Accès aux vidéos en ligne : comment repousser les limites des tuyaux? vincent.roca@inria.fr 25 avril 2012 1

Documents pareils
M1 Informatique, Réseaux Cours 9 : Réseaux pour le multimédia

QoS et Multimédia SIR / RTS. Introduction / Architecture des applications multimédia communicantes

Multimedia. Systèmes, Communications et Applications. Ahmed MEHAOUA

Sauvegarde collaborative en pair-à-pair


ISO/CEI NORME INTERNATIONALE

Master e-secure. VoIP. RTP et RTCP

Codage hiérarchique et multirésolution (JPEG 2000) Codage Vidéo. Représentation de la couleur. Codage canal et codes correcteurs d erreur

Guide des fonctions avancées de mywishtv

Routeur Gigabit WiFi AC 1200 Dual Band

Réseaux grande distance

Chapitre 13 Numérisation de l information

Diffusez vos événements en direct sur Internet

Transmission d informations sur le réseau électrique

En DV (PAL ou NTSC), la largeur est toujours de 720 pixels, c'est la proportion du pixel qui change la proportion de l'image.

Internet et Multimédia Exercices: flux multimédia

Diffusez vos événements en direct sur Internet

Maintenir un service de traitement de son ou d image d ordinateur

Réseaux M2 CCI SIRR. Introduction / Généralités

Cours n 12. Technologies WAN 2nd partie

L EXPORTATION d un PROJET.MVP

Formations au tournage et au montage vidéo. Monter un film avec. Imovie 11

Réseaux Multimédia et Qualité de Service

Réalisation d un diaporama en haute définition avec. Adobe Premiere Elements 3.0 ou Adobe Premiere Pro 2.0. Encodage pour Internet

Technologie de déduplication de Barracuda Backup. Livre blanc

Vademecum. Solutions numériques

Systèmes et Réseaux (ASR 2) - Notes de cours Cours 14

Chapitre 1. Introduction aux applications multimédia. 1. Introduction. Définitions des concepts liés au Multimédia (1/2)

Présentation du projet national

Chapitre 2 : communications numériques.

2. MAQUETTAGE DES SOLUTIONS CONSTRUCTIVES. 2.2 Architecture fonctionnelle d un système communicant.

Performance et usage. La différence NETGEAR - R7000. Streaming HD illimitée

Pré-requis installation

Chaine de transmission

Ebauche Rapport finale

La Qualité de Service le la Voix sur IP. Principes et Assurance. 5WVOIP rev E

Médiathèque Numérique, mode d emploi

Analyse de la bande passante

Le Multicast. A Guyancourt le

Chapitre 18 : Transmettre et stocker de l information

RCS : Rich Communication Suite. EFORT

Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication. Philippe Robert INRIA Paris-Rocquencourt

La VOIP :Les protocoles H.323 et SIP

Dans la série Les tutoriels libres présentés par le site FRAMASOFT. <Handbrake> <Utilisation d'handbrake pour les débutants> Par <OLIVIER LECLERCQ>

Système de vidéosurveillance Guide de configuration

Internet - Outils. Nicolas Delestre. À partir des cours Outils réseaux de Paul Tavernier et Nicolas Prunier

RTP et RTCP. EFORT

Mes documents Sauvegardés

xdsl Digital Suscriber Line «Utiliser la totalité de la bande passante du cuivre»

Un concept multi-centre de données traditionnel basé sur le DNS

Communications immersives : Enjeux et perspectives

Vidyo : une maquette pour la visioconférence sur le poste de travail

Smartphone Android by SFR STARADDICT II

Caractéristiques et débits de votre ligne ADSL

Rapport du projet Qualité de Service

NFC Near Field Communication

La télévision numérique par votre ligne téléphonique. Guide d utilisation. Les services MaLigne TV.

Médiathèque Numérique, mode d emploi

LA BOX FIBRE DE SFR GUIDE D UTILISATION COMPLET (MAIS PAS COMPLEXE) SFR.FR

Liste de vérification des exigences Flexfone

Transmission de données. A) Principaux éléments intervenant dans la transmission

Pierre-Louis Théron Nikolay Rodionov Axel Delmas

Approche Hybride de la Diffusion OTT. Julien Privé / Senior Solutions Engineer

Note technique. Formats de compression vidéo utilisés par CamTrace V11 avantages et inconvénients.

ADSL. Étude d une LiveBox. 1. Environnement de la LiveBox TMRIM 2 EME TRIMESTRE LP CHATEAU BLANC CHALETTE/LOING NIVEAU :

La tablette grand écran pour partager votre expérience sous Android Honeycomb!

La télé comme je la veux, quand je le veux!

La télé comme je la veux, quand je le veux!

Votre réseau multimédia

Les Réseaux sans fils : IEEE F. Nolot

Pré-requis installation

NOTIONS DE RESEAUX INFORMATIQUES

Projet d informatique M1BI : Compression et décompression de texte. 1 Généralités sur la compression/décompression de texte

DVR08IP-8POE. DVR08IP-8POE DVR Série Neptune IP. NVR (Network Video Recorder) 8 canaux pour caméras IP avec 8 ports réseau PoE intégrés

Fiche d identité produit

Windows Live Movie Maker

Nouvelles technologies, nouveaux usages : les TIC*, quels impacts? * : technologies de l information et de la communication

Agrégation de liens xdsl sur un réseau radio

Présence obligatoire de l administrateur réseau et de l administrateur téléphonie pendant l installation et le paramétrage.

Adapter des vidéos à un appareil mobile

Les tablettes. Présentation tablettes Descriptif Fournisseurs Caractéristiques Comparatifs Conseils Perspectives Démonstration

Accédez au test ici

GUIDE D'INSTALLATION. AXIS Camera Station

Numérisation du signal

Livre Blanc Trois façons simples d'optimiser votre gestion de la bande passante pour la vidéosurveillance

VRM Monitor. Aide en ligne

Déploiement d un serveur courriel dédié pour entreprise

Chapitre 11 : Le Multicast sur IP

Wyse WSM. L informatique légère, économique, flexible et fiable. Wyse WSM. Tout ce que vous devez savoir. Cliquez ici

Network musical jammin

Set-up recommandés. Avril 2015

VOIP. QoS SIP TOPOLOGIE DU RÉSEAU

Errata et mises à jour

Les réseaux cellulaires

Foire aux questions sur Christie Brio

Manuel d utilisation de Wireless Mobile Adapter Utility. Fonctionnalités

LA SOLUTION DE DISTRIBUTION AUDIO/VIDEO/DATA INTERACTIVE DE NOUVELLE GENERATION (SUR RESEAU INFORMATIQUE)

Recherche et Diffusion de l Information dans les Réseaux. Philippe Robert. Le 8 avril 2014

Transcription:

Accès aux vidéos en ligne : comment repousser les limites des tuyaux? vincent.roca@inria.fr 25 avril 2012 1

l Copyright Inria 2012, tous droits réservés contributeur : Vincent Roca l distribué sous licence Creative Commons Paternité - Pas d'utilisation Commerciale 2.0 France (CC BY-NC 2.0) http://creativecommons.org/licenses/by-nc/2.0/fr/deed.fr 2

Plan 1. Introduction et contexte 2. Pourquoi et comment coder une vidéo numérique? 3. Comment diffuser et accéder à une vidéo? 4. Un exemple : le standard ISDB-Tmm 3

l 1 ère partie Introduction et contexte 4

Un peu de vocabulaire l VOD vidéo à la demande («Video On Demand») l SVOD lʼutilisateur choisit son contenu, au lieu de «subir» les programmes choisis pour lui par les chaînes TV $ VOD avec abonnement («Subscription VOD») l mode «streaming» lecture en continu de la vidéo/musique/ l mode «téléchargement» (download) on télécharge la totalité, puis on lit la vidéo/musique/

Un peu de vocabulaire (suite) l transmission en mode «streaming»? fichier vidéo serveur (ex. youtube) transmission «par paquet» Internet mon ordi. (ou smartphone) 17 16 15 affichage au fur et à mesure de la réception des paquets 6

Un peu de vocabulaire (suite) l ou transmission en mode «téléchargement»? serveur fichier vidéo transmission «par paquet» Internet mon ordi. (ou smartphone) affichage une fois le fichier téléchargé 7

Un peu de vocabulaire (suite) l comparaison mode streaming on visionne rapidement utilisable même si l on n a que peu d espace de stockage libre on peut zapper la qualité dépend du réseau, qui varie dynamiquement visionner plusieurs fois nécessite plusieurs transmissions téléchargement on attend la fin de réception du (gros) fichier nécessite un espace de stockage suffisant zapper nécessite d avoir téléchargé les deux fichiers Bof! qualité optimale on visionne autant de fois que voulu sans surcoût 8

Quelques statistiques pour fixer les idées l YouTube, c est : 8 ans de contenu mis en ligne chaque jour soit 48h par minute 3 milliards de vidéos regardées par jour dont > 400 millions pour YouTube Mobile par jour > 700 milliards de vidéos regardés sur l année 2010 800 millions d utilisateurs uniques par mois en France : 39.6% de part de marché 214 min/mois de visionnage en moyenne l source : http://www.youtube.com/t/press_statistics 9

Quelques statistiques (suite) l DailyMotion, c est : 1,2 milliards de vidéos regardées par mois 114 millions de visiteurs uniques par mois en France : 2,7% de part de marché 82 min/mois de visionnage en moyenne l source : http://www.dailymotion.com/fr/about 10

Quelques statistiques (suite) leader US de la vidéo à la demande par abonnement 11

Quelques statistiques (suite) l évolution de l offre au cours du temps de l envoi de cassettes VHS/DVD par courrier... au streaming sur Internet pour 7.99$/mois, accès illimité aux films/séries en streaming recommandation : 1.5 Mb/s min, 3 Mb/s en qualité DVD facilement accessible avec un accès ADSL$ 12

Quelques statistiques (suite) l Netflix, aux US, c est : 22 millions d abonnements avec streaming 3 millions d abonnements DVD seuls 20% du trafic Internet aux heures de pointe (2010) cela va augmenter inévitablement 13

Quelques statistiques (suite) l «La VOD redonne le sourire à l industrie du cinéma» ZDNet, 13 février 2012 le poids de la VOD dans le chiffre d affaire d un film augmente exemple «Bridesmaids»: 9% (40 Millions $) du CA réalisé sur lʼoffre VOD aux US$ 14

Quelques statistiques (suite) l Et le réseau là dedans? «Le trafic de données mobile est aujourd'hui trois fois plus important que tout le trafic Internet en 2000. Il devrait bondir de 26 fois entre 2010 et 2015, pour atteindre 6,3 exaoctets (10 18 ) par mois. Rien qu'en 2010, il a triplé. La vidéo sur mobile devrait être le principal consommateur de bande passante : il représente déjà 50% de tous le trafic data mobile observé...» les opérateurs misent sur la disponibilité de nouveaux réseaux pour mobiles (amélioration avec 3G+, puis 4G/LTE) l source : ZDNet, 1 er février 2011 15

En résumé l on a vu différences entre les «modes streaming» et «téléchargement» de diffusion de contenus importance croissante de : YouTube offre VOD Netflix offre SVOD «la VOD, une chance pour l industrie du cinéma» impacts sur le réseau Netflix : 20% du trafic Internet en heures de pointe! préoccupant pour «l Internet mobile» course vers les réseaux 3G+ et 4G$ 16

l 2 ème partie Aspects techniques pourquoi et comment coder une vidéo numérique?! 17

Pourquoi compresser une vidéo? l vidéo 25 ou 30 images/s pour une bonne illusion de mouvement l une vidéo non compressée (les images sont indépendantes les unes des autres) a une taille prohibitive exemple : 1H de vidéo, format 1024x768, 25 image/s, 32 bits/pixel fichier de 283 GO, streaming à 629 Mb/s NB: ADSL-2 18 Mb/s max$ coûts de stockage prohibitifs coûts de transmission prohibitifs 18

Comment compresser une vidéo? l la compression vidéo est «à perte» il y a dégradation de qualité par rapport à l original challenge : limiter cette dégradation! $ technique 1 (compression spatiale) : on triche en retirant d une image les informations que l œil distingue mal on est plus sensible à la luminance quʼà la chrominance$ permet une réduction de taille significative sans trop dégrader la qualité perçue 19

Comment compresser une vidéo (suite) technique 2 (compression temporelle) : on ne transmet pas deux fois les mêmes informations deux images successives étant voisines, on transmet la 1 ère, puis la différence 2 ème 1 ère et ainsi de suite image 1 (référence) image 2 différence transmise recalculée par le récepteur transmise 20

Comment compresser une vidéo (suite) l on utilise les 2 techniques conjointement (MPEG) chaque image est compressée on code les différences entre images en respectant une hiérarchie I, P, B I $ P$ B$ $intra (image complète)$ $prédite: différence avec la trame I ou P précédente$ $prédite dans les deux sens: différence avec les$ $ $trames I et P les plus proches$ I B B P B B P 21

Comment compresser une vidéo (suite) l de multiples évolutions vers une meilleure compression à qualité égale on réduit le «poids» de la vidéo (taille en octets)$ vers de plus hautes définitions à «poids» égale on améliore la qualité perçue avec la HD (1920x1080)$ autour de 5 Mb/s$ vers la 3D $ 22

De la théorie à la pratique l on ne peut pas toujours compresser car cela exige une puissance de calcul importante, pas toujours compatible avec un fonctionnement en temps-réel exemple : format DV/HDV des caméscopes numériques chaque image est indépendante$ l on ne veut pas toujours compresser pour avoir une qualité optimale et pouvoir éditer facilement la vidéo lors du montage exemple : format MJPEG2000 du cinéma HD la vidéo est une succession dʼimages indépendantes au format JPEG2000 (avec ou sans pertes)$ 23

De la théorie à la pratique (suite) l compresser n est pas toujours bénéfique avec un compression MPEG, les erreurs sont propagées au sein du GOP (group of pictures) erreur initiale propagation de l erreur I B B P B B P 24

De la théorie à la pratique (suite) Pour limiter les problèmes on va utiliser : codage robuste aux erreurs exemple : on ajoute des points de synchronisation dans le flux techniques de masquage d erreurs le décodeur estime l information manquante en réutilisant des informations dʼimages précédentes$ au sein dʼune image par estimation de la zone manquante$ 25

Comment compresser une vidéo (suite) l à la compression s ajoute le type de «conteneur» rassemble en un seul fichier le(s) flux vidéo(s), audio(s), sous-titrage(s), méta-données, etc. exemple :.mpg (MPEG1/2/4, MPEG),.mov (QuickTime, Apple),.flv (Flash, Adobe),.webm (webm, Google),.avi (Microsoft),.rm (RealMedia, RealNetworks)$ source de confusion, complexité et incompatibilités! 26

En résumé l on a vu nécessité de compresser pour stocker pour transmettre compression vidéo = ne conserver que l information la plus importante visuellement, et ne pas transmettre deux fois des informations proches la compression «intra» est pratique, facilite l édition et rend le flux robuste au prix d une compression moindre ne pas confondre standard de compression vidéo et type conteneur 27

l 3 ème partie Aspects techniques comment diffuser et accéder à une vidéo?$ 1. mode de transmission$ 2. bufferisation$ 3. pertes$ 4. gros plan sur les codes LDPC-Staircase$ 5. gros plan sur FECFRAME$ 28

1- Point à point ou multipoints? l comment sont diffusés les contenus? Internet Point à point : n x (1 1) autant de connexions et de transmissions qu il y a de clients Internet Multipoints : 1 n un paquet est transmis une fois puis répliqué et acheminé par le réseau comme il se doit. 29

Point à point ou multipoints (suite) l le choix dépend de l usage chaque client choisit à tout moment dans un catalogue important point à point$ diffusion simultanée du même contenu à un grand nombre multipoints! seule l approche multipoints passe à l échelle cʼest à dire supporte un nombre de clients très élevé$ l Questions : qu utilise t-on pour le service VOD / YouTube? qu utilise t-on pour le service TV sur ADSL? 30

2- Bufferiser est nécessaire au streaming! l le problème Internet mon ordi. (ou smartphone) paquet reçus contenant les image successives 17 16 15 14 plus rien 13 12 11 10 (blocage temporaire) affichage au fur et à mesure de la réception des paquets ok ok ok ok image figée ok ok ok ok

Bufferiser est nécessaire (suite) l question : pourquoi les délais d acheminement sur Internet ne sont ils pas stables? 32

Bufferiser est nécessaire (suite) l plusieurs raisons : sur un câble unique donné, le délai varie peu sauf si un grand nombre de stations veulent y accéder simultanément! mais sur Internet, le délai dépend de l état d encombrement des routeurs traversés qui varie dynamiquement et fortement mais aussi du chemin suivi qui peut changer en cours de route R1 R2 R3 serveur R4 R5 R6 mon ordi 33

Bufferiser est nécessaire (suite) l plusieurs raisons (suite) : enfin, si la solution de streaming repose sur TCP (souvent le cas), les retransmissions TCP en cas de perte posent problème cf plus loin le «recouvrement sur erreurs TCP»$ 34

Bufferiser est nécessaire (suite) l bufferiser est nécessaire pour éviter la famine L l en pratique le client impose un délai avant de démarrer l affichage le client stocke des données d avance pendant ce temps c est la «bufferisation» le buffer est ensuite consommé pour l affichage vidéo et renouvelé en permanence avec l arrivée de nouveaux paquets 19 18 17 16 15 14 13 utilisation pour affichage vidéo paquet reçus du réseau fille d attente (ou buffer) 35

Bufferiser est nécessaire (suite) l le buffer est visualisé dans la barre de lecture point de lecture en grisé, données disponibles dans le buffer si la «zone grisée» disparaît, l image se fige (il n y a plus de données disponibles à afficher!) 36

3- Quid des pertes? l question : peut-il y avoir des pertes sur Internet et pourquoi? «To be lost or not to be lost» 37

Quid des pertes (suite) l malheureusement oui, essentiellement dues à la présence d un routeur congestionné trop de trafic entrant pour le même lien de sortie la file d attente déborde et des paquets perdus lien1 lien2 file d attente des paquets à transmettre sur lien4 lien3 liens optiques haut débit si la place manque, le paquet est rejeté routeur lien4 38

Quid des pertes (suite) l on fait quoi? l cas 1 (simple) : transmission point à point le client informe le serveur et demande une retransmission le protocole TCP fait cela très bien, tout seul résolu o TCP, clef de voute de l Internet (avec IPv4/IPv6) o service de transmission fiable et ordonné A données [1000, 1999] données [2000, 2999] ACK (reçu<2000) B pas d ACK retransm. temps données [2000, 2999] ACK (reçu<3000) 39

Quid des pertes (suite) l cas 2 : transmission multipoints il faut trouver autre chose si le nombre de clients est >> 1 imaginez un serveur qui reçoit 1 million de requêtes de retransmission simultanément!$ l technique : on ajoute de la redondance au flux la redondance permet de récupérer une ou plusieurs pertes notion de «code correcteur d effacement» (FEC) le même paquet de redondance permet de corriger une perte différente chez des récepteurs différents l exemple : somme pqt 13 pqt 12 somme pqt 11 pqt 10 on reconstruit p13 par : p13 = somme(p12,p13) p12 40

Contre les pertes, des codes FEC l en pratique c est une «somme» au sens de l opérateur binaire XOR $ $0 0 = 0 $ $1 0 = 1$ $ $0 1 = 1 $ $1 1 = 0$ on introduit une «somme XOR» tous les k paquets XOR (p10..p14) pqt 14 pqt 13 pqt 12 pqt 11 pqt 10 bloc de k+1 = 5+1 paquets permet de récupérer une perte quelconque (mais unique) parmi les k+1 paquets 41

Contre les pertes, des codes FEC (suite) l et on peut utiliser des codes plus «puissants» on ajoute r paquets de redondance tous les k paquets red. 4 red. 3 red. 2 red. 1 pqt 13 pqt 12 pqt 11 pqt 10 bloc de k+r = 4+4 paquets permet de récupérer r pertes quelconques parmi les k+r paquets exemple : Reed-Solomon, LDPC-Staircase, etc. 42

Contre les pertes, des codes FEC (suite) l et parfois une redondance toute simple suffit! l exemple : flux audio un échantillon audio est encodé deux fois bonne qualité$ fortement compressé$ la version compressée est transmise avec un peu de retard en général attaché à un paquet existant$ en cas de perte isolée, le récepteur pourra remplacer le paquet manquant par sa version compressée reçue plus tard comp(10) haute qualité(12) comp(9) haute qualité(11) comp(8) haute qualité(10) 43

Gros plan 1: les codes LDPC-Staircase l le cas des codes LDPC-Staircase un standard : http://tools.ietf.org/rfc/rfc5170.txt intégré au système ISDB-Tmm Japonais une solution simple mais très efficace capacités de correction et vitesse dʼencodage/décodage$ système linéaire entre symboles source et de redondance$ Symboles source Symboles de redondance S 1 S 2 S 3 S 4 S 5 P 1 P 2 P 3 P 4 P 5 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 1 N 1 1 s par colonne Contraintes S 1 S 4 S 5 P 1 P 2 = 0 44

Gros plan sur LDPC-Staircase (suite) l 1 : encodage des codes LDPC-Staircase c est trivial on produit les symboles de redondance en séquence: P1, puis P2, puis P3, etc. la vitesse d encodage est très élevée exemple: objet de taille 1MO, 1024 symboles source et 512 symboles de redondance, Intel Xeon 5120/1.86GHz/64-bit Linux k code N1 encoding speed number XOR / k rate 1024 2/3 5 3.33 Gbps 5.499 45

Gros plan sur LDPC-Staircase (suite) l 2 : décodage des codes LDPC-Staircase consiste à résoudre un système linéaire les variable sont les symboles manquants$ solution 1: décodage ITeratif (IT) une approche triviale si une équation nʼa quʼune variable, sa valeur est connue. On la substitue dans les autres équations où elle intervient, et ainsi de suite$ possible car le système est très creux!$ 46

Gros plan sur LDPC-Staircase (suite) seuls les symboles reçus sont disponibles symboles source disponibles (reçus ou décodés) LDPC-Staircase symboles reçus on arrive à décoder de plus en plus souvent (densification) très rapide mais sous optimal certains systèmes, bien que non singuliers, ne pourront pas être résolus$ solution 2: élimination de Gauss (ML, Max. Likelihood) optimal mais plus coûteux tout système linéaire non singulier sera résolu$ 47

Gros plan sur LDPC-Staircase (suite) exemple: objet de taille 1MO, 1024 symboles source et 512 symboles de redondance, N 1 =5, Intel Xeon 5120/1.86GHz/64-bit Linux l vitesse de décodage IT suffisant (bon canal) min/aver/max Bitrate (Mbps) 5000 4.3 Gbps vitesse de décodage (Mbps) 4500 4000 3500 3000 2500 2000 1500 1000 LDPC-Staircase (N1=5) CR=2/3 K=1024 Symb.S=1024 LDPC-Advanced (N1=5) CR=2/3 K=1024 Symb.S=1024 ML utilisé de plus en plus souvent (mauvais canal) 1.35 Gbps 500 0 14 16 18 20 22 24 26 28 30 32 34 loss percentage taux d effacements sur le canal (%) 48

Gros plan sur LDPC-Staircase (suite) l capacités de correction paramètres moyenne overhead une probabilité d échec 10-4 k=1024, N 1 =5 0.636% dès 1046 symboles reçus (2.1% ou 22 symboles) k=1024, N 1 =7 0.238% dès 1039 symboles reçus (1.5% ou 15 symboles) Pr = 1 : décodage impossible 1 Histogram (total of 1000000 iter.) LDPC-Staircase N1=5 CR=2/3 k=1024 160000 140000 1 Histogram (total of 1000000 iter.) LDPC-Staircase N1=7 CR=2/3 k=1024 250000 Decoding failure probabilitiy 0.1 0.01 0.001 0.0001 N 1 = 5 120000 100000 80000 60000 40000 20000 Number of samples Decoding failure probabilitiy 0.1 0.01 0.001 0.0001 N 1 = 7 200000 150000 100000 50000 Number of samples 1e-05 1020 1030 1040 1050 1060 Number of received symbols 0 1e-05 1020 1030 1040 1050 1060 Number of received symbols 0 Pr << 1 : forte probabilité de décodage 49

Gros plan 2: FECFRAME l FECFRAME, ou comment utiliser les codes FEC dans une solution de streaming RFC 6363, October 2011, http://tools.ietf.org/rfc/rfc6363.txt Application Application Application Application Application Application Framework FECFRAME un ou plusieurs flux source + redondance UDP/IP canal à pertes Framework FECFRAME flux source + redondance UDP/IP Hôte Hôte 50

Gros plan sur FECFRAME (suite) l dans le détail, à l émetteur 1. on accumule les données de l application 2. lorsque l on en a suffisamment ou que l on est limité par les contraintes temps-réel, on découpe en symboles et on envoie le tout au codec FEC 3. on récupère les symboles de redondances 4. on transmet les symboles source et redondance sur le réseau l idem coté récepteur 51

Gros plan sur FECFRAME (suite) schéma de fonctionnement à l émetteur Application 1) soumission d ADUs FECFRAME 2) construction d un bloc d ADUs 7) construction des paquets source et redondance 4) symboles de ce bloc 6) symboles de redondance FEC 5) encodage FEC du bloc 8) transmission de paquets source 8 ) transmission de paquets de redondance Transport (par ex. UDP) 52

En résumé l on a vu les modèles de transmission point à point (ex. VOD / YouTube) et multipoints (ex. TV sur ADSL) très impactant la nécessité de bufferiser dans le cas du streaming aide à combattre les aléas de délai de transmission variable la gestion des erreurs en point à point pris en charge par TCP en multipoints pris en charge par les codes FEC exemple de code FEC : LDPC-Staircase exemple d usage : FECFRAME 53

l 4 ème partie Un exemple le standard japonais ISDB-Tmm$ «Mobile Media Broadcasting: ISDB-Tmm»,$ ShinichiroTonooka, MMBI Inc., Mai 2011.$ http://www.itu.int/itu-d/asp/cms/events/2011/digitalbroadcast-may2011/ S5_MMBI_Japan.pdf! 54

Questions? l vous aimez les sciences informatiques? Allez voir le site Interstice, édité par l Inria : http://interstices.info/ 55