Chapitre 2, Liaisons entre les atomes et les molécules

Documents pareils
Molécules et Liaison chimique

CHAPITRE VI : HYBRIDATION GEOMETRIE DES MOLECULES

BTS BAT 1 Notions élémentaires de chimie 1

CHAPITRE 2 : Structure électronique des molécules

Application à l astrophysique ACTIVITE

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

1.2 Coordinence. Notion de liaison de coordinence : Cas de NH 3. et NH 4+ , 3 liaisons covalentes + 1 liaison de coordinence.

Plan du chapitre «Milieux diélectriques»

Enseignement secondaire

Viandes, poissons et crustacés

Effets électroniques-acidité/basicité

Généralités. Chapitre 1

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre 4 - Spectroscopie rotationnelle

LES ELEMENTS CHIMIQUES

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

Commission juridique et technique

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

EXERCICES SUPPLÉMENTAIRES

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

ACIDES BASES. Chap.5 SPIESS

Energie nucléaire. Quelques éléments de physique

SECTEUR 4 - Métiers de la santé et de l hygiène

Rappels sur les couples oxydantsréducteurs

1 ère Partie : Concepts de Base

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

P17- REACTIONS NUCLEAIRES

SPECTROSCOPIE D ABSORPTION DANS L UV- VISIBLE

Chap 2 : Noyaux, masse, énergie.

TD 9 Problème à deux corps

Décrets, arrêtés, circulaires

Partie 1. Addition nucléophile suivie d élimination (A N + E) 1.1. Réactivité électrophile des acides carboxyliques et groupes dérivés

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

Physique Chimie. Réaliser les tests de reconnaissance des ions Cl -,

8/10/10. Les réactions nucléaires

ANALYSE SPECTRALE. monochromateur

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

Structure quantique cohérente et incohérente de l eau liquide

Chapitre 11: Réactions nucléaires, radioactivité et fission

- I - Fonctionnement d'un détecteur γ de scintillation

Atelier : L énergie nucléaire en Astrophysique

Chapitre 6 : les groupements d'étoiles et l'espace interstellaire

Chapitre 5 : Noyaux, masse et énergie

Théorie des multiplets! appliquée à! la spectroscopie d ʼabsorption X!

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

Lycée français La Pérouse TS. L énergie nucléaire CH P6. Exos BAC

LABORATOIRES DE CHIMIE Techniques de dosage

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

Microscopies Électroniques

Titre alcalimétrique et titre alcalimétrique complet

Équivalence masse-énergie

TP N 3 La composition chimique du vivant

REACTIONS D OXYDATION ET DE REDUCTION

DYNAMIQUE DE FORMATION DES ÉTOILES

Professeur Eva PEBAY-PEYROULA

CHIMIE ET ENVIRONNEMENT : LA «CHIMIE VERTE»

Modélisation moléculaire

Résonance Magnétique Nucléaire : RMN

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

Comprendre l Univers grâce aux messages de la lumière

INTRODUCTION À L'ENZYMOLOGIE

C4: Réactions nucléaires, radioactivité et fission

STÉRÉOISOMÉRIE CONFIGURATIONNELLE STÉRÉOISOMÉRIE OPTIQUE COMPOSÉS OPTIQUEMENT ACTIFS À UN SEUL CARBONE ASYMÉTRIQUE

LES SUBSTITUTIONS NUCLÉOPHILES EN SÉRIE ALIPHATIQUE S N 1 ET S N 2

La gravure. *lagravureparvoiehumide *lagravuresèche

Structures algébriques

LES COMPLEXES. Description orbitalaire, Structure, Réactivité, Spectroscopie. Martin VÉROT

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

Les isomères des molécules organiques

Ecole d été des spectroscopies d électrons.

INTRODUCTION À LA SPECTROSCOPIE

De la physico-chimie à la radiobiologie: nouveaux acquis (I)

À propos d ITER. 1- Principe de la fusion thermonucléaire

2 C est quoi la chimie?

Vitesse d une réaction chimique

Intoxications collectives en entreprise après incendies de locaux Proposition d une conduite à tenir

Comment réaliser physiquement un ordinateur quantique. Yves LEROYER

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

Cours d Analyse. Fonctions de plusieurs variables

de suprises en surprises

PHYSIQUE CHIMIE. Notions de première indispensables. Table des matières. pour la Terminale S 1 LE PHOTON 2 LES SOLUTIONS COLORÉES

ECO-PROFIL Production Stratifié HPL mince fabriqué par Polyrey

La vie des étoiles. La vie des étoiles. Mardi 7 août

Transport des gaz dans le sang

Centre d'etudes Nucléaires de Fontenay-aux-Roses Direction des Piles Atomiques Département des Etudes de Piles

Transport des gaz dans le sang

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

GRILLE TARIFAIRE Service Exceptionnel. Expertise en Analyse.

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome

Compléments - Chapitre 5 Spectroscopie

Épreuve collaborative

Le ph, c est c compliqué! Gilbert Bilodeau, agr., M.Sc.

Méthode de l Entropie Maximum (MEM)

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

MASSE, VOLUME ET QUANTITE DE MATIERE

Capacité Métal-Isolant-Semiconducteur (MIS)

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème /2015

Transcription:

Chapitre 2, Liaisons entre les atomes et les molécules 1.Les orbitales moléculaires. 2.Énergie de liaison, moment dipolaire, électronégativité 3.Le modèle de Lewis, VSPR, mésomérie 4.Liaisons faibles: hydrogène, Van der Walls Cours 3 à 6 1

Liaisons: programme Les orbitales moléculaires: Symétrie et combinaison des OA Molécules diatomiques Énergie de liaison HF, moment dipolaire Electronégativité. Modèle de Lewis 2

Orbitales moléculaires Dans l'atome, on a utilisé des orbitales pour décrire les électrons (Orbitales Atomiques) Dans une molécule, on utilise aussi les orbitales pour décrire les électrons (Orbitales Moléculaires) La combinaisons d'oa pour former des OMs se fait par recouvrement On construit les OM à partir des OA par combinaison avec des règles de symétrie. 3

Symétrie Les orbitales sont des fonctions qui à chaque point de l'espace fait correspondre un nombre (champ scalaire) Le recouvrement est une combinaison mathématique de ces fonctions. Par exemple Ψ 1 +Ψ 2 ou Ψ 1 -Ψ 2 si on appelle Ψ ces fonctions. La symétrie des deux OA formant OM doit être compatible pour obtenir un recouvrement non nul On forme autant d'om qu'on a utilisé d'oa 4

Densité de probabilité Le champ scalaire de l'orbitale est la densité de probabilité de présence de l'électron en un point donné Cela correspond à une densité de charge négative dans l'espace Une densité est le rapport entre une grandeur et un volume, par exemple la masse volumique 5

Normalisation de l'orbitale La charge d'un électron est égale à -e La somme des densités de charge dans TOUTE l'orbitale qui contient un électron doit être égale à -e Si la densité de charge se renforce à un endroit, elle doit baisser ailleurs 6

Orbitales atomiques s: OM 1 + 2 Liant 1 2 Antiliant 1-2 7

Orbitales atomiques s: OM 1 + 2 z Liant 1 2 Antiliant 1-2 8

Liant -Antiliant Les électrons (chargés -) vont dans les nouvelles OA crées Le noyaux (chargés +) restent à leur place On compare les effets des charges entre une configuration où les électrons restent dans leurs OA et celle où ils vont dans les OMs 9

plus d'électrons (-) ici que là + + ANTILIANT + + LIANT + + moins d'électrons (-) ici que là Energie 10

Signe des orbitales On donne un signe + ou à des régions de l'espace occupées par les orbitales Règle: la traversée d'une surface nodale est accompagnée d'un changement de signe On peut symboliser les changements de signe par des couleurs, ici bleu et orange Attention: ne pas confondre le "signe" des orbitales qui est une propriété géométrique et mathématique avec le signe des charges (toujours pour l'électron)!!! 11

s p d f 12

Règles de combinaisons On fait se superposer des OA de même taille On adopte les règles de combinaison de signe des multiplications pour les superpositions, par exemple bleu-bleu ou orange-orange donnent bleu. bleu-orange donne orange. Si la combinaison résultante comporte autant de chacune des couleurs, alors la combinaison est impossible. Exemple à suivre, s et p 13

Nom des OM On nome les OM suivant leur symétrie σ: Symétrie de révolution autour de l'axe de la liaison (ligne rejoignant les noyaux des 2 atomes liés), souvent repéré comme étant l'axe z. π: Un et un seul plan nodal contenant l'axe z. C'est aussi un plan de symétrie par réflexion (avec changement de signe) δ: deux plans nodaux contenant l'axe z. 14

Combinaison s et p: OM Rien du tout!! z Liant Anti Liant 15

La symétrie en images NUL MULTIPLICATION (recouvrement) OK 16

Combinaison p et p: OM p x p liant p antiliant z 17

Combinaison p et p: OM liant antiliant 18

Résumé des combinaisons s px py pz s X X px X p X X py X X p X pz X X Les liaisons sont plus fortes que les liaisons p 19

Schéma d'énergie Énergie Antiliant (*) Liant 20

Schéma d'énergie: H 2 H Énergie H 2 H Antiliant H: 1s 1 Liant 21

Schéma d'énergie: H 2 H 2 Énergie Antiliant Liant Indice de liaison: 1/2 nombre d'électrons liants ici I l = 1 22

Schéma d'énergie: He 2 He He 2 He Énergie Antiliant He: 1s 2 Liant Indice de liaison: 1/2 {nombre d'électrons liants - nombre d'électrons antiliants} I l = 0 donc pas de liaison 23

Schéma d'énergie: He 2 He Énergie He 2 He Antiliant Liant Indice de liaison: 1/2 {nombre d'électrons liants - nombre d'électrons antiliants} I l = 0 donc pas de liaison 24

Règle N 2 Règle N 1: la symétrie Règle N 2: l'énergie E La combinaison d'oa se fait d'autant lieux que l'énergie des OA qui se combinent est proche. Bof... Ok! 25

Paramètres Indice de liaison Force de la liaison Énergie de liaison Longueur de liaison 26

Paramètres Indice de liaison L'indice de liaison est défini par: 1/2 (Nb d e- dans des OM liantes Nb d e- dans des OM antiliantes); Il correspond au nombre de liaison entre les atomes. Force de la liaison La force qui s'exerce entre les deux atomes si on veut les séparer en étirant la liaison. Elle est fortement corrélée à l'indice de liaison et à l'énergie de liaison Énergie de liaison Énergie reçue par la formation d'une liaison. Elle est négative car la formation d'une liaison libère de l'énergie. C'est l'opposée de l'énergie nécessaire et suffisante à apporter à la liaison pour la briser 27

Diagramme des OM du dioxygène E σ* p O: [He] 2s 2 2p 4 π* x π* y 2p π x π y σ p σ* s 2s σ s 28

Diagramme des OM du dioxygène E O 2 σ* p π* x π* y 2p π x π y σ p σ* s 2s σ s 29

Diagramme des OM du dioxygène E σ* p π* x π* y 2p π x π y σ p Molécule paramagnétique σ* s 2s σ s 30

Propriétés magnétiques Diamagnétisme: comportement général, est faiblement repoussé par zones de champs magnétiques forts vers les faibles Paramagnétisme: caractéristique d'électrons célibataire (paramagnétisme de spin), est attiré par les zones de champ magnétique les plus forts. Ferromagnétisme: comportement de matériaux, pas de molécules 31

Courbe de Morse 32

Schéma d'énergie: HF H: 1s 1 F: [He] 2s 2 2p 5 33

Schéma d'énergie: HF H: 1s 1 F: [He] 2s 2 2p 5-13.6 ev ~ - 43 ev ~ - 20 ev 34

Schéma d'énergie: HF H HF F Énergie Antiliant Liant 35

Schéma d'énergie: HF H HF F Énergie Antiliant Liant 36

Définition électronégativité Dissymétrie du nuage électronique dans la liaison A-B (HF par exemple) Polarisation de la liaison Moment dipolaire µ Intensité du moment dipolaire dépend de la différence d'électronégativité µ = A - B Unité: debye (Peter Debye) 3,33564 10-30 C m (10-18 ues cgs) F m H 37

Dipôle électrique H - F 38

Causes différences électronégativité Différences d'intensité des force liant les électrons de valence au noyau Taille des atomes Charge effective Les échelles d'électronégativité essayent d'évaluer cette force et d'en quantifier les variations dans le tableau périodique 39

Deux termes pour l'énergie de liaison Le voisinage des deux charges opposées d'un dipôle engendre une force d'attraction entre ces charges. Les atomes qui se chargent de part et d'autre de leur liaison chimique vont faire naître entre eux une force d'attraction d'origine électrostatique se traduisant par une énergie (négative) électrostatique. 40

Deux termes pour l'énergie de liaison Le voisinage des deux charges opposées d'un dipôle engendre une force d'attraction entre ces charges. Les atomes qui se chargent de part et d'autre de leur liaison chimique vont faire naître entre eux une force d'attraction d'origine électrostatique se traduisant par une énergie (négative) électrostatique. On voit apparaître une contribution électrostatique à l'énergie de liaison, on parle de contribution ionique 41

Caractère ionique partiel d - d m d + m = d. d. e = l. e -e l +e m Caractère ionique partiel (CIP) = m / m max = d = l / d m max = d. e 42

Échelles d'électronégativité Définition atomique pure: Mulliken force sur e- Mulliken = 0.317 (Ae + Ei) / 2 Robert Mulliken Définition atomique + un peu de molécule Allred-Rochow Z*/r², r est le rayon covalent soit ½ de la longueur de liaison A-A, force sur e- Définition moléculaire: Pauling, part ionique dans l'énergie de liaison. Linus Pauling, 1901-1994 Prix Nobel de Chimie en 1954 43

Allred-Rochow Eugen G. Rochow = 3590 Z*/r² + 0.744 (r en pm) Pauling χ A χ B =0,102 E A B E AA E BB H = 2.22 E en kj/mol 44

Exemple d'électronégativités fluor (F) 4.0 oxygène (O) 3.4 chlore (Cl) 3.2 azote (N) 3.0 brome (Br) 3.0 iode (I) 2.7 soufre (S) 2.6 carbone (C) 2.6 hydrogène 2.2 45

46

Electronégativité de Pauling 47

Electronégativité 4.5 4 F 3.5 O Allred & Rochow Pauling 3 N Cl Br 2.5 H 2 1.5 1 C B Be Li S P Si Al Mg Na Ca K Ti V Cr Mn Sc Fe Co NiCu Ga Zn Se As Ge Sr Rb Y Zr Mo Rh Pd Ag Cd In Sn Sb I Cs Ba LaCePrNdSm Gd DyHoErTm Lu Hf W Au Ir Pt Pb Hg Tl Bi 0.5 0 48

Electronégativité détails 4.5 4 F 3.5 O Allred & Rochow Pauling 3 2.5 2 1.5 1 H Li Be B C N Na Mg Al Si P S Cl K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn As Ge Ga Se Br 0.5 0 H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 49

Nomenclature des composés Le nom des composés tient compte du signe de la différence d'électronégativité L'élément le plus électronégatif prend le nom de l'anion associé. Oxygène => oxyde (oxide) Chlore => chlorure (chloride) ClO: oxyde de chlore (chlorine oxide) HCl: chlorure d'hydrogène (hydrogen chloride) SO 2 : dioxyde de soufre (sulfur dioxide) H 2 S: sulfure d'hydrogène (hydrogen sulfide) 50

Le modèle de Lewis Une structure de Lewis est un schéma qui représente l ensemble des liaisons et des paires libres d une molécule Couche de valence Liaison chimique Carbone et chimie organique Règle de l'octet Doublets, p, non liants Résonance et Mésomérie Nombre d'oxydation Gilbert Newton Lewis (1845-1946) 51

Les liaisons... H H - 436 kj / mol 74 pm C C - 347 kj / mol 154 pm N N - 946 kj /mol 109 pm TOUJOURS NEGATIVE pour la formation NB: on écrit parfois les énergies de liaison avec une valeur positive, c'est l'énergie de dissociation qui est opposée à l'énergie de formation 52

Les liaisons... H H - 436 kj / mol 74 pm C C - 347 kj / mol 154 pm N N - 946 kj /mol 109 pm Comment décrire efficacement la laison moléculaire quand il y a plus de 2 atomes? 53

L'atome suivant Lewis X O Z= 8 [He] 2s2 2p4 6 électrons de valence 54

L'atome suivant Lewis X O doublet On remplit les 4 cases autour de l'atome avec les règles suivantes: On remplit le maximum de cases Pas plus de 2 électrons par case électron célibataire 55

L'atome selon Lewis N Z = 7 [He] 2s 2 2p 3 5 e - de valence C Z = 6 [He] 2s 2 2p 2 4 e - de valence H Z = 1 1s 1 1 e - de valence 56

Proximité avec les OA On peut voir quelque chose qui ressemble à la configuration électronique. Dans le modèle de l'aufbau, cela revient à confondre les sous-couches s et p On arrive avec un modèle d'atome en simples couches K, L, M... avec cependant de grandes difficultés pour les éléments de transition Le modèle de Lewis ne marche pas pour les éléments de transition 57

Modèle de liaison chimique selon Lewis Origine de la liaison: une liaison se forme entre deux atomes A et B si elle permet d abaisser l énergie du système. Formation: mise en commun de 2 électrons de valence entre A et B pour former un doublet d électrons (une paire d électrons) Appartenance des 2 électrons: Chaque atome contribue 1 e - A B 1 atome fournie les deux e - A B A A B B une paire d électrons une case vide B: donneur d un doublet d e - = base de Lewis A : accepteur d un doublet d e - = acide de Lewis On représente les deux électrons qui forment la liaison par un trait. 58

Règle de l'octet (Lewis) Un atome lorsqu il est lié tend à s entourer de 8 électrons car c est une structure électronique stable Gaz noble ns 2 np 6 Chaque atome fournit un électron célibataire A B A B Les électrons appariés sont représentés par des bâtons 59

Règle de l'octet Pour un atome polyélectronique, plusieurs liaisons (doublets liants) sont possibles, et un atome peut aussi garder autour de lui les e - sous la forme de doublets (ou paires libres, non liées). CH 4 H H C H H 8 électrons autour du carbone H 2 O O H H H O H 8 électrons autour de l oxygène Pour un élément de la 2 ème période (C, N, O, F) : formation de liaisons covalentes pour saturer la couche de valence et atteindre la configuration du Ne (2s 2 2p 6 ) soit 8 électrons 60

Exceptions H: précède He (gaz noble) de configuration 1s2. H sera donc stable entouré de 2 électrons N peut être stable entouré de 7 électrons... Défaut d'électrons: B (6 électrons), Li (2 électrons) 61

Carbone et chimie organique C: 6 1s2 2s 2 2p 2, donc 4 e - de valence Electronégativité (2,5): ni très élevée ni très faible Règle de l'octet: + ou - 4 e - (ion trop chargé, impossible) Partage des 4 e - avec d autres atomes tels que H, C, N, O, X etc pour former des liaisons covalentes C H C C - 413 kj / mol - 347 kj / mol 109 pm 154 pm C O - 750 kj / mol 120 pm C C - 837 kj /mol 120 pm 62

Règle de l OCTET Liaisons de Lewis LIAISONS simple - double - triple A B A B A B π σ 1 liaison σ et deux π Correspond à l'indice de liaison obtenu par les recouvrements d'oa 63

Charge formelle (CF) Lorsqu un des deux atomes «apporte» les 2e - pour la formation d une liaison, on fait apparaître des charges formelles pour indiquer qu il y a eu «perte» d un e - pour B et «gain» d un électron pour A. - + A B A B La somme des charges formelles est égale à la charge réelle portée par la molécule. Pour un atome donné: Exemple: CO NO 3 - CF = n - n e- valence e- attribués dans la molécule C O O N O O (1 liaison = 1e-, 1 doublet non liant = 2e-) atome C: n v = 4 ; n e = 5 CF = -1 atome O: n v = 6 ; n e = 5 CF = +1 atome N: n v = 5 ; n e = 4 CF = +1 - atome O : n v = 6 ; n e = 7 CF = -1 atome O: n v = 6 ; n e = 6 CF = 0 64

Liaison dative (ou de coordination) - Un atome fournit le doublet, le deuxième atome possédant une case quantique vide. B A B A Peut être aussi créé en utilisant les charges formelles B + A - + - B A 65

Acides et bases de Lewis - Un atome fournit le doublet, le deuxième atome possédant une case quantique vide. B A B A Base de Lewis Acide de Lewis 66

Structure de Lewis La structure de Lewis est un schéma des liaisons dans la molécule et non un schéma figurant la géométrie de la molécule (pour cela on fera de la VSEPR). Comment déterminer une structure de Lewis? 1. Faire la somme des e - de valence de tous les atomes, et + n (s il s agit d un anion n-) ou n (s il s agit d un cation n+). Nv 2. Faire la somme des électrons qu implique la règle de l octet pour chaque atome (attention à l hydrogène). No 3. Nombre de liaisons Nl = (No-Nv)/2 4. Placer les liaisons entre les atomes puis les paires libres en respectant la règle de l octet. 5. Indiquer éventuellement les charges formelles 67

Construction Repérer la colonne de chaque atome Électrons de Valence ION n+ ou ION n- Retrancher ou ajouter n électrons NOMBRE DE DOUBLETS 68

VII (7 e - ) Cl Exemples + Cl 1 doublet de liaison Cl Cl V N (5 e - + ) 3 H H N H H VI (6 e - O + O O O ) 69

Exemples O 2, Cl 2, NH 3 HCN Nv = 1 + 4 + 5 = 10 No = 2 + 8 + 8 = 18 Nl = (18-10)/2 = 4 H C N H 2 CO Nv = 2 + 4 + 6 = 12 No = 2*2 + 8 + 8 = 20 Nl = (20-12)/2 = 4 H H C O SO 2 Nv = 6 + 2* 6 = 18 No = 8 + 8 + 8 = 24 Nl = (24-18)/2 = 3 O S O O S O Attention : plusieurs formules de Lewis sont po 70

Hybrides de résonance 71

Charges formelles Mésomérie O O N N O O Il arrive que pour une molécule ou un ion on ne puisse écrire une seule structure électronique comme ici pour NO 2. 72

Résonance - Mésomérie O S O O S O O N O O N O La molécule SO 2 et l anion NO - 2 ne sont pas correctement décrits par une formule de Lewis, mais par la superposition (ou la combinaison) de 2 formules de Lewis. On dit qu il y a résonance entre ces 2 formes mésomères (ou forme limite). Ces notions peuvent être généralisées pour toutes espèces chimiques. La contribution d une forme limite à la structure réelle dépend de sa stabilité relative en lien avec son niveau d énergie et la structure réelle est une moyenne pondérée de toutes les formes mésomères. Remarque: Aucune forme mésomère représente la structure de l espèce chimique. Elle est en réalité un hybride de résonance entre les formes limites. 73

Résonance - Mésomérie Comment peut-on passer d une forme mésomère à une autre? Le déplacement de doublets électroniques libres ou π va permettre le passage d une forme mésomère à l autre. Ces déplacements ne doivent pas détruire les liaisons de la molécule. Le squelette sigma reste en place Seuls des doublets libres E ou des doublets de liaisons multiples peuvent se déplacer librement sans casser totalement une liaison et donc la molécule. 74

Règles de mésomérie Tous les déplacements de doublets libres ou π sont possibles On ne touche pas aux liaisons σ On peut faire apparaître des charges Les charges déstabilisent la forme mésomère Le modèle de Lewis de la molécule est la superposition des différentes formes mésomères pondérées par leur énergie. Plus l'énergie est basse, plus la forme mésomère a de l'importance 75

Nombre d'oxydation (n.o.) On considère la charge formelle ou réelle de l'atome On considère la différence d'électronégativité des deux éléments liés On considère que tous les électrons de la liaison vont sur l'atome le plus électronégatif. Pour une liaison multiple, l'effet est multiplié par le nombre de liaisons. BF3 est décrit comme "B 3+ " et 3 "F - ". n.o. de B est +3 dans BF 3 et no de F est -1. On retrouve le signe du no dans la nomenclature. Le nom de l'anion est donné à l'élément qui la son n.o. négatif. 76

Exemple F 2 O F: -1 ; O + 2 H 2 O O: -2 ; H +1 NO 3 - Le seul cas où le no de O est positif fluor (F) 4.0 oxygène (O) 3.4 chlore (Cl) 3.2 azote (N) 3.0 brome (Br) 3.0 iode (I) 2.7 soufre (S) 2.6 carbone (C) 2.6 hydrogène 2.2 O: -2 ; N +5 La somme des no est égale à zéro pour une molécule, la charge de l'ion pour un ion 77

D'autres exemples H 2 O 2 (H-O-O-H) O: -1 ; H: +1 H-C N N: -3 ; C: +2 ; H: +1 fluor (F) 4.0 oxygène (O) 3.4 chlore (Cl) 3.2 azote (N) 3.0 brome (Br) 3.0 iode (I) 2.7 soufre (S) 2.6 carbone (C) 2.6 hydrogène 2.2 78

Combinaison des moment dipolaires Vecteur, comme une boussole, s'applique à une liaison comme à une molécule. Dans le modèle de Lewis, les moments dipolaires de chaque liaison s'additionnent pour donner le moment dipolaire de la molécule Caractère ionique partiel, donne la quantité d'intensité de liaison apporté par l'attraction résultant de la dissymétrie des charges 79

VSEPR Valence Schield Electron Pair Repulsion 80

Méthode Construire la molécule de Lewis Choisir un atome A Compter le nombre de directions formées par les paires électroniques Un doublet "libre" (non liant) compte pour une direction notée E Une liaison simple compte pour une direction notée X Une liaison multiple compte pour une seule direction notée X aussi S'il y a un électron célibataire, ça ne marche pas 81

Géométrie 2 directions, AX 2 : Linéaire 3 directions, AX 2 E ou AX 3 : triangulaire 4 directions, AX 2 E 2 ou AX 3 E ou AX 4 : tétraèdre 82

Linéaire X A X 180 83

Triangle AX 3 X A X 120 X 84

Triangle AX 2 E X A E 120 X 85

Tétraèdre 86

Tétraèdre 87

Tétraèdre 88

Tétraèdre 89

Tétraèdre 109 28' 90

Tétraèdre 91

Tétraèdre 92

Hypervalence Pour les atomes plus gros, à partir de la 3ème période (P, S, Cl...), la règle de l'octet n'est plus forcément respectée. Le nombre de case de Lewis autour de l'atome peut monter jusqu'à 6... Ce qui autorise 6 doublets 93

Suite de la VSEPR 5 directions: bipyramide à base triangle 94

6 directions: octaèdre 95

6 directions: octaèdre 90 96

6 directions: octaèdre 90 97

Exemple d'hypervalence Cl Cl P Cl Cl Cl F F F S F F F 10e- 12e- Composés hypervalents 98

Liaisons "faibles" A suivre... 99