Enjeux mathématiques et Statistiques du Big Data

Dimension: px
Commencer à balayer dès la page:

Download "Enjeux mathématiques et Statistiques du Big Data"

Transcription

1 Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

2 Des données numériques en croissance permanente Facebook La production de données numériques double tous les 3 ans, depuis Domaines: grande distribution, médical, industrie, astronomie... Que peut-on faire de ces données? A-t-on besoin d outils mathématiques pour les analyser? Quelles sont les difficultés? M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

3 Première application Big Data Etude de la grippe hivernale aux Etats-Unis, Quand les mots deviennent des données numériques... Google: 3 milliards de requètes par jour Etude de la fréquence des requêtes du moteur de recherche toux, fièvre, médicaments contre la toux et la fièvre... en relation avec la propagation de la grippe en espace et en temps Modèle Prédictif Google Modèles mathématiques (450 millions testés). final: combinaisons de la fréquence de 45 mots clefs Intérets: Modèle beaucoup plus réactif que l analyse des données collectées par les centres de santé. Repérer en temps réel des zones contaminées à partir des requêtes (H1N1) M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

4 Exemple de données collectées Données transactionnelles 17/02/ :02:25 fièvre toux ; grippe... Données analytiques agrégées: Fréquence d occurence de mots clefs M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

5 Un tableau à deux dimensions X 1 X 2... X j... X p 1 x x 1j x 1p 2... i x i1... x ij x ip... n x n1... x nj x np n observations (ligne), p variables (colonne) La Volumétrie -valeurs n, p- dépend de la méthode de collecte manuelle ou exhaustive des données. Structure identique dans des domaines variés: - Aéronautique: n vols d avions (altitude, vitesse,...) - Banque, Marketing: n clients (revenu, crédit,...) M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

6 Que peut-on faire de ces données? Deux types de problématiques sont distingués: Exploratoire, segmentation (X ) : Toutes les variables jouent un rôle identique Découvrir des relations entre les groupes d individus, Modèle prédictif: Y = F (X ) Une variable particulière (variable cible Y) est définie modèle de régression permettant de prédire Y sur de nouvelles données A partir des données disponibles X 1 X 2... X j... X p Y 1 x x 1j x 1p y 1... i x i1... x ij x ip y p... n x n1... x nj x np y n M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

7 Enjeux mathématiques et statistiques du big data Les données Les difficultés du Big Data: Segmentation: Fléau de la dimension Méthode prédictive: réduction de dimension Perspectives métiers, collaborations entre disciplines M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

8 Segmentation des données On considère deux observations (x i, x k ), x i R p, x k R p X 1 X 2... X j... X p 1 x x 1j x 1p... i x i1... x ij x ip... k x k1... x kj x kp... n x n1... x nj x np Distance euclidienne l 2 entre ces deux observations: p x i x k 2 = d=1 (x i(d) x k (d)) 2 M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

9 Segmentation de données illustration 10 Observations matrice des distances Classification hiérarchique Clustering 3 classes M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

10 Etude de la distance euclidienne en fonction de la dimension p Illustrations: n = 100 observations, uniforme, en dimension 1, 2, 3,... Indicateur: max i j x i x k 2 min i j x i x k p = 1 p = 2 p = 3 Fléau de la dimension M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

11 Fléau de la dimension Illustration: n = 100 observations uniformes (K = 500 répétitions) Evolution du rapport max i j x i x j min i j x i x j en fonction de la dimension p La distance euclidienne perd sa capacité de discrimination en grande dimension lorsque p augmente Problématique pour la segmentation, la discrimination des observations M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

12 Segmentation de données Faible dimension p=2 Données Matrice Classification Classification des distances hiérarchique non supervisée Grande dimension p=20 M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

13 Réduction de la dimension, sélection de variables Trouver de bonnes représentations des données initialement codées en grande dimension Features: Faible nombre de caractéristiques discriminantes (via l expertise métier) Compress Sensing: représentation parcimonieuse (S) de x comme combinaison linéaire de p vecteurs d une base données fonctionnelles. Estimation de variétés: On représente x dans un espace de basse dimension à l aide des vecteurs propres du Lapacien sur la variété, estimé à partir d un graphe de voisinages sur les exemples. outils mathématiques à l interface de l analyse harmonique, de la géométrie, des probabilités et des statistiques. M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

14 Enjeux mathématiques et statistiques du big data Les données Les difficultés: Segmentation: Fléau de la dimension Méthode prédictive: réduction de dimension Perspectives métiers, collaborations entre disciplines M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

15 Un tableau à deux dimensions Existence d une variable cible, Y X 1 X 2... X j... X p Y 1 x x 1j x 1p y i x i1... x ij x ip y p... n x n1... x nj x np y n Exemples: - Industrie:Y consommation de carburant, électrique, eau (variable quantitative) - Banque, Marketing: Y incident bancaire (0,1) - Médical: taux de glycémie, présence ou non d une maladie M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

16 Un modèle prédictif: le modèle linéaire p=2 modèle Ŷ = ˆβ 0 + ˆβ 1 X critère: i (Y i Ŷi ) 2 solution: ˆβ 1 = cov(x, Y )/var(x ) ˆβ 0 = Ȳ ˆβ 1 X p=3 modèle:ŷ = ˆβ 0 + ˆβ 2 X 1 + ˆβ 2 X 2 critère: i (Y i Ŷ i ) 2 solution: ˆβ =... M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

17 Le modèle linéaire classique Cadre classique - n > p: Nb d observations est supérieur au nombre de variables y 1 y 2 y n = x x 1p x n1... x np Thin matrix β 1 β 2 β p + ɛ - X T X inversible, pas de co linéarité entre les co-variables Solution Unique: ˆβ = (X T X ) 1 X T Y M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

18 Le modèle linéaire en grande dimension En grande dimension - n << p: Nb de variables est supérieur au nombre d obs. β 1 y 1 x x 1p β 2 y 2 = ɛ y n x n1... x np Fat matrix - X T X, NON inversible (ou forte colinéarité avec p < n). Infinité de solutions ˆβ.(Pseudo inverse: solution technique) Une solution unique nécessite des hypothèses sur β. β p M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

19 Le modèle linéaire en grande dimension La résolution du problème linéaire est obtenue en introduisant des contraintes sur les coefficients, β. Quelques exemples: l 0, Best subset : E(β, λ) = Y X β 2 + λσ j β j 0 solution complexe à calculer 2 p modèles à tester l 2, Ridge : Σ j β j 2 < S ˆβ ridge = (X T X + λi ) 1 X T Y l 1, Lasso : Σ j β j 1 < S solution parcimonieuse, faible nb. de coeff 0 M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

20 A la conquète du Big data Les enjeux sont: Mathématiques: modélisation statistique, optimisation,... Evolution: échantillonage etude exhaustive sur les données. Informatique: stockage, accès à des données volumineuses et traitement en un temps raisonnable (MapReduce, Hadoop) Complexité/Algorithmique: Adapter les méthodes de traitements traditionnels à des données volumineuses, à des environnements distribués. Ex: traitements sur clusters de processeurs, de BDD,... à des données non structurées: Extraction (rapide) d indicateurs clefs pour exploiter les données Twitter, commentaires faceboook, linkeln. Les 3 V : Volume, Variété, Vélocité M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

21 Appréhender le Big data Les formations aux Big Data se situent dans les domaines: Mathématiques, Informatique Droit: ex. problème juridique d exploitation de ces données Sociologie, psychologie... Mise en données (collecte des données de performances sportives...) Des données disponibles: Kaggle, concours en ligne sur des problématiques de Big Data Les Open Data: mise à disposition de BDD ± volumineuses Les opportunités métiers du futur: data scientist spécialiste de l exploration et de l analyse de grandes bases de données. Start-up: exploitation des données du web (gratuites) Imaginations & Technologies... M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

22 Classification automatique d images M. Mougeot (Paris Diderot) Mathe matiques en Mouvement 6 Juin / 23

23 Quelques Références Detecting Influenza Epidemics Using Serach Engine Queries, Nature 457, Big data : trois défis pour les Maths. David Larousserie, Le Monde, 27/01/2014 Le Data Scientist, un nouveau métier. David Larousserie, Le Monde, 27/01/2014 Kaggle, le site qui transforme le big data en or. Mathilde Damgé. Le monde Economist M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Formation continue. Ensae-Ensai Formation Continue (Cepe)

Formation continue. Ensae-Ensai Formation Continue (Cepe) CertifiCat de data scientist Formation continue Ensae-Ensai Formation Continue (Cepe) CertifiCat de data scientist La demande de data scientists est croissante mais peu de formations existent. Ce certificat

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données

1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données 1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données Votre interlocuteur Didier Gaultier Directeur Data Science Business & Decision Professeur de Statistique à l

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis Joseph Salmon Télécom ParisTech Jeudi 6 Février Joseph Salmon (Télécom ParisTech) Big Data Jeudi 6 Février 1 / 18 Agenda Contexte et opportunités

Plus en détail

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara BIG DATA Veille technologique Malek Hamouda Nina Lachia Léo Valette Commanditaire : Thomas Milon Encadré: Philippe Vismara 1 2 Introduction Historique des bases de données : méthodes de stockage et d analyse

Plus en détail

TRAVAUX DE RECHERCHE DANS LE

TRAVAUX DE RECHERCHE DANS LE TRAVAUX DE RECHERCHE DANS LE DOMAINE DE L'EXPLOITATION DES DONNÉES ET DES DOCUMENTS 1 Journée technologique " Solutions de maintenance prévisionnelle adaptées à la production Josiane Mothe, FREMIT, IRIT

Plus en détail

Les défis statistiques du Big Data

Les défis statistiques du Big Data Les défis statistiques du Big Data Anne-Sophie Charest Professeure adjointe au département de mathématiques et statistique, Université Laval 29 avril 2014 Colloque ITIS - Big Data et Open Data au cœur

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013 Les enjeux du Big Data Innovation et opportunités de l'internet industriel François Royer froyer@datasio.com Accompagnement des entreprises dans leurs stratégies quantitatives Valorisation de patrimoine

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

Panorama des solutions analytiques existantes

Panorama des solutions analytiques existantes Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement

Plus en détail

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto.

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto. des des Data Mining Vincent Augusto École Nationale Supérieure des Mines de Saint-Étienne 2012-2013 1/65 des des 1 2 des des 3 4 Post-traitement 5 représentation : 6 2/65 des des Définition générale Le

Plus en détail

Entreprise et Big Data

Entreprise et Big Data Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP

Plus en détail

Recherche et Diffusion de l Information dans les Réseaux. Philippe Robert. Le 8 avril 2014

Recherche et Diffusion de l Information dans les Réseaux. Philippe Robert. Le 8 avril 2014 Recherche et Diffusion de l Information dans les Réseaux Philippe Robert Le 8 avril 2014 Présentation Présentation Directeur de recherche à l INRIA Responsable de l équipe de recherche Réseaux, Algorithmes

Plus en détail

Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data

Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data Approches & opportunités face aux enjeux de volume, variété et vélocité France, 2012-2014 28 mars 2013 Ce document

Plus en détail

DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM

DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM Étude de cas technique QlikView : Big Data Juin 2012 qlikview.com Introduction La présente étude de cas technique QlikView se consacre au

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Comment valoriser votre patrimoine de données?

Comment valoriser votre patrimoine de données? BIG DATA POUR QUELS USAGES? Comment valoriser votre patrimoine de données? HIGH PERFORMANCE HIGH ANALYTICS PERFORMANCE ANALYTICS MOULOUD DEY SAS FRANCE 15/11/2012 L ENTREPRISE SAS EN QUELQUES CHIFFRES

Plus en détail

Big Data? Big responsabilités! Paul-Olivier Gibert Digital Ethics

Big Data? Big responsabilités! Paul-Olivier Gibert Digital Ethics Big Data? Big responsabilités! Paul-Olivier Gibert Digital Ethics Big data le Buzz Le Big Data? Tout le monde en parle sans trop savoir ce qu il signifie. Les médias high-tech en font la nouvelle panacée,

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Big Data On Line Analytics

Big Data On Line Analytics Fdil Fadila Bentayeb Lb Laboratoire ERIC Lyon 2 Big Data On Line Analytics ASD 2014 Hammamet Tunisie 1 Sommaire Sommaire Informatique décisionnelle (BI Business Intelligence) Big Data Big Data analytics

Plus en détail

Big data* et marketing

Big data* et marketing Catherine Viot IAE de Bordeaux Maître de conférences HDR Responsable pédagogique du Master 2 Marketing Equipe de Recherche en Marketing - IRGO catherine.viot@u-bordeaux4.fr Big data* et marketing 2006

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)

NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur) 1/23 2/23 Anne-Cécile Caron Master MIAGE - BDA 1er trimestre 2013-2014 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche

Plus en détail

IBM Software Big Data. Plateforme IBM Big Data

IBM Software Big Data. Plateforme IBM Big Data IBM Software Big Data 2 Points clés Aide les utilisateurs à explorer de grands volumes de données complexes Permet de rationaliser le processus de développement d'applications impliquant de grands volumes

Plus en détail

Le géomarketing - Page 1 sur 7

Le géomarketing - Page 1 sur 7 Le géomarketing - Page 1 sur 7 LES DOSSIERS MADWATCH.net méthodes Le Géomarketing Novembre 2003 Nb de pages : 7 Le géomarketing - Page 2 sur 7 Créé dans les années 80, la plupart des applications du géomarketing

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

BIG DATA et DONNéES SEO

BIG DATA et DONNéES SEO BIG DATA et DONNéES SEO Vincent Heuschling vhe@affini-tech.com @vhe74 2012 Affini-Tech - Diffusion restreinte 1 Agenda Affini-Tech SEO? Application Généralisation 2013 Affini-Tech - Diffusion restreinte

Plus en détail

SÉRIE NOUVELLES ARCHITECTURES

SÉRIE NOUVELLES ARCHITECTURES SÉRIE NOUVELLES ARCHITECTURES Alerte au tsunami des données : les entreprises doivent prendre la vague maintenant! Quels sont les faits qui sous-tendent cette réalité? Quelles entreprises sont aujourd

Plus en détail

Big Data et Marketing : les competences attendues

Big Data et Marketing : les competences attendues Big Data et Marketing : les competences attendues Laurence Fiévet Responsable Marketing Corporate Oney Banque Accord LA DYNAMIQUE DU MARKETING Selon la définition de Kotler et Dubois, «Le marketing est

Plus en détail

Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2

Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2 Big Data: au delà du Buzz Yves de Montcheuil @ydemontcheuil Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2 Hype Cycle Gartner Talend 2012 3 Big Data

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Préface Dunod Toute reproduction non autorisée est un délit. Les raisons de l émergence du Big Data sont bien connues. Elles sont d abord économiques et technologiques. La chute exponentielle des coûts

Plus en détail

L'intelligence d'affaires: la statistique dans nos vies de consommateurs

L'intelligence d'affaires: la statistique dans nos vies de consommateurs L'intelligence d'affaires: la statistique dans nos vies de consommateurs Jean-François Plante, HEC Montréal Marc Fredette, HEC Montréal Congrès de l ACFAS, Université Laval, 6 mai 2013 Intelligence d affaires

Plus en détail

Panorama des problématiques de traitement de l information. Larbi Aït Hennani, Fatma Bouali, Vincent Vandewalle

Panorama des problématiques de traitement de l information. Larbi Aït Hennani, Fatma Bouali, Vincent Vandewalle Panorama des problématiques de traitement de l information Larbi Aït Hennani, Fatma Bouali, Vincent Vandewalle Conduite d une étude statistique Larbi Aït Hennani, maître de conférences en mathématiques

Plus en détail

" # $ % % & ' ( ) * +,! '()*+ *, + ' +' + ' ' -+ - +.+. /0 / 1 0 12 1 1 2 34+ 4 1 +. 50 5 * 0 4 * 0 6! "##$ % &!

 # $ % % & ' ( ) * +,! '()*+ *, + ' +' + ' ' -+ - +.+. /0 / 1 0 12 1 1 2 34+ 4 1 +. 50 5 * 0 4 * 0 6! ##$ % &! "# $ %%& ' ( )*+, '()*+,'+''-++.+/0112134+1.50*406 "##$ %& 8CC "#$%& ' ( )* +,-./ 0 123 456+7 3 7-55-89.*/ 0 +3 *+:3 ;< =3 3-3 8 0 23 >-8-3 >5? //*/*0;* @A: *53,,3 / * $/ >B+? - 5, 2 34*56 7 /+#** //8

Plus en détail

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Jean-David Benassouli Managing Director, Responsable France de la practice Digital Data management +33 6 79 45 11 51

Plus en détail

Introduction Big Data

Introduction Big Data Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue

Plus en détail

Trafic aérien de passagers au Canada : une analyse exploratoire du modèle origine-destination de Transports Canada pour le marché intérieur

Trafic aérien de passagers au Canada : une analyse exploratoire du modèle origine-destination de Transports Canada pour le marché intérieur Trafic aérien de passagers au Canada : une analyse exploratoire du modèle origine-destination de Transports Canada pour le marché intérieur Ismaëlh Cissé Directeur : Carlos Ordás Criado Problématique Transports

Plus en détail

TOP. année promet d être BIG (Business Intelligence Growth) PRINCIPALES TENDANCES EN MATIÈRE DE SOLUTIONS DÉCISIONNELLES POUR 2013

TOP. année promet d être BIG (Business Intelligence Growth) PRINCIPALES TENDANCES EN MATIÈRE DE SOLUTIONS DÉCISIONNELLES POUR 2013 0 Cette TOP 10 PRINCIPALES TENDANCES EN MATIÈRE DE SOLUTIONS DÉCISIONNELLES POUR 2013 année promet d être BIG (Business Intelligence Growth) Quel est le bilan de l année 2012 en matière de solutions décisionnelles?

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Agenda de la présentation

Agenda de la présentation Le Data Mining Techniques pour exploiter l information Dan Noël 1 Agenda de la présentation Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un projet de Data Mining Place du Data Mining

Plus en détail

MapReduce. Nicolas Dugué nicolas.dugue@univ-orleans.fr. M2 MIAGE Systèmes d information répartis

MapReduce. Nicolas Dugué nicolas.dugue@univ-orleans.fr. M2 MIAGE Systèmes d information répartis MapReduce Nicolas Dugué nicolas.dugue@univ-orleans.fr M2 MIAGE Systèmes d information répartis Plan 1 Introduction Big Data 2 MapReduce et ses implémentations 3 MapReduce pour fouiller des tweets 4 MapReduce

Plus en détail

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

STATISTIQUES. UE Modélisation pour la biologie

STATISTIQUES. UE Modélisation pour la biologie STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres

Plus en détail

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 Big Data au-delà du "buzz-word", un vecteur d'efficacité et de différenciation business

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

Big Graph Data Forum Teratec 2013

Big Graph Data Forum Teratec 2013 Big Graph Data Forum Teratec 2013 MFG Labs 35 rue de Châteaudun 75009 Paris, France www.mfglabs.com twitter: @mfg_labs Julien Laugel MFG Labs julien.laugel@mfglabs.com @roolio SOMMAIRE MFG Labs Contexte

Plus en détail

Analyse en Composantes Principales

Analyse en Composantes Principales Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées

Plus en détail

Intégration de la dimension sémantique dans les réseaux sociaux

Intégration de la dimension sémantique dans les réseaux sociaux Intégration de la dimension sémantique dans les réseaux sociaux Application : systèmes de recommandation Maria Malek LARIS-EISTI maria.malek@eisti.fr 1 Contexte : Recommandation dans les réseaux sociaux

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Vision prospective et obstacles à surmonter pour les assureurs

Vision prospective et obstacles à surmonter pour les assureurs smart solutions for smart leaders Le «Big Data» assurément Rédigé par Pascal STERN Architecte d Entreprise Vision prospective et obstacles à surmonter pour les assureurs Un avis rendu par la cour de justice

Plus en détail

Titre : La BI vue par l intégrateur Orange

Titre : La BI vue par l intégrateur Orange Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,

Plus en détail

Cookies de session ils vous permettent de sauvegarder vos préférences d utilisation et optimiser l expérience de navigation de l Utilisateur ;

Cookies de session ils vous permettent de sauvegarder vos préférences d utilisation et optimiser l expérience de navigation de l Utilisateur ; Ce site utilise des Cookies, émis également par des tiers, pour des raisons de fonctionnalité, pratiques et statistiques indiquées dans notre politique en matière de Cookies. Politique en matière de Cookies

Plus en détail

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Patrice Vatin Business Development SAP FSI Andrew de Rozairo Business Development Sybase EMEA Septembre 2011

Plus en détail

Pentaho Business Analytics Intégrer > Explorer > Prévoir

Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux

Plus en détail

Big Data : Risques et contre-mesures

Big Data : Risques et contre-mesures 18 mars 2014 Big Data : Risques et contre-mesures Les fondamentaux pour bien démarrer Gérôme BILLOIS gerome.billois@solucom.fr Twitter : @gbillois Chadi HANTOUCHE chadi.hantouche@solucom.fr Twitter : @chadihantouche

Plus en détail

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data?

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Dr Wolfgang Martin Analyste et adhérant du Boulder BI Brain Trust Les Big data Démystifier les Big data.

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Cybermarché et analyse comportementale

Cybermarché et analyse comportementale Cybermarché et analyse comportementale Antoine-Eric Sammartino aesammartino@e-laser.fr Séminaire Data Mining - Educasoft Formations 18 juin 2001-1- MENU Le Groupe LaSer Le processus Data Mining L industrialisation

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication. Philippe Robert INRIA Paris-Rocquencourt

Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication. Philippe Robert INRIA Paris-Rocquencourt Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication Philippe Robert INRIA Paris-Rocquencourt Le 2 juin 2010 Présentation Directeur de recherche à l INRIA Institut

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON stephane.mouton@cetic.be Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par

Plus en détail

Les bases de données relationnelles

Les bases de données relationnelles Bases de données NO SQL et SIG : d un existant restreint à un avenir prometteur CHRISTIAN CAROLIN, AXES CONSEIL CAROLIN@AXES.FR - HTTP://WWW.AXES.FR Les bases de données relationnelles constituent désormais

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai

Plus en détail

Stages 2014-2015 ISOFT : UNE SOCIETE INNOVANTE. Contact : Mme Lapedra, stage@isoft.fr

Stages 2014-2015 ISOFT : UNE SOCIETE INNOVANTE. Contact : Mme Lapedra, stage@isoft.fr Stages 2014-2015 ISOFT : UNE SOCIETE INNOVANTE Contact : Mme Lapedra, stage@isoft.fr ISoft, éditeur de logiciels, est spécialisé dans l informatique décisionnelle et l analyse de données. Son expertise

Plus en détail

UNIVERSITE DES ANTILLES et DE LA GUYANE Campus de Fouillole BP250-97157 Pointe-à-Pitre Cedex CONTRAT 2010-2013 LE MASTER NOM DU DOMAINE STS

UNIVERSITE DES ANTILLES et DE LA GUYANE Campus de Fouillole BP250-97157 Pointe-à-Pitre Cedex CONTRAT 2010-2013 LE MASTER NOM DU DOMAINE STS UNIVERSITE DES ANTILLES et DE LA GUYANE Campus de Fouillole BP20-9717 Pointe-à-Pitre Cedex CONTRAT 2010-201 LE MASTER NOM DU DOMAINE STS Mention : Mathématiques Implantation : Guadeloupe FICHES DESCRIPTIVES

Plus en détail

VI. Tests non paramétriques sur un échantillon

VI. Tests non paramétriques sur un échantillon VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes

Plus en détail

Spécificités, Applications et Outils

Spécificités, Applications et Outils Spécificités, Applications et Outils Ricco Rakotomalala Université Lumière Lyon 2 Laboratoire ERIC Laboratoire ERIC 1 Ricco Rakotomalala ricco.rakotomalala@univ-lyon2.fr http://chirouble.univ-lyon2.fr/~ricco/data-mining

Plus en détail

transformer en avantage compétitif en temps réel vos données Your business technologists. Powering progress

transformer en avantage compétitif en temps réel vos données Your business technologists. Powering progress transformer en temps réel vos données en avantage compétitif Your business technologists. Powering progress Transformer les données en savoir Les données sont au cœur de toute activité, mais seules elles

Plus en détail

5. Apprentissage pour le filtrage collaboratif

5. Apprentissage pour le filtrage collaboratif 686 PARTIE 5 : Au-delà de l apprentissage supervisé 5. Apprentissage pour le filtrage collaboratif Il semble que le nombre de choix qui nous sont ouverts augmente constamment. Films, livres, recettes,

Plus en détail

Accélérer l agilité de votre site de e-commerce. Cas client

Accélérer l agilité de votre site de e-commerce. Cas client Accélérer l agilité de votre site de e-commerce Cas client L agilité «outillée» devient nécessaire au delà d un certain facteur de complexité (clients x produits) Elevé Nombre de produits vendus Faible

Plus en détail

BIG Data et R: opportunités et perspectives

BIG Data et R: opportunités et perspectives BIG Data et R: opportunités et perspectives Guati Rizlane 1 & Hicham Hajji 2 1 Ecole Nationale de Commerce et de Gestion de Casablanca, Maroc, rguati@gmail.com 2 Ecole des Sciences Géomatiques, IAV Rabat,

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Etude des propriétés empiriques du lasso par simulations

Etude des propriétés empiriques du lasso par simulations Etude des propriétés empiriques du lasso par simulations L objectif de ce TP est d étudier les propriétés empiriques du LASSO et de ses variantes à partir de données simulées. Un deuxième objectif est

Plus en détail

Le potentiel et les défis du Big Data. Mardi 2 et Mercredi 3 Juillet 2013

Le potentiel et les défis du Big Data. Mardi 2 et Mercredi 3 Juillet 2013 Big DATA & ANALYTICS Le potentiel et les défis du Big Data Mardi 2 et Mercredi 3 Juillet 2013 QUI SUIS-JE? AMPLEUR, QUELQUES FAITS SAILLANTS Mantra vertus magiques, vitesse de propagation, amplitude richterienne

Plus en détail

BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP

BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP SFR en quelques chiffres Le Dataware Client GP de SFR en août 2011 150 applications

Plus en détail

Jean-François Boulicaut & Mohand-Saïd Hacid

Jean-François Boulicaut & Mohand-Saïd Hacid e siècle! Jean-François Boulicaut & Mohand-Saïd Hacid http://liris.cnrs.fr/~jboulica http://liris.cnrs.fr/mohand-said.hacid Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205

Plus en détail

MABioVis. Bio-informatique et la

MABioVis. Bio-informatique et la MABioVis Modèles et Algorithmes pour la Bio-informatique et la Visualisation Visite ENS Cachan 5 janvier 2011 MABioVis G GUY MELANÇON (PR UFR Maths Info / EPI GRAVITE) (là, maintenant) - MABioVis DAVID

Plus en détail

Le BigData, aussi par et pour les PMEs

Le BigData, aussi par et pour les PMEs Parole d expert Le BigData, aussi par et pour les PMEs Stéphane MOUTON, CETIC Département Software and Services Technologies Avec le soutien de : LIEGE CREATIVE Le Big Data, aussi par et pour les PMEs

Plus en détail

Les RH à l ère du Big Data: faites parler vos données! Mesurez et optimisez la performance de vos programmes RH 18 septembre 2013

Les RH à l ère du Big Data: faites parler vos données! Mesurez et optimisez la performance de vos programmes RH 18 septembre 2013 Les RH à l ère du Big Data: faites parler vos données! Mesurez et optimisez la performance de vos programmes RH 18 septembre 2013 Qui nous sommes Firme québécoise (bureaux à Québec et Montréal) Spécialisée

Plus en détail

Exercice : la frontière des portefeuilles optimaux sans actif certain

Exercice : la frontière des portefeuilles optimaux sans actif certain Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

DATA ANALYTICS Des données aux connaissances et à la création de valeur

DATA ANALYTICS Des données aux connaissances et à la création de valeur DATA ANALYTICS Des données aux connaissances et à la création de valeur Sommaire Rencontres Inria Industrie p 3 Vos contacts au centre Inria Saclay - île-de-france p 4 Technologies Bertifier Sparklificator

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

La Révolution du Big Data Comment Extraire de la Valeur à partir des Big Data

La Révolution du Big Data Comment Extraire de la Valeur à partir des Big Data France Informatique Décisionnelle Contrôle Qualité Data Mining Analyse des Données et Statistiques par le Web Livre Blanc : La Révolution du Big Data Comment Extraire de la Valeur à partir des Big Data

Plus en détail

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Adil Belhouari HEC - Montréal - Journées de l Optimisation 2005-09 Mai 2005 PLAN DE LA PRÉSENTATION

Plus en détail

Des données à la connaissance client. A la découverte de la plateforme de connaissance client knowlbox

Des données à la connaissance client. A la découverte de la plateforme de connaissance client knowlbox Des données à la connaissance client A la découverte de la plateforme de connaissance client knowlbox Livre blanc mai 2013 A l heure du Big Data, les entreprises s interrogent davantage sur leurs données.

Plus en détail

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining.

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. 2 jours : Mardi 15 et mercredi 16 novembre 2005 de 9 heures 30 à 17 heures 30 Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. Madame, Monsieur, On parle

Plus en détail