Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group
|
|
|
- Marie-Rose Corriveau
- il y a 10 ans
- Total affichages :
Transcription
1 1
2 Catherine Chochoy I/T Specialist, IBM Information Management on System z, Software Group Alain Maneville Executive I/T specialist, zchampion, IBM Systems and Technology Group 2
3 Le défi du Big Data (et le z Catherine Chochoy I/T Specialist, IBM Information Management on System z, Software Group Alain Maneville Executive I/T specialist, zchampion, IBM Systems and Technology Group 3
4 SGBDs Traditionnels Big Data / Map-Reduce / NoSQL Systems Echelle de Données Typique Gigabytes / Terabytes Petabytes / Exabytes Type d Accès OLTP et Batch Batch Lecture? Mise à jour? Lecture et Ecriture fréquentes Ecrite une fois, Lue de nombreuses fois Structure / Schema des données Schema Fixe Schema Flexible ou sans Schema Cohérence, Intégrité Transactionnelle Transactionnel, ACID Cohérence Finale Capacité de Croissance (Scaling) Non linéaire Linéaire 4
5 Le paysage du Big Data Data in Motion Streams Information Ingestion and Operational Information Stream Processing Data Integration Master Data Real-time Analytics Video/Audio Network/Sensor Entity Analytics Predictive Landing Area, Analytics Zone and Archive Exploration, Integrated Warehouse, and Mart Zones Discovery Deep Reflection Operational Predictive Intelligence Analysis BI and Predictive Analytics Data at Rest Raw Data Structured Data Text Analytics Data Mining Entity Analytics Machine Learning Navigation and Discovery Data in Many Forms Information Governance, Security and Business Continuity
6 Le zenterprise) sur ce paysage Data in Motion Data at Rest Data in Many Forms Information Ingestion and Operational Information IMS DB2 z/os Streams Stream Processing Data Integration Master Data DataStage Real-time Analytics Video/Audio Network/Sensor Entity Analytics Predictive Streams Landing Area, Analytics Zone and Archive Raw Data Structured Data Text Analytics Data Mining Entity Analytics Machine Learning Exploration, Integrated Warehouse, and Mart Zones Discovery Deep Reflection Operational Predictive Information Governance, Security and Business Continuity Information Server zdoop BigInsights Guardium DB2 z/os DB2 Analytics Accelerator Intelligence Analysis BI and Predictive Analytics Navigation and Discovery Cognos SPSS DataExplorer
7 Amener l analyse aux données )et non l inverse Extract, Transform & Load (ETL) 1TB ETL par jour, Les coûts de copie initiale plus 3 dérivées >$8 millions sur 4 ans (*) Applications Operationnelles Transfert de données Applications Analytiques Le plus grand bénéfice est obtenu quand l analyse est faite au plus près des données d origine 72% des interrogés (**) planifient d analyser les données transactionnelles issues des applications de l enterprise Environnements transactionnel <> analytique Multiple copies de données Consommation signficative de puissance de calcul 80% des données des grandes sociétés résident et sont générées par les mainframes * Source: enquête interne CPO. Assume dist. send and load is same cost as receive and load.. Also, assume 2 switches and 2 T3 WAN connections. ** Gartner research note Sept Survey Analysis -Big Data Adoption in 2013 Shows Substance Behind the Hype
8 zentreprise HyTAP Transactionnel et Analytique optimisés Tout est en ligne les analyses sont à la bonne place Transactions OLTP Analyses Operationnelles Données en Temps Réel DB2 Native Processing Haute concurrence Reporting Standards OLAP Requêtes Complexes Requêtes sur Historique 8 IBM DB2 Analytics Accelerator Analyses Avancées* IBM PureData System for Hadoop Intégrer Accélération native z ou contrôlée depuis le z: Larges caches, memoire, flash Technologie IDAA : FPGA, compresssion/traitement SQL Connectivité haute performance IBM Big Data Platform Visualization & Discovery Application Development Systems Management Accelerators Hadoop System Stream Computing Data Warehouse Information Integration & Governance
9 V11 V11 Analytique DB2 sur z avec Big Data DB2 fournit les connecteurs et les capacités d une Database pour permettre aux applications DB2 d accéder facilement et efficacement aux données dans Hadoop New user-defined functions New generic table UDF capability IBM Big Insights JAQL 9 { }
10 Machine Data Analytics Accelerator Custom Applications Shrink Wrap Solutions IT use cases: Server, performance, troubleshooting Health Care Networking Insurance Telco x2020 Unity MDA Accelerator IBM Big Data Platform Business use cases: Click stream and transaction analysis Optimize production, advanced planning Tools Client Specific Customizations, Visualization tools ( zinsights ) Specific Domain Telco Financial services Retail Healthcare Generic Parsers and Extractors Federated Discovery, Pattern (applications, services, Discovery, Search, Visualization Tools servers and devices ) for root cause analysis IMS intends to provide Hadoop System Information Integration & Governance Stream Computing Data Warehouse IBM Big Data Platform Visualization & Discovery Application Development Accelerators Systems Management Hadoop System Stream Computing Data Warehouse Information Integration & Governance
11 IBM Capacity Management Analytics Utilisation optimale et rentable de zenterprise : aujourd'hui, demain et au-delà Suivi, mesure et prédiction de la capacité et de l utilisation du zenterprise Meilleure visibilitésur l utilisation de la capacitéavec un ensemble prédéfini de rapports interactifs Reporting Engine Cerner les enjeux ou les problèmes potentiels avant qu ils n affectent l expérience utilisateur TDSz Data Warehouse Tendance : Comparer en temps réel l utilisation effective et les prévisions: Identifier rapidement et corriger les anomalies et prévoir les besoins futurs Predictive Engine
12 Big data + zenterprise = Big impact z Enterprise hybride hub pour l analyse capacitéàintégrer les données prêt pour le futur Business Critical Analytics Data Warehousing Data Transformation Improved business performance out Transactions in Business System / OLTP Minimiser les délais, améliorer les performances, conduire l innovation
L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence
L offre décisionnel IBM Patrick COOLS Spécialiste Business Intelligence Le marché du Business Intelligence L enjeux actuel des entreprises : devenir plus «agiles» Elargir les marchés tout en maintenant
Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France
Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France 2013 SAP AG. All rights reserved. Customer 1 Rôles et Attentes Instantanéité BIG DATA Users IT Real Time SAP HANA
Surmonter les 5 défis opérationnels du Big Data
Surmonter les 5 défis opérationnels du Big Data Jean-Michel Franco Talend Connect 9 octobre 2014 Talend 2014 1 Agenda Agenda Le Big Data depuis la découverte jusqu au temps réel en passant par les applications
Entreprise et Big Data
Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP
BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation
BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation - définition - étapes - impacts La révolution en cours du big data - essai de définition - acteurs - priorités
Le nouveau visage de la Dataviz dans MicroStrategy 10
Le nouveau visage de la Dataviz dans MicroStrategy 10 Pour la première fois, MicroStrategy 10 offre une plateforme analytique qui combine une expérience utilisateur facile et agréable, et des capacités
Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation.
Les infrastructure du Big Data Le «Big Data» vise à tirer un avantage concurrentiel au travers de méthodes de collecte, d analyse et d exploitation des données qu on ne pouvait utiliser jusqu à présent
Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015
Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Jean-David Benassouli Managing Director, Responsable France de la practice Digital Data management +33 6 79 45 11 51
SAP REDÉFINIR LE POSSIBLE. Jean-Michel JURBERT Business Development. Rolland ZANZUCCHI SAP Specialist
1 SAP REDÉFINIR LE POSSIBLE Jean-Michel JURBERT Business Development Rolland ZANZUCCHI SAP Specialist 2 Forces du partenariat avec EMC Partenaire technologique de SAP au niveau international depuis 1996
Big Data : Quand l approche traditionnelle ne suffit plus à gérer les données
Big Data : Quand l approche traditionnelle ne suffit plus à gérer les données L information est au cœur des préoccupations de l entreprise x44 de données et contenus au cours de la prochaine décennie 2020
Opportunités et enjeux à l heure du Cloud, du Big Data, de la mobilité et du Social Business
Opportunités et enjeux à l heure du Cloud, du Big Data, de la mobilité et du Social Business Véronique Blondelle, Leader Marketing Software Philippe Bournhonesque, Leader Stratégie Software Les grandes
L Art d être Numérique. Thierry Pierre Directeur Business Development SAP France
L Art d être Numérique Thierry Pierre Directeur Business Development SAP France La Transformation Numérique «Plus largement, l impact potentiel des technologies numériques disruptives (cloud, impression
La Business Intelligence pour les Institutions Financières. Jean-Michel JURBERT Resp Marketing Produit
La Business Intelligence pour les Institutions Financières Jean-Michel JURBERT Resp Marketing Produit Agenda Enjeux des Projets Financiers Valeur de Business Objects Références Clients Slide 2 Des Projets
Big Data -Comment exploiter les données et les transformer en prise de décisions?
IBM Global Industry Solution Center Nice-Paris Big Data -Comment exploiter les données et les transformer en prise de décisions? Apollonie Sbragia Architecte Senior & Responsable Centre D Excellence Assurance
SAP HANA : BIEN PLUS QU UNE BASE DE DONNÉES EN MÉMOIRE. Jean-Michel JURBERT Chef de Marché SAP France
SAP HANA : BIEN PLUS QU UNE BASE DE DONNÉES EN MÉMOIRE Jean-Michel JURBERT Chef de Marché SAP France Nos innovations sont conçues pour aider les organisations et entreprises à mieux fonctionner Applications
Analytics Platform. MicroStrategy. Business Intelligence d entreprise. Self-service analytics. Big Data analytics.
Business Intelligence d entreprise MicroStrategy Analytics Platform Self-service analytics Big Data analytics Mobile analytics Disponible en Cloud Donner l autonomie aux utilisateurs. Des tableaux de bord
IBM Software Big Data. Plateforme IBM Big Data
IBM Software Big Data 2 Points clés Aide les utilisateurs à explorer de grands volumes de données complexes Permet de rationaliser le processus de développement d'applications impliquant de grands volumes
Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON [email protected]
Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON [email protected] Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par
transformer en avantage compétitif en temps réel vos données Your business technologists. Powering progress
transformer en temps réel vos données en avantage compétitif Your business technologists. Powering progress Transformer les données en savoir Les données sont au cœur de toute activité, mais seules elles
Donnez de la valeur à vos informations: De la Business Intelligence au Capacity Management
Donnez de la valeur à vos informations: De la Business Intelligence au Capacity Management Ordre du jour 1. Business Analytics Introduction Business Intelligence Predictive Analytics 2. Business Analytics
L offre IBM Software autour de la valeur métier
IBM Frame Mai 2011 L offre IBM Software autour de la valeur métier Hervé Rolland - Vice Président, Software Group France Milestones that Matter: IBM Software Acquisitions Milestones that Matter: IBM Software
Jean-Philippe VIOLET Solutions Architect
Jean-Philippe VIOLET Solutions Architect IBM Cognos: L' Expertise de la Gestion de la Performance Acquis par IBM en Janvier 08 Rattaché au Brand Information Management Couverture Globale 23,000 clients
Chapitre 9 : Informatique décisionnelle
Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle
20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT
20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà
BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise
BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la
Londres 1854 Des problèmes (re)connus Faire plus avec moins Tendances et défis «BYOD» WIN INTUNE «Nouveaux paradigmes» «Big Data» «Cloud» Windows Server Gestion Sys. Center Identité & Virt CLOUD OS Microsoft
Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment?
Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment? Jean-Marc Spaggiari Cloudera [email protected] @jmspaggi Mai 2014 1 2 Avant qu on commence Agenda -Qu est-ce que Hadoop et pourquoi
Bases de Données Avancées
1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,
IBM Cognos Enterprise
IBM Cognos Enterprise Leveraging your investment in SPSS Les défis associés à la prise de décision 1 sur 3 Business leader prend fréquemment des décisions sans les informations dont il aurait besoin 1
BI = Business Intelligence Master Data-Science
BI = Business Intelligence Master Data-Science UPMC 25 janvier 2015 Organisation Horaire Cours : Lundi de 13h30 à 15h30 TP : Vendredi de 13h30 à 17h45 Intervenants : Divers industriels (en cours de construction)
Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012
Business Intelligence, Etat de l art et perspectives ICAM JP Gouigoux 10/2012 CONTEXTE DE LA BI Un peu d histoire Premières bases de données utilisées comme simple système de persistance du contenu des
Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique
Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai
SAP Runs SAP Reporting Opérationnel & BI avec HANA et SAP Analytics. Pierre Combe, Enterprise Analytics Juin, 2015
SAP Runs SAP Reporting Opérationnel & BI avec HANA et SAP Analytics Pierre Combe, Enterprise Analytics Juin, 2015 Agenda SAP Enterprise Analytics qui sommes-nous? Acteur clé de l innovation à SAP Présentation
Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité
Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Patrice Vatin Business Development SAP FSI Andrew de Rozairo Business Development Sybase EMEA Septembre 2011
Big Data. Concept et perspectives : la réalité derrière le "buzz"
Big Data Concept et perspectives : la réalité derrière le "buzz" 2012 Agenda Concept & Perspectives Technologies & Acteurs 2 Pierre Audoin Consultants (PAC) Pierre Audoin Consultants (PAC) est une société
Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data?
Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Dr Wolfgang Martin Analyste et adhérant du Boulder BI Brain Trust Les Big data Démystifier les Big data.
Londres 1854 Des problèmes (re)connus Faire plus avec moins Tendances et défis «BYOD» WIN INTUNE «Nouveaux paradigmes» «Big Data» «Cloud» Windows Server Gestion Sys. Center Identité & Virt CLOUD OS Microsoft
Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant
Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated
Le MDM (Master Data Management) Pierre angulaire d'une bonne stratégie de management de l'information
Darren Cooper Information Management Consultant, IBM Software Group 1st December, 2011 Le MDM (Master Data Management) Pierre angulaire d'une bonne stratégie de management de l'information Information
Labs Hadoop Février 2013
SOA - BRMS - ESB - BPM CEP BAM - High Performance Compute & Data Grid - Cloud Computing - Big Data NoSQL - Analytics Labs Hadoop Février 2013 Mathias Kluba Managing Consultant Responsable offres NoSQL
Comment valoriser votre patrimoine de données?
BIG DATA POUR QUELS USAGES? Comment valoriser votre patrimoine de données? HIGH PERFORMANCE HIGH ANALYTICS PERFORMANCE ANALYTICS MOULOUD DEY SAS FRANCE 15/11/2012 L ENTREPRISE SAS EN QUELQUES CHIFFRES
FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES
1 FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES «Dans le concret, projets de transformation vers le BigData» V1-10/03/15 ABED AJRAOU CONNAISSEZ-VOUS PAGESJAUNES? CONNAISSEZ-VOUS PAGESJAUNES? LES MEGADONNEES RÉPONDENT
Expérience de la mise en place s une solution de gestion de capacité pour supporter la migration des Datacenter
Expérience de la mise en place s une solution de gestion de capacité pour supporter la migration des Datacenter Gilles HANUSSE Responsable services Monitor & Operate Sanofi Global Infrastructure Services
L écosystème Hadoop Nicolas Thiébaud [email protected]. Tuesday, July 2, 13
L écosystème Hadoop Nicolas Thiébaud [email protected] HUG France 250 membres sur la mailing liste 30 présentations 9 meetups organisés, de 20 à 100 invités Présence de Cloudera, MapR, Hortonworks,
HADOOP ET SON ÉCOSYSTÈME
HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos
GPC Computer Science
CYCLE ISMIN P2015 GPC Computer Science P LALEVÉE [email protected] @p_lalevee A3.01 0442616715 C YUGMA [email protected] A3.01 0442616715 01/09/2014 Présentation GPC CS - Ph. Lalevée - C Yugma 1 Scolarité Site
<Insert Picture Here> Exadata Storage Server et DB Machine V2
Exadata Storage Server et DB Machine V2 Croissance de la Volumétrie des Données Volumes multipliés par 3 tous les 2 ans Evolution des volumes de données 1000 Terabytes (Données) 800
Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique
Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché
Didier MOUNIEN Samantha MOINEAUX
Didier MOUNIEN Samantha MOINEAUX 08/01/2008 1 Généralisation des ERP ERP génère une importante masse de données Comment mesurer l impact réel d une décision? Comment choisir entre plusieurs décisions?
Les Grandes Tendances d Investissement Informatique en 2011/ 2012. Rachel Hunt
Les Grandes Tendances d Investissement Informatique en 2011/ 2012 Rachel Hunt Un retour a la croissance pour l investissement informatique Croissance de 3 a 5% en 2011/12 La croissance est tirée par les
Ne cherchez plus, soyez informés! Robert van Kommer
Ne cherchez plus, soyez informés! Robert van Kommer Le sommaire La présentation du contexte applicatif Le mariage: Big Data et apprentissage automatique Dialogues - interactions - apprentissages 2 Le contexte
Big Data & Analytics Leviers de transformation Métier. Retours d expérience. Laurence CHRETIEN Valérie PERHIRIN Mars 2015
Leviers de transformation Métier Retours d expérience Laurence CHRETIEN Valérie PERHIRIN Mars 2015 BIG DATA & ANALYTICS, UN VRAI LEVIER DE TRANSFORMATION BUSINESS? RETOURS D EXPERIENCE CAPGEMINI Valérie
IBM BigInsights for Apache Hadoop
IBM BigInsights for Apache Hadoop Gérer et explorer efficacement le Big Data pour exploiter tous les signaux Points clés : Plateforme Hadoop prête à l'emploi pour le traitement, le stockage et l'analyse
Rationalisation et évolution des assets, licences et contrats informatiques. Philippe ASTIER Software Technical Professionals
Rationalisation et évolution des assets, licences et contrats informatiques Philippe ASTIER Software Technical Professionals Le coût de la gestion des logiciels GARTNER : Les entreprises peuvent espérer
Planification, Elaboration budgétaire, Simulation, Analyse Temps Réel BAO02. Cognos TM1. Pascal DELVAL, Customer Technical Professional
Planification, Elaboration budgétaire, Simulation, Analyse Temps Réel BAO02 Cognos TM1 Pascal DELVAL, Customer Technical Professional 2010 IBM Corporation 3 Ensemble complet de Fonctionnalités BI Requête
Le décisionnel plus que jamais au sommet de l agenda des DSI
Le décisionnel plus que jamais au sommet de l agenda des DSI 9 juin 2011 www.idc.com Cyril Meunier IDC France Research & Consulting Manager Copyright 2008 IDC. Reproduction is forbidden unless authorized.
Business Analytics pour le Big Data
IBM Software Business Analytics Big Data Business Analytics pour le Big Data Libérer la valeur pour générer la performance 2 Business Analytics pour le Big Data Sommaire 2 Introduction 3 Extraction d éclairages
SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL
SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL AGENDA 14:15-14:30 Bienvenue & Introduction Jérôme Berthier et Manuel Fucinos 14:30-14:45 Le concept de la Data Viz et
BI = Business Intelligence Master Data-ScienceCours 3 - Data
BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage
BI dans les nuages. Olivier Bendavid, UM2 Prof. A. April, ÉTS
BI dans les nuages Olivier Bendavid, UM2 Prof. A. April, ÉTS Table des matières Introduction Description du problème Les solutions Le projet Conclusions Questions? Introduction Quelles sont les défis actuels
DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD
DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD BIGDATA PARIS LE 1/4/2014 VINCENT HEUSCHLING @VHE74! 1 NOUS 100% Bigdata Infrastructure IT + Data Trouver vos opportunités Implémenter les
Cartographie des solutions BigData
Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?
«Nos valeurs à votre service» Genève. Business Intelligence Data Management Développement Web. Présentation Société
«Nos valeurs à votre service» Genève Business Intelligence Data Management Développement Web Présentation Société Qui sommes-nous? Notre société Nos activités Notre approche Notre équipe La Business Intelligence
Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales
Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire
La rencontre du Big Data et du Cloud
La rencontre du Big Data et du Cloud Libérez le potentiel de toutes vos données Visualisez et exploitez plus rapidement les données de tous types, quelle que soit leur taille et indépendamment de leur
Fusion : l interopérabilité chez Oracle
Standardisation et interopérabilité Fusion : l interopérabilité chez Oracle Lionel Dubreuil,, Applications Technology Product Manager, Oracle France, [email protected] 29/03/2006 Page : 1 Oracle
SAN07 IBM Social Media Analytics:
SAN07 IBM Social Media Analytics: Vos clients partagent leurs connaissances Déployez une stratégie gagnante! Eric Martin Social Media Analytics Leader Europe IBM SWG, Business Analytics @Eric_SMA 1 Le
1 Actuate Corporation 2012. + de données. + d analyses. + d utilisateurs.
1 Actuate Corporation 2012 + de données. + d analyses. + d utilisateurs. Actuate et BIRT Actuate est l Editeur spécialiste de la Business Intelligence et le Reporting qui a créé le projet Open Source BIRT
Lieberman Software Corporation
Lieberman Software Corporation Managing Privileged Accounts Ou La Gestion des Comptes à Privilèges 2012 by Lieberman Software Corporation Agenda L éditeur Lieberman Software Les défis Failles sécurité,
EMC Enterprise Hybrid Cloud. Emmanuel Bernard Advisory vspecialist EMC [email protected] @veemanuel
EMC Enterprise Hybrid Cloud Emmanuel Bernard Advisory vspecialist EMC [email protected] @veemanuel Copyright 2014 EMC Corporation. All rights reserved. # Nouveau programme IT Défis métiers actuels
ORACLE DATA INTEGRATOR ENTERPRISE EDITION - ODI EE
ORACLE DATA INTEGRATOR ENTERPRISE EDITION - ODI EE ORACLE DATA INTEGRATOR ENTERPRISE EDITION offre de nombreux avantages : performances de pointe, productivité et souplesse accrues pour un coût total de
ATELIER. QUASAR OBILOG BI (Décisionnel) ATELIER > PROJET BI
ATELIER QUASAR OBILOG BI (Décisionnel) Sommaire Définitions Objectifs du projet Notre démarche Notre partenaire (TIBCO) Présentation indicateurs Production et Qualité Création indicateur (TRS) Disponibilité
Suite Jedox La Business-Driven Intelligence avec Jedox
Suite La Business-Driven Intelligence avec Une solution intégrée pour la simulation, l analyse et le reporting vous offre la possibilité d analyser vos données et de gérer votre planification selon vos
La problématique. La philosophie ' ) * )
La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / 3 13 4,$ / 5 23, 2 * $3 3 63 3 #, 7 Datawarehouse Data warehouse
Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL
Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Présenté par Hana Gara Kort Sous la direction de Dr Jalel Akaichi Maître de conférences 1 1.Introduction
Pentaho Business Analytics Intégrer > Explorer > Prévoir
Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux
Séminaire Partenaires Esri France 7-8 juin 2011 - Paris Cloud Computing Stratégie Esri
Séminaire Partenaires Esri France 7-8 juin 2011 - Paris Cloud Computing Stratégie Esri Gaëtan LAVENU Plan de la présentation Evolution des architectures SIG Qu'est ce que le Cloud Computing? ArcGIS et
Tout ce que vous avez toujours voulu savoir sur SAP HANA. Sans avoir jamais osé le demander
Tout ce que vous avez toujours voulu savoir sur SAP HANA Sans avoir jamais osé le demander Agenda Pourquoi SAP HANA? Qu est-ce que SAP HANA? SAP HANA pour l intelligence d affaires SAP HANA pour l analyse
Quand la Business Intelligence se met à votre service. Jedox Cloud. La donnée au cœur des solutions. Livre Blanc
Quand la Business Intelligence se met à votre service Jedox Cloud La donnée au cœur des solutions Livre Blanc Comment le Cloud change notre vie privée et professionnelle Le Cloud : abstrait, intangible,
Les datas = le fuel du 21ième sicècle
Les datas = le fuel du 21ième sicècle D énormes gisements de création de valeurs http://www.your networkmarketin g.com/facebooktwitter-youtubestats-in-realtime-simulation/ Xavier Dalloz Le Plan Définition
Anticiper et prédire les sinistres avec une approche Big Data
Anticiper et prédire les sinistres avec une approche Big Data Julien Cabot Directeur Big Data Analytics OCTO [email protected] @julien_cabot OCTO 2013 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél
<Insert Picture Here> Modernisation de la fonction Finance ERP, GRC & EPM
Modernisation de la fonction Finance ERP, GRC & EPM Laurent Ducros Directeur avant-vente EPM Damien Palacci Associé BearingPoint Modernisation de la fonction finance Oracle Applications
Déterminer les enjeux du Datacenter
Déterminer les enjeux du Datacenter OPEX 75% CAPEX 25% Nouvelle génération d infrastructure Systèmes intégrés Hybridation Capacity planning DCIM Réduction des risques Organisation opérationnelle IDC Visit
_L'engagement qui fait la différence BUSINESS INTELLIGENCE DATA WAREHOUSING PILOTAGE DE LA PERFORMANCE
BUSINESS INTELLIGENCE DATA WAREHOUSING PILOTAGE DE LA PERFORMANCE _L'engagement qui fait la différence AMOA Stratégique Intégration Offshoring Learning A Propos de DECIZIA Decizia offre ses services aux
Les marchés Security La méthode The markets The approach
Security Le Pôle italien de la sécurité Elsag Datamat, une société du Groupe Finmeccanica, représente le centre d excellence national pour la sécurité physique, logique et des réseaux de télécommunication.
Session Business Objects. Thierry Nicault Directeur Régional EEMEA Business Objects
Session Business Objects Thierry Nicault Directeur Régional EEMEA Business Objects Agenda La Business Intelligence: Une définition Le Marché de la Business Intelligence La Société Business Objects Nos
EMC Big Data : concentrez-vous sur les données Sébastien VERGER CTO EMC France
EMC Big Data : concentrez-vous sur les données Sébastien VERGER CTO EMC France 1 Qu est-ce que le Big Data exactement? Entreprise Internet 2 Quel volume de données cela représente-t-il? 44 zettaoctets
EMC Forum 2014. EMC ViPR et ECS : présentation des services software-defined
EMC Forum 2014 EMC ViPR et ECS : présentation des services software-defined 1 2 3 4 5 Software is Eating the World Marc Andreessen co-fondateur de Netscape Les entreprises qui utilisent efficacement le
ITIL et les outils. À l ordre du jour. senté par Johanne L HeureuxL. Consultante. Mise en contexte Quelques exemples.
ITIL et les outils Présent senté par Johanne L HeureuxL Consultante 1 À l ordre du jour Mise en contexte Quelques exemples BMC IBM Tivoli Microsoft En conclusion 2 Mise en contexte Pour passer de la théorie
IBM SmartCloud pour Editeurs
Cloud pour Editeurs Anne Carrière ISV & Developer Relations & Loic Simon [email protected] 06 76 75 40 71 Business Development Partenaires Cloud Global Business Partners, IBM France http://clubcloud.blogspot.com
SÉMINAIRES RÉGIONAUX 2012
SÉMINAIRES RÉGIONAUX 2012 SÉMINAIRES RÉGIONAUX 2012 1 Le PI System à l heure de la mobilité et de l infonuagique. Présenté par : Laurent Garrigues Directeur de produits [mɔbilite] nom féminin 1. Capacité
UC² : Le poste de travail du futur (disponible aujourd hui)
UC² : Le poste de travail du futur (disponible aujourd hui) Vincent Perrin IT Specialist, Lotus SWG Jean-Jacques Chung IT Architect, IBM Integrated Communications Services Pierre Fleischmann Offering Manager,
Cassandra et Spark pour gérer la musique On-line
Cassandra et Spark pour gérer la musique On-line 16 Juin 2015 @ Paris Hammed RAMDANI Architecte SI 3.0 et BigData [email protected] +33 6 80 22 20 70 Appelez-moi Hammed ;-) (Sidi Mo)Hammed Ramdani @smramdani
Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé
ESNE Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé I.Cirillo 2010-2011 Introduction Le laboratoire de base de données de l ESNE a mis en place, il y a quelques années,
Introduction à la B.I. Avec SQL Server 2008
Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide
Kick Off SCC 2015 Comment faire de votre infrastructure de stockage une source d économie? Vers de nouveaux horizons
Kick Off SCC 2015 Comment faire de votre infrastructure de stockage une source d économie? Vers de nouveaux horizons cloud analytics mobile social 2015 Alain Cézard [email protected] Comment faire
Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement
Introduction Phases du projet Les principales phases du projet sont les suivantes : La mise à disposition des sources Des fichiers Excel sont utilisés pour récolter nos informations L extraction des données
