Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013
|
|
|
- Serge Pinard
- il y a 10 ans
- Total affichages :
Transcription
1 Les enjeux du Big Data Innovation et opportunités de l'internet industriel
2 François Royer Accompagnement des entreprises dans leurs stratégies quantitatives Valorisation de patrimoine de données industrielles Optimisation / création de services à valeur ajoutée Solutions innovantes de fouille assistée de données 2
3 Big Data Tout le monde en parle... 3
4 Le contexte Big Data 4
5 Le contexte Big Data 5
6 Le contexte Big Data Volume Variété Vélocité 6
7 Le phénomène Big Data Quels déclencheurs? 7
8 $ Coût / GB d'un disque dur Apple en septembre 1981 $ 0.07 Coût / GB d'un disque dur 1 TB Hitachi aujourd'hui 8
9 Une culture quantitative grandissante dans les entreprises 9
10 Données métier
11 Données métier Autres sources de données intra-entreprise (logs web, CRM...)
12 Données métier Autres sources de données intra-entreprise (logs web, CRM...) Données externes
13 La ménagerie Big Data: Hadoop, Map/Reduce, Big table 13
14 Genèse Google Filesystem 14
15 Genèse Publication de MapReduce Google Filesystem 15
16 Genèse Publication de MapReduce Google Filesystem Ouverture du code source 16
17 Genèse Publication de MapReduce Google Filesystem Yahoo! Ouverture du code source 17
18 Genèse Publication de MapReduce Google Filesystem machines Cluster 100 Facebook Ouverture du code source 18
19 Le web, premier utilisateur des technologies Big Data Data mining sur click stream Analyse d'image Production d'index Moteur d'enchères Conversion de 11 millions d'articles en PDF Spam screening (> 20 milliards de msg / jour) Entrepôt de données > 30 PetaOctets (2011) 19
20 Aux origines du Big Data: les clics de l'internaute USE CASE 20
21 Aux origines du Big Data: les clics de l'internaute 21
22 Big Data : applications industrielles Quelles opportunités?
23 Applications du Big Data rêves et réalités Collectivités: amélioration des services... Automobile: prédiction de pannes... Lutte contre la fraude Energie: smart meters Logistique et transports 23
24 Chevron : analyse de données sismiques sur Hadoop We collect large amounts of seismic data into this five-dimensional type data set, and the first thing we do is we sort it which is a great Hadoop use case [ ]. 24
25 FORMA FOREST MONITORING FOR ACTION 25
26 The Climate Corporation 26
27 Le Little Data, c'est fini? Non, les statistiques ont de beaux jours devant elles! 27
28 Promesses de l'analyse prédictive Nate Silver A prédit les résultats des élections US 2012 (50/52 états) Modèles bayésiens complexes ( MCMC ) Analytique =/= Big Data Maintenant chez ESPN (groupe Walt Disney - branche sport) 28
29 Quelles compétences? The sexiest job in the next 10 years will be statistician Hal Varian, Chief Economist at Google 29
30 Le Data Scientist métier d'avenir? 30
31 Le Big Data, pas pour les PMEs? Au contraire! 31
32 Les données, moteur d'innovation People to people Réseaux sociaux Blogs Communautés People to machine Documents Smart cards E-commerce Logs box/mobile Machine to machine Logs / capteurs GPS Code-barres Caméras 32
33 Acteurs du Big Data Anciens et nouveaux 33
34 Les usual suspects
35 Le contexte Big Data 130 Nouveaux acteurs Big Data depuis
36 36
37 à suivre... 38
38 Cas d'étude E-commerce / medias 39
39 Big Data en e-commerce: analyse de texte et traitement du langage Analyse sémantique Indexation Moteurs de recherche Traitement du langage 40
40 Big Data en e-commerce: analyse de texte et traitement du langage Base d'apprentissage de + de 3 millions de fiches produits Un arbre de catégories de + de 4000 branches Données déstructurées Support au poste opérateur pour une équipe de 12 personnes 41
41 Cas d'étude Big Data industriel: les opportunités 42
42 Big Data Industriel 43
43 Big Data Industriel le mythique 1% 44 source: IBM
44 Big Data Industriel 45
45 L'internet industriel 46
46 Big Data Industriel Données types: séries temporelles Mais aussi rapports d'intervention, mesures intermittentes, transactions... 47
47 EDF Retour d'expérience présenté au Hadoop Summit 2012 Contexte: Changement climatique Pression technologique (IT, fabricants) Smart Grid Communications bidirectionnelles entre producteurs et comsommateurs Monitoring à haute résolution des usages Améliorer la résilience systémique, diminuer les couts et la dépendance énergétique Mixer Complex Event Processing + Data Mining à grande échelle CRM Prédiction de la consommation et de la prédiction Classification des courbes de charge par jour / consommateur 48
48 EDF Données: Courbes de charges individuelles Données contractuelles Mesures réseau 1 mesure / 10 mins / 35 millions de clients Volume annuel: 180 milliards de mesures = 120 TB Requêtes: Extraction de courbes de charge similaires à un patron cible (moyenne/médiane) Analytique: agrégation de courbes 49
49 EDF Volumes 10 TB compressé sur HDFS (réplication X3) Partitionnement des mesures consommateurs par jour: 25 GB journaliers, blocs de 10 MB DFS utilisé à 30 % (~30 TB) Hardware 20 noeuds sur 2 racks 7 X 1U noeuds avec 4 x 1 TB 13 X 2U noeuds avec 8 x 1 TB Total: 132 TB, 336 coeurs Performance ~ 1 minute pour calculer une courbe journalière agrégée (~ 10 GB de données) 50
50 TIC Valley - Bâtiment E-volution 425 rue Jean Rostand Labège
Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1
Big Data Cyril Amsellem Consultant avant-vente 16 juin 2011 Talend 2010 1 Big Data Architecture globale Hadoop Les projets Hadoop (partie 1) Hadoop-Core : projet principal. HDFS : système de fichiers distribués
BIG DATA en Sciences et Industries de l Environnement
BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie
Les datas = le fuel du 21ième sicècle
Les datas = le fuel du 21ième sicècle D énormes gisements de création de valeurs http://www.your networkmarketin g.com/facebooktwitter-youtubestats-in-realtime-simulation/ Xavier Dalloz Le Plan Définition
DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD
DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD BIGDATA PARIS LE 1/4/2014 VINCENT HEUSCHLING @VHE74! 1 NOUS 100% Bigdata Infrastructure IT + Data Trouver vos opportunités Implémenter les
Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant
Organiser vos données - Big Data Patrick Millart Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be
20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT
20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà
Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.
Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision
Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique
Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai
TRAVAUX DE RECHERCHE DANS LE
TRAVAUX DE RECHERCHE DANS LE DOMAINE DE L'EXPLOITATION DES DONNÉES ET DES DOCUMENTS 1 Journée technologique " Solutions de maintenance prévisionnelle adaptées à la production Josiane Mothe, FREMIT, IRIT
Introduction à MapReduce/Hadoop et Spark
1 / 36 Introduction à MapReduce/Hadoop et Spark Certificat Big Data Ludovic Denoyer et Sylvain Lamprier UPMC Plan 2 / 36 Contexte 3 / 36 Contexte 4 / 36 Data driven science: le 4e paradigme (Jim Gray -
Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant
Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated
IBM Software Big Data. Plateforme IBM Big Data
IBM Software Big Data 2 Points clés Aide les utilisateurs à explorer de grands volumes de données complexes Permet de rationaliser le processus de développement d'applications impliquant de grands volumes
M2 GL UE DOC «In memory analytics»
M2 GL UE DOC «In memory analytics» Alexandre Termier 2014/2015 Sources Travaux Amplab, U.C. Berkeley Slides Ion Stoica Présentations Databricks Slides Pat McDonough Articles de M. Zaharia et al. sur les
Big Data. Concept et perspectives : la réalité derrière le "buzz"
Big Data Concept et perspectives : la réalité derrière le "buzz" 2012 Agenda Concept & Perspectives Technologies & Acteurs 2 Pierre Audoin Consultants (PAC) Pierre Audoin Consultants (PAC) est une société
Cartographie des solutions BigData
Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?
LES ENJEUX DU BIG DATA
LES ENJEUX DU BIG DATA POUR LA MISE EN PLACE DES SMART-GRIDS EDF R&D Marie-Luce Picard Projet SIGMA² 16 Janvier 2014 SMART GRIDS SMART METERS SMART DATA Partout dans le monde des projets smart-grids voient
BIG Data et R: opportunités et perspectives
BIG Data et R: opportunités et perspectives Guati Rizlane 1 & Hicham Hajji 2 1 Ecole Nationale de Commerce et de Gestion de Casablanca, Maroc, [email protected] 2 Ecole des Sciences Géomatiques, IAV Rabat,
Me#re le Big Data sur la carte : défis et avenues rela6fs à l exploita6on de la localisa6on
Me#re le Big Data sur la carte : défis et avenues rela6fs à l exploita6on de la localisa6on Thierry Badard, PhD, ing. jr Centre de Recherche en Géoma6que Conférence ITIS - Big Data et Open Data au coeur
Le potentiel et les défis du Big Data. Mardi 2 et Mercredi 3 Juillet 2013
Big DATA & ANALYTICS Le potentiel et les défis du Big Data Mardi 2 et Mercredi 3 Juillet 2013 QUI SUIS-JE? AMPLEUR, QUELQUES FAITS SAILLANTS Mantra vertus magiques, vitesse de propagation, amplitude richterienne
Entreprise et Big Data
Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP
Jean-François Boulicaut & Mohand-Saïd Hacid
e siècle! Jean-François Boulicaut & Mohand-Saïd Hacid http://liris.cnrs.fr/~jboulica http://liris.cnrs.fr/mohand-said.hacid Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205
Masses de données et calcul : à l IRIT. 8 octobre 2013
Masses de données et calcul : la recherche en lien avec les Big Data à l IRIT 8 octobre 2013 08/10/2013 1 L IRIT en qq chiffres 700 personnes sur tous les sites toulousains 5 tutelles 7 thèmes et 21 équipes
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université
Introduction Big Data
Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue
NewPoint IT Consulting BIG DATA WHITE PAPER. NewPoint Information Technology Consulting
NewPoint IT Consulting BIG DATA WHITE PAPER NewPoint Information Technology Consulting Contenu 1 Big Data: Défi et opportunité pour l'entreprise... 3 2 Les drivers techniques et d'entreprise de BIG DATA...
Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment?
Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment? Jean-Marc Spaggiari Cloudera [email protected] @jmspaggi Mai 2014 1 2 Avant qu on commence Agenda -Qu est-ce que Hadoop et pourquoi
Introduction au Data-Mining
Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane
Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data?
Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Dr Wolfgang Martin Analyste et adhérant du Boulder BI Brain Trust Les Big data Démystifier les Big data.
Conserver les Big Data, source de valeur pour demain
Le potentiel et les défis du Big Data UIMM Mardi 2 et mercredi 3 juillet 2013 56 avenue de Wagram 75017 PARIS Conserver les Big Data, source de valeur pour demain Définir les Big Data Les Big Data à travers
Panorama des solutions analytiques existantes
Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement
Fouillez facilement dans votre système Big Data. Olivier TAVARD
Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche
Comment valoriser votre patrimoine de données?
BIG DATA POUR QUELS USAGES? Comment valoriser votre patrimoine de données? HIGH PERFORMANCE HIGH ANALYTICS PERFORMANCE ANALYTICS MOULOUD DEY SAS FRANCE 15/11/2012 L ENTREPRISE SAS EN QUELQUES CHIFFRES
L écosystème Hadoop Nicolas Thiébaud [email protected]. Tuesday, July 2, 13
L écosystème Hadoop Nicolas Thiébaud [email protected] HUG France 250 membres sur la mailing liste 30 présentations 9 meetups organisés, de 20 à 100 invités Présence de Cloudera, MapR, Hortonworks,
SÉRIE NOUVELLES ARCHITECTURES
SÉRIE NOUVELLES ARCHITECTURES Alerte au tsunami des données : les entreprises doivent prendre la vague maintenant! Quels sont les faits qui sous-tendent cette réalité? Quelles entreprises sont aujourd
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de
Enjeux mathématiques et Statistiques du Big Data
Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, [email protected] Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris
IntentOS, le système d'exploitation du bâtiment
IntentOS, le système d'exploitation du bâtiment 1 Ceci est un smartphone. Fabriqué par LG pour Google (qui avant de racheter Motorola ne savait pas fabriquer des téléphones) Permet de démocratiser l'utilisation
Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group
1 Catherine Chochoy I/T Specialist, IBM Information Management on System z, Software Group Alain Maneville Executive I/T specialist, zchampion, IBM Systems and Technology Group 2 Le défi du Big Data (et
Big data* et marketing
Catherine Viot IAE de Bordeaux Maître de conférences HDR Responsable pédagogique du Master 2 Marketing Equipe de Recherche en Marketing - IRGO [email protected] Big data* et marketing 2006
Programmation parallèle et distribuée
Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution
Big Data Jean-Michel Franco
28/03/2014 Big Data Tendances, perspectives et cas d usage Jean-Michel Franco Directeur de l innovation et des solutions [email protected] Twitter : @jmichel_franco Définition Le
Tables Rondes Le «Big Data»
Tables Rondes Le «Big Data» 2012-2013 1 Plan Introduc9on 1 - Présenta9on Ingensi 2 - Le Big Data c est quoi? 3 - L histoire 4 - Le monde du libre : Hadoop 5 - Le système HDFS 6 - Les algorithmes distribués
Programmation parallèle et distribuée (Master 1 Info 2015-2016)
Programmation parallèle et distribuée (Master 1 Info 2015-2016) Hadoop MapReduce et HDFS Note bibliographique : ce cours est largement inspiré par le cours de Benjamin Renaut (Tokidev SAS) Introduction
Programmation parallèle et distribuée
Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2014) Marc Parizeau, Département de génie électrique et de génie informatique Plan Mégadonnées («big data») Architecture Hadoop distribution
L'intelligence d'affaires: la statistique dans nos vies de consommateurs
L'intelligence d'affaires: la statistique dans nos vies de consommateurs Jean-François Plante, HEC Montréal Marc Fredette, HEC Montréal Congrès de l ACFAS, Université Laval, 6 mai 2013 Intelligence d affaires
Anticiper et prédire les sinistres avec une approche Big Data
Anticiper et prédire les sinistres avec une approche Big Data Julien Cabot Directeur Big Data Analytics OCTO [email protected] @julien_cabot OCTO 2013 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél
Données massives pour les smart-grids
Données massives pour les smart-grids Marie-Luce PICARD EDF R&D [email protected] 9 Juin 2011 Sommaire 1. Smart-Grids : systèmes électriques intelligents 2. Données et Smart-Grids 3. Travaux menés
L Art d être Numérique. Thierry Pierre Directeur Business Development SAP France
L Art d être Numérique Thierry Pierre Directeur Business Development SAP France La Transformation Numérique «Plus largement, l impact potentiel des technologies numériques disruptives (cloud, impression
À PROPOS DE TALEND...
WHITE PAPER Table des matières Résultats de l enquête... 4 Stratégie d entreprise Big Data... 5 Intégration des Big Data... 8 Les défis liés à la mise en œuvre des Big Data... 10 Les technologies pour
Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2
Big Data: au delà du Buzz Yves de Montcheuil @ydemontcheuil Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2 Hype Cycle Gartner Talend 2012 3 Big Data
Les entreprises de 2020 seront dirigées par les Data Scientists
Laura Roguet, Meryem Ben Mouaz ESCP Europe 24 ans Les entreprises de 2020 seront dirigées par les Data Scientists I «Sexiest job of the century», «Les nouvelles rock stars de l'it», l engouement récent
FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis
FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis Joseph Salmon Télécom ParisTech Jeudi 6 Février Joseph Salmon (Télécom ParisTech) Big Data Jeudi 6 Février 1 / 18 Agenda Contexte et opportunités
HADOOP ET SON ÉCOSYSTÈME
HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos
GENIE STATISTIQUE GESTION DES RISQUES ET INGENIERIE FINANCIERE MARKETING QUANTITATIF ET REVENUE MANAGEMENT
Remarque : Tous les cours sont en français, sauf contre-indication. Pour des traductions anglaises des titres, des descriptifs, et plus de renseignements, consultez l intégralité du Programme des enseignements
NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)
1/23 2/23 Anne-Cécile Caron Master MIAGE - BDA 1er trimestre 2013-2014 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche
Big Data Concepts et mise en oeuvre de Hadoop
Introduction 1. Objectif du chapitre 9 2. Le Big Data 10 2.1 Introduction 10 2.2 Informatique connectée, objets "intelligents" et données collectées 11 2.3 Les unités de mesure dans le monde Big Data 12
Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.
Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet [email protected] Plan Motivations Débouchés Formation UVs spécifiques UVs connexes Enseignants
Big Data -Comment exploiter les données et les transformer en prise de décisions?
IBM Global Industry Solution Center Nice-Paris Big Data -Comment exploiter les données et les transformer en prise de décisions? Apollonie Sbragia Architecte Senior & Responsable Centre D Excellence Assurance
GT Big Data. Saison 2014-2015. Bruno Prévost (Safran), Marc Demerlé (GDF SUEZ) CRiP Thématique Mise en œuvre du Big Data 16/12/14
GT Big Data Saison 2014-2015 Bruno Prévost (Safran), Marc Demerlé (GDF SUEZ) Sommaire GT Big Data : roadmap 2014-15 Revue de presse Business Education / Promotion Emploi Sécurité / Compliance Cuisine:
Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop
Passez au niveau supérieur en termes de connaissance grâce à la formation Data Analyst de Cloudera. Public Durée Objectifs Analystes de données, business analysts, développeurs et administrateurs qui ont
AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL
AVRIL 2014 Panorama des solutions NoSQL QUI SOMMES NOUS? Avril 2014 2 SMILE, EN QUELQUES CHIFFRES 1er INTÉGRATEUR EUROPÉEN DE SOLUTIONS OPEN SOURCE 3 4 NOS EXPERTISES ET NOS CONVICTIONS DANS NOS LIVRES
FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES
1 FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES «Dans le concret, projets de transformation vers le BigData» V1-10/03/15 ABED AJRAOU CONNAISSEZ-VOUS PAGESJAUNES? CONNAISSEZ-VOUS PAGESJAUNES? LES MEGADONNEES RÉPONDENT
Quels choix de base de données pour vos projets Big Data?
Quels choix de base de données pour vos projets Big Data? Big Data? Le terme "big data" est très à la mode et naturellement un terme si générique est galvaudé. Beaucoup de promesses sont faites, et l'enthousiasme
Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2
Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html 1 Plan de présentation 1. L écosystème Hadoop 2. Principe de programmation MapReduce 3. Programmation des fonctions
Labs Hadoop Février 2013
SOA - BRMS - ESB - BPM CEP BAM - High Performance Compute & Data Grid - Cloud Computing - Big Data NoSQL - Analytics Labs Hadoop Février 2013 Mathias Kluba Managing Consultant Responsable offres NoSQL
Offre formation Big Data Analytics
Offre formation Big Data Analytics OCTO 2014 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél : +33 (0)1 58 56 10 00 Fax : +33 (0)1 58 56 10 01 www.octo.com 1 Présentation d OCTO Technology 2 Une
Fouille de données massives avec Hadoop
Fouille de données massives avec Hadoop Sebastiao Correia [email protected] Talend 2013 AAFD'14 29-30 avril 2014 1 Agenda Présentation de Talend Définition du Big Data Le framework Hadoop 3 thématiques
IODAA. de l 1nf0rmation à la Décision par l Analyse et l Apprentissage / 21
IODAA de l 1nf0rmation à la Décision par l Analyse et l Apprentissage IODAA Informations générales 2 Un monde nouveau Des données numériques partout en croissance prodigieuse Comment en extraire des connaissances
VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar [email protected]
VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar [email protected] Avril 2014 Virtualscale 1 Sommaire Les enjeux du Big Data et d Hadoop Quels enjeux
WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD
WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD Xe, RAFF et StableTrac sont des marques de Western Digital
Bigdata et Web sémantique. les données + l intelligence= la solution
Bigdata et Web sémantique les données + l intelligence= la solution 131214 1 big data et Web sémantique deux notions bien différentes et pourtant... (sable et silicium). «bigdata» ce n est pas que des
NoSQL. Introduction 1/30. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)
1/30 2/30 Anne-Cécile Caron Master MIAGE - SGBD 1er trimestre 2014-2015 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche
CENTAI : Big Data & Big Analytics Réunion DGPN / Thales Octobre 2013
www.thalesgroup.com CENTAI : Big Data & Big Analytics Réunion DGPN / Thales Octobre 2013 2 / Sommaire CENTAI : Présentation du laboratoire Plate-forme OSINT LAB Détection de la fraude à la carte bancaire
Big Graph Data Forum Teratec 2013
Big Graph Data Forum Teratec 2013 MFG Labs 35 rue de Châteaudun 75009 Paris, France www.mfglabs.com twitter: @mfg_labs Julien Laugel MFG Labs [email protected] @roolio SOMMAIRE MFG Labs Contexte
Les technologies du Big Data
Les technologies du Big Data PRÉSENTÉ AU 40 E CONGRÈS DE L ASSOCIATION DES ÉCONOMISTES QUÉBÉCOIS PAR TOM LANDRY, CONSEILLER SENIOR LE 20 MAI 2015 WWW.CRIM.CA TECHNOLOGIES: DES DONNÉES JUSQU'À L UTILISATEUR
Big Data et Prévisions. Philippe Picard, le 24 juin 2015. Page 1
Big Data et Prévisions Philippe Picard, le 24 juin 2015. Page 1 Vous dites prévisions et prédictions? Neptune Météo Marées Boson de Higgs Loto PMU Economie Sismique + Nostradamus _ Philippe Picard, le
Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales
Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire
Livre. blanc. Solution Hadoop d entreprise d EMC. Stockage NAS scale-out Isilon et Greenplum HD. Février 2012
Livre blanc Solution Hadoop d entreprise d EMC Stockage NAS scale-out Isilon et Greenplum HD Par Julie Lockner et Terri McClure, Analystes seniors Février 2012 Ce livre blanc d ESG, qui a été commandé
Big Data On Line Analytics
Fdil Fadila Bentayeb Lb Laboratoire ERIC Lyon 2 Big Data On Line Analytics ASD 2014 Hammamet Tunisie 1 Sommaire Sommaire Informatique décisionnelle (BI Business Intelligence) Big Data Big Data analytics
SAN07 IBM Social Media Analytics:
SAN07 IBM Social Media Analytics: Vos clients partagent leurs connaissances Déployez une stratégie gagnante! Eric Martin Social Media Analytics Leader Europe IBM SWG, Business Analytics @Eric_SMA 1 Le
Hadoop, les clés du succès
Hadoop, les clés du succès Didier Kirszenberg, Responsable des architectures Massive Data, HP France Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject
MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15
MapReduce Malo Jaffré, Pablo Rauzy ENS 16 avril 2010 Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 Qu est ce que c est? Conceptuellement Données MapReduce est un framework de calcul distribué
CONFERENCE TECHNOM AIDE IBM
Conférence Big Data CONFERENCE TECHNOM AIDE IBM Le BIG DATA : le nouveau pétrole de la société. En présence de : Christophe MENICHETTI (spécialiste BIG DATA chez IBM) JN. SCHNEIDER et F. WEYGAND (professeurs
Bases de données documentaires et distribuées Cours NFE04
Bases de données documentaires et distribuées Cours NFE04 Cloud et scalabilité Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers pré[email protected] Département d informatique Conservatoire
Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON [email protected]
Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON [email protected] Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par
Change the game with smart innovation
Change the game with smart innovation Master Thesis 2013 2014 Faculty of Science engineering 12/08/2012 Master Thesis proposal for the academic year 2013. TABLE OF CONTENTS Section Un Introduction... 3
Le BIG DATA????? Big Buzz? Big Bang? Big Opportunity? Big hype? Big Business? Big Challenge? Big Hacking? Gérard Peliks planche 2
Le BIG DATA????? Big Bang? Big hype? Big Challenge? Big Buzz? Big Opportunity? Big Business? Big Hacking? Gérard Peliks planche 2 Les quatre paradigmes de la science en marche Paradigme 1 : L empirisme
Sommaire. 3. Les grands principes de GFS L architecture L accès de fichier en lecture L accès de fichier en écriture Bilan
1 Sommaire 1. Google en chiffres 2. Les raisons d être de GFS 3. Les grands principes de GFS L architecture L accès de fichier en lecture L accès de fichier en écriture Bilan 4. Les Evolutions et Alternatives
DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM
DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM Étude de cas technique QlikView : Big Data Juin 2012 qlikview.com Introduction La présente étude de cas technique QlikView se consacre au
BI dans les nuages. Olivier Bendavid, UM2 Prof. A. April, ÉTS
BI dans les nuages Olivier Bendavid, UM2 Prof. A. April, ÉTS Table des matières Introduction Description du problème Les solutions Le projet Conclusions Questions? Introduction Quelles sont les défis actuels
BIG DATA et EDISCOVERY
KROLLONTRACK / ELECTRONIC DISCOVERY & COMPUTER FORENSICS BIG DATA et EDISCOVERY - Etude de cas : le traitement des masses de données de l entreprise dans un contexte économique et judiciaire - Case study:
Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP)
Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Définition (G. Gardarin) Entrepôt : ensemble de données historisées variant
Big Data et la santé
Big Data, c'est quoi? Big Data et la santé Collecte, stockage et exploitation de masses de données Capter de façon automatique et anonyme une très grande quantité d'informations, les traiter avec des algorithmes
AXIAD Conseil pour décider en toute intelligence
AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes
Extension fonctionnelle d un CRM. CRM étendu >> Conférence-débat 15 April 2015. Club Management des Systèmes d Information de l'iae de Paris Alumni
Extension fonctionnelle d un CRM Conférence-débat 15 April 2015 Club Management des Systèmes d Information de l'iae de Paris Alumni CRM étendu >> Programme // CRM étendu Vision 360 et Plateforme Cloud
Cassandra et Spark pour gérer la musique On-line
Cassandra et Spark pour gérer la musique On-line 16 Juin 2015 @ Paris Hammed RAMDANI Architecte SI 3.0 et BigData [email protected] +33 6 80 22 20 70 Appelez-moi Hammed ;-) (Sidi Mo)Hammed Ramdani @smramdani
IBM Cloudant Data Layer Local Edition
IBM Cloudant Data Layer Local Edition Évoluez et innovez plus rapidement sur toutes les plateformes cloud privées, publiques ou hybrides Points forts Cloudant constitue une couche de données extrêmement
BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP
BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP SFR en quelques chiffres Le Dataware Client GP de SFR en août 2011 150 applications
Big Data. SRS Day 2012. Ali FAWAZ Etienne CAPGRAS. Membres du groupe : Coaché par :
Big Data SRS Day 2012 Membres du groupe : Mickaël CORINUS Thomas DEREY Jérémie MARGUERIE William TÉCHER Nicolas VIC Coaché par : Ali FAWAZ Etienne CAPGRAS 1 Sommaire 1 2 Présentation du Big Data État des
