et chaufferies fioul basse température. Olio 1500, 2500, 3500, 4500, 7000

Eau chaude sanitaire

Le moteur de Stirling : Conception et Performances

Projet de raccordement au réseau de transport de gaz naturel EXPRESSION PRELIMINAIRE DE BESOIN SITE :..

Répertoire de simulations en Maison Individuelle. Solutions gaz. Toujours à vos côtés. Solutions électriques. Solutions RT 2012.

Système d énergie solaire et de gain énergétique

Avis d Energie-Cités. Cette proposition est disponible sur :

la micro-cogénération au bois sort de l ombre

Thermostate, Type KP. Fiche technique MAKING MODERN LIVING POSSIBLE

Influence de la géométrie du conducteur sur la température dans un poste sous enveloppe métallique

Du Thermostat à l ordinateur climatique. Vincent Aubret Hortimax

MINISTÈRE DE L ÉCOLOGIE, DU DÉVELOPPEMENT DURABLE ET DE L ÉNERGIE MINISTÈRE DE L ÉGALITÉ DES TERRITOIRES ET DU LOGEMENT

Systèmes de distributeurs Systèmes de distributeur selon la norme ISO , taille 2, série 581. Caractéristiques techniques

EURL REVATECH. -La longueur du sac est réglable et peut être ajustée. - La largeur des paquets est Fixe

T.I.P.E. Optimisation d un. moteur

J O U R N E E S G EOT H E R M I E EN R E G I O N C E N T R E

27/31 Rue d Arras NANTERRE Tél. 33.(0) Fax. 33.(0)

SERIE S Technologie Mouvex

MARCHE PUBLIC DE SERVICE. Procédure adaptée MFS CAHIER DES CLAUSES TECHNIQUES PARTICULIERES (C.C.T.P.) LOTS 1 ET 2

Energie solaire

Classification des actions d efficacité énergétique

produit De l eau chaude sanitaire à volonté Préparateurs ECS et accumulateurs d énergie Weishaupt

SOMMAIRE. 1. Architecture proposée. 2. Constituants de la solution. 3. Supervision DATA CENTER OPTION SERVICE

Cylindres de roue ATE d origine Allégés et résistants aux liquides de frein

SALON ENEO 15/02/2011 Retour d expd du quartier de la Caserne de Bonne E. HUARD, S. ORAIN, T. HEIMO

Vannes à 2 ou 3 voies, PN16

Transcription:

Modèle pour conception/ optimisation d un moteur Stirling à s libres «mécanique» Sylvie BEGOT 1*, Guillaume LAYES 1, François LANZETTA 1, Steve DJETEL 1, Philippe NIKA 1, Régis CONTREAU 2 1 Laboratoire FEMTO-ST CNRS UMR 6174 Département ENISYS, 2 avenue Jean Moulin, 9 BELFORT 2 GDF SUEZ, CRIGEN, 361 av du président Wilson, BP 33, 361 av du président Wilson, 93211 SAINT-DENIS-LA-PLAINE CEDEX * (auteur correspondant : sylvie.begot@univ-fcomte.fr) Résumé - L article décrit une modélisation de machine Stirling à s libres pour une application de micro-cogénération domestique. Le modèle ainsi qu un dimensionnement de machine pour cette application sont exposés. La stabilité de la machine vis-à-vis de variations de charge est étudiée par l analyse des valeurs propres de la matrice issue de l équation d état ainsi que par la méthode des plans de phase. L influence des frottements mécaniques secs est également étudiée. Nomenclature A matrice équation état D coefficients dissipatifs par unité de masse, s -1 E effort normal par unité de masse, N.kg -1 F force de frottement sec par unité de masse, N. kg -1 K raideurs par unité masse, s -2 M Matrice de passage de A vers sa forme diagonale X inconnues équation état i 1 position, m vitesse, m.s -1 accélération, m.s -2 Symboles grecs Λ matrice diagonale de A λ valeur propre µ coefficient de frottement Indices et exposants p d initial 1. Introduction Le laboratoire FEMTO-ST/ENISYS ainsi que GDF SUEZ mènent depuis plusieurs années des travaux sur la micro-cogénération domestique à base de machine Stirling à s libres. Cette technologie présente en effet de faibles besoins en maintenance permettant ainsi de ne pas modifier le comportement de l utilisateur. L objectif est de développer un écogénérateur qui répondrait à l intégralité des besoins de chauffage et d eau chaude sanitaire d un logement et à une partie des besoins en électricité. L écogénérateur intègre ainsi un module de microcogénération à moteur Stirling au sein d une chaudière à condensation. Les avantages de cette cogénération décentralisée sont de trois ordres : économique tout d abord avec une baisse attendue de la facture énergétique pouvant aller jusqu à 3%, environnementaux ensuite avec une baisse attendue de 3% des émissions de CO 2, énergétique enfin avec une économie d énergie primaire de 2%. Le projet de l Agence Nationale de la Recherche intitulé Chaudière ElectroThermique Intégrée (CETI) a pour objectif de développer un prototype de micro-cogénérateur à base de machine Stirling à s libres dont les performances sont compatibles avec une application de micro-cogénération domestique. La machine Stirling est un moteur à combustion externe inventée par Robert Stirling en 1816 [1-2]. Il utilise une source externe d énergie pour chauffer le gaz contenu dans un

cylindre. Ce gaz sous pression se détend quand il est chauffé et met en mouvement un qui effectue alors un travail. Après la détente, le gaz est refroidi puis comprimé à nouveau avant le prochain cycle de chauffage. Le régénérateur absorbe puis restitue la chaleur du gaz pendant la compression et la détente. La machine Stirling à s libres a été inventée par W.T. Beale en 1964 [3]. Dans ce type de machine, les pertes par frottement et l usure mécanique sont réduites. L enveloppe contenant la machine peut être hermétiquement scellée ce qui permet une durée d opération sans maintenance d environ 1 ans de cette machine [4]. Pour développer un prototype, une modélisation permettant le dimensionnement et la simulation des performances de la machine Stirling à s libres a été effectuée. Cette modélisation a pour objectifs principaux le dimensionnement de la machine et l étude de sa stabilité. Les travaux de modélisation de la machine Stirling à s libres sont fondés sur une approche analytique développée dans [5] et étudiée au laboratoire dans [6-7]. En ce qui concerne l étude de la stabilité, [8] présente un modèle analytique linéaire et une étude de stabilité basée sur le lieu des racines de l équation caractéristique, [9] présente un modèle analytique linéarisé et une étude de stabilité basée sur les valeurs propres de la matrice représentant les équations de la machine Stirling. Ces études portent sur un modèle linéaire. Or, de nombreux phénomènes non linéaires ont lieu dans une machine Stirling. Notre travail se place dans la continuité des travaux précédents. Nous développons un modèle analytique prenant en compte certaines des non linéarités de la machine. L article est divisé en deux parties : la première partie décrit le modèle développé, la deuxième partie décrit un dimensionnement de prototype avec une étude sur la stabilité de la machine et une étude sur l influence des frottements secs. 2. Modélisation 2.1. Présentation générale de la machine Le modèle développé est celui d une machine Stirling à s libres (Figure 1). La machine comprend un ainsi qu un. A chaque extrémité de la machine se trouvent un échangeur chaud et un échangeur froid. Un régénérateur nécessaire à la réalisation du cycle thermodynamique du gaz complète le dispositif. Des volumes tampons présents sous le et dans le jouent le rôle de ressorts gazeux. Le produit un travail mécanique supposé entraîner un alternateur linéaire. Régénérateur Volume ressorts gazeux Echangeur chaud Volume de détente Déplaceur Volume de compression Echangeur froid Piston 2.2. Equations Figure 1 : Schéma du MSPL modélisé L écriture du bilan des forces appliquées sur le et le conduit à deux équations différentielles couplées liant les positions, vitesses et accélérations du et du

. Les forces en présence sur le sont les forces de pression, les forces de frottement mécanique sec, la force de freinage appliquée par l alternateur, les forces dissipatives dues aux ressorts gazeux. Les forces en présence sur le sont les forces de pression, de frottement mécanique sec, ainsi que les forces dissipatives dues aux ressorts gazeux (viscosité des gaz). La pression dans la chambre de détente est exprimée en fonction de la pression dans la chambre de compression et des pertes de charge dans les échangeurs et le régénérateur. Sous forme condensée [5-7], les équations de la dynamique s écrivent : (1) (2) Les coefficients notés K sont homogènes à des raideurs par unité de masse, les coefficients notés D sont des termes dissipatifs par unité de masse, les coefficients F sont les termes de frottement sec par unité de masse qui seront explicités au paragraphe suivant. Les termes dissipatifs dépendent du débit de gaz dans la machine et donc par conséquent des différentes positions et vitesses. Le système présente donc des non linéarités. La résolution de ce système est par conséquent une résolution itérative. 2.3. Prise en compte du frottement sec Un paramètre important de réalisation de la machine est la qualité des ajustements entre les pièces mobiles et les pièces fixes. Il est donc apparu nécessaire d inclure le frottement mécanique sec (frottement de Coulomb) dans la modélisation. Par hypothèse, la valeur du frottement est assimilée au produit du coefficient de frottement par l effort normal entre les surfaces en mouvement. La force de frottement s oppose à la vitesse et s exprime par : 2.4. Stabilité des oscillations (3) Le fonctionnement souhaité de la machine est celui d oscillations auto-entretenues. On met le problème sous la forme d une équation d état : Le système d équations différentielles s écrit alors : avec (4) (5) 1 1 (6) On montre que l analyse des valeurs propres de A permet de savoir si les oscillations de la machine sont auto-entretenues [1]. En effet, les solutions des équations différentielles peuvent s écrire sous la forme : Λ (7) Λ. (8)

avec X condition initiale, λ valeurs propres de la matrice A, M matrice de passage de A à sa forme diagonalisée. Un mouvement oscillatoire stable n est obtenu que lorsqu il existe des valeurs propres purement imaginaires associées à des valeurs propres à partie réelle négative. Les valeurs propres purement imaginaires sont responsables du mouvement sinusoïdal tandis que les valeurs propres à partie réelle négative sont responsables de termes transitoires qui disparaissent avec le temps. 3. Exemple de machine 3.1. Caractéristiques Les principales caractéristiques de la machine modélisée sont présentées dans le Tableau 1. Avec ces paramètres, la puissance mécanique nominale de la machine est de 12 W. Masse Masse Diamètre / Volume éch. chaud/froid Volume régénérateur kg kg m m 3 m 3 6,2,4 3.1-6 2,5.1-5 Porosité régénérateur Température chaude Température froide Gaz Pression moyenne K K Pa,7 81 32 Hélium 7,1.1 6 Course max. Hauteur volume comp. au repos Hauteur volume détente au repos Volume ressort gazeux Volume ressort gazeux m m m m 3 m 3,3,3,15,146 3,5. 1-5 3.2. Résultats 3.2.1. Stabilité des oscillations Tableau 1 : Principales caractéristiques de la MSPL On impose une puissance mécanique de 12 W par l intermédiaire d un coefficient de frottement visqueux appliqué sur le. Les coefficients des équations différentielles obtenus après itérations sont présentés dans le Tableau 2. Les valeurs propres sont présentées dans le Tableau 3. La machine se place dans un régime d oscillations auto-entretenues de fréquence 21 Hz. Le rapport entre le déplacement du et celui du est de 1,4. Le déphasage entre le et le est de 6. Kpp Kpd Dpp Dpd s -2 s -2 s -1 s -1-2,6.1 4 1,1.1 4-1 Kdp Kdd Ddp Ddd s -2 s -2 s -1 s -1-9,9. 1 4-61 289-557 Tableau 2 : Coefficients des équations différentielles v. propres -524-133 1,5.1-4 +134i 1,5.1-4 -134i Tableau Valeurs propres de A Tableau 3 : Valeurs propres de A La Figure 2a présente les positions du et sur,4 s à partir du démarrage supposé à température et pression nominales. Le est supposé être écarté au démarrage

de sa position de repos de,15 mm. Nous constatons que les régimes transitoires sont très brefs et que le régime d oscillations auto-entretenues s installe très rapidement. Le temps de démarrage de la machine semble donc être principalement lié au temps de chauffage de la source chaude. La Figure 2b montre ces positions lorsque la puissance mécanique consommée est seulement de 115 W. Les oscillations deviennent divergentes car les dissipations sont insuffisantes dans la machine. Le comportement de la machine sous la forme de trajectoires dans le plan de phase (vitesse en fonction de la position) pour le et le est présenté sur la Figure 3 pour le cas d oscillations auto entretenues et sur la Figure 4 pour le cas d oscillations divergentes. P o s itio n (m ).4.2 -.2 P o s itio n (m ).2.1 -.1 -.4.1.2.3.4 Temps (s) -.2.1.2.3.4 Temps (s) Figure 2 Position et a) oscillations auto-entretenues b)divergentes V ite s s e (m /s ) 4 2-2 -4 -.2 -.1.1.2 Vitesse (m /s ) 4 2-2 -4 -.3 -.2 -.1.1.2.3 V it e s s e ( m / s ) 2 1-1 Figure 3 Trajectoires dans le plan de phase oscillations auto entretenues -2 -.1 -.5.5.1 Figure 4 Trajectoires dans le plan de phase oscillations divergentes 3.2.2. Influence des forces de frottement Fin -.1 -.5.5.1.15 Un frottement sec de coefficient,3 pour un effort normal de 1N par unité de masse est appliqué sur le de la machine. Ce frottement conduit à l arrêt de la machine en environ 1 s (Figure 5). Nous constatons que les amplitudes du mouvement du et du décroissent de manière similaire. V ite s s e (m /s ) 2 1-1 -2 Fin

5 x 1-4 -5 99 99.5 1 1.5 11 11.5 12 Temps (s) Figure 5 Arrêt de la machine dû aux frottements mécaniques 4. Conclusion Nous avons présenté une modélisation de machine Stirling à s libres destinée à une application de micro-cogénération. Cette modélisation a pour but de prédire les performances de la machine pour cette application. Pour cette raison, une étude de stabilité en fonction de la puissance mécanique consommée été réalisée. La modélisation et l influence des forces de frottement sec ont été présentées. Cette étude sera poursuivie par une validation expérimentale effectuée sur un prototype du même type. Références [1] C. West, Principals and applications of Stirling engines, Van Nostrand Reinhald Co., New York, 1986 [2] G. Walker, G. Reader, O. Fauvel, E. Bingham, The Stirling alternative, Gordon and Breach Science Publishers, 1994 [3] W.T. Beale, Free-Piston Stirling Engines Some Model Tests and Simulations, International Automotive Engineering Congress, Detroit, Paper 6923, 1969. [4] W.T. Beale, G. Chen, Small Stirling Free Piston Stirling Engines for Cogeneration, Sunpower inc., Athens; Ohio, 1992. [5] I. Urieli, D.M. Berchowitz, Stirling cycle analysis, Adam Hilger, Bristol, 1984 [6] J. Boucher, Influence du pilotage du sur le comportement d un cogénérateur à moteur Stirling et générateur électrique linéaire, Thèse de doctorat, Université de Franche Comté, 27. [7] J. Boucher, F. Lanzetta, P. Nika, Optimization of a dual free Stirling engine, Applied Thermal Engineering, 27 (27) 82 811 [8] R.W. Redlich, D.M. Berchowitz, Linear dynamics of free- Stirling engines, Proc. Instn. Mech. Engrs., vol 199 n A3, 23-213 [9] E.D. Rogdakis, N.A. Bormpilas, I.K. Koniakos, A thermodynamic study for the optimization of stable operation of free Stirling engines, Energy Conversion Manage. 45 (4) (24) 575 593. [1] B. Pradin, G. Garcia, Modélisation, analyse et commande des systèmes linéaires, Presses universitaires du Mirail, 29 Remerciements Ce travail a bénéficié d une aide de l Agence Nationale de la Recherche portant la référence ANR-8-BLAN-118-2 et d'une participation financière de l'entreprise GDF SUEZ.