L eau, sa pollution, et son traitement. René Moletta



Documents pareils
Lycée français La Pérouse TS. L énergie nucléaire CH P6. Exos BAC

Étude et modélisation des étoiles

C3. Produire de l électricité

Energie nucléaire. Quelques éléments de physique

La vie des étoiles. La vie des étoiles. Mardi 7 août

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

Chapitre 6 : les groupements d'étoiles et l'espace interstellaire

L ÉNERGIE C EST QUOI?

Panorama de l astronomie

8/10/10. Les réactions nucléaires

5 >L énergie nucléaire: fusion et fission

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème /2015

A) Les réactions de fusion nucléaire dans les étoiles comme le Soleil.

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

Transformations nucléaires

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

Atelier : L énergie nucléaire en Astrophysique

FORMATION ET FONCTIONNEMENT D'UNE ETOILE

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

Comprendre l Univers grâce aux messages de la lumière

PHYSIQUE Discipline fondamentale

Chapitre 5 : Noyaux, masse et énergie

Production mondiale d énergie

Vie et mort des étoiles. Céline Reylé Observatoire de Besançon

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

nucléaire 11 > L astrophysique w Science des étoiles et du cosmos

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION

SOLUTIONS TECHNOLOGIQUES D AVENIR

L ÉLECTRICITÉ C EST QUOI?

Quelques liens entre. l'infiniment petit et l'infiniment grand

Principe et fonctionnement des bombes atomiques

Le nouveau programme en quelques mots :

Équivalence masse-énergie

Chapitre 11: Réactions nucléaires, radioactivité et fission

Application à l astrophysique ACTIVITE

TD 9 Problème à deux corps

Chapitre 02. La lumière des étoiles. Exercices :

a. La masse de Jeans b. Le support des nuages moléculaires -Séquence Principale (PMS)

BTS BAT 1 Notions élémentaires de chimie 1

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

Etudier le diagramme température-pression, en particulier le point triple de l azote.

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

L ÉLECTRICITÉ, C EST QUOI?

Introduction à la physique nucléaire et aux réacteurs nucléaires

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

EXERCICES SUPPLÉMENTAIRES

La physique nucléaire et ses applications

IFUCOME Sciences et Technologie en Cycle 3 6 0

Stage : "Développer les compétences de la 5ème à la Terminale"

À propos d ITER. 1- Principe de la fusion thermonucléaire

TP N 3 La composition chimique du vivant

Panorama de l astronomie. 7. Spectroscopie et applications astrophysiques

PROGRAMME DE PHYSIQUE - CHIMIE EN CLASSE DE SECONDE GÉNÉRALE ET TECHNOLOGIQUE

DYNAMIQUE DE FORMATION DES ÉTOILES

La Fusion Nucléaire (Tokamak) Nicolas Carrard Jonathan Carrier Guillomet 12 novembre 2009

Qu est-ce qui cause ces taches à la surface du Soleil?

FUSION PAR CONFINEMENT MAGNÉTIQUE

Complément: Sources naturelles de rayonnement

Chap 2 : Noyaux, masse, énergie.

Renouvellement à 50000MW étalé sur 20 ans ( ) rythme de construction nucléaire: 2500MW/an

a. Fusion et énergie de liaison des noyaux b. La barrière Coulombienne c. Effet tunnel & pic de Gamov

Le défi énergétique. Exercices. Correction. 1. Le charbon est une ressource renouvelable. Il s puise. 2. L énergie s exprime en Watt (W).

La reconnaissance moléculaire: la base du design rationnel Modélisation moléculaire: Introduction Hiver 2006

ITER et la fusion. R. A. Pitts. ITER Organization, Plasma Operation Directorate, Cadarache, France

Origine du courant électrique Constitution d un atome

Chapitre 11 Bilans thermiques

par Alain Bonnier, D.Sc.

FICHE DE DONNEES DE SECURITE

Rayonnements dans l univers

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Parcours Astronomie. Cher Terrien, bienvenue à la Cité des sciences et de l industrie! Voici tes missions :

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

L École nationale des pompiers du Québec. Dans le cadre de son programme de formation Pompier I

Le satellite Gaia en mission d exploration

L énergie sous toutes ses formes : définitions

Sommaire. Séquence 2. La pression des gaz. Séance 1. Séance 2. Séance 3 Peut-on comprimer de l eau? Séance 4 Je fais le point sur la séquence 2

CHAÎNES ÉNERGÉTIQUES I CHAÎNES ÉNERGÉTIQUES. II PUISSANCE ET ÉNERGIE

Gaz moléculaire et formation stellaire dans les galaxies proches : maintenant et à l'époque ALMA Jonathan Braine

Groupe professionnel énergie de Centrale Nantes Intergroupe des centraliens de l énergie

Chapitre 1 : Qu est ce que l air qui nous entoure?

NOTIONS FONDAMENTALES SUR LES ENERGIES

Comment dit-on qu'une étoile est plus vieille qu'une autre ou plus jeune qu'une autre?

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

La place de l homme dans l univers. par Trinh Xuan Thuan *

Que sont les sources d énergie renouvelable?

LE VIDE ABSOLU EXISTE-T-IL?

L'ÉNERGIE ET LA MATIÈRE PETITE EXPLORATION DU MONDE DE LA PHYSIQUE

Animations. Liste des 114 animations et 145 vidéos présentes dans la Banque de Ressources Physique Chimie Lycée. Physique Chimie Seconde

2 C est quoi la chimie?

P17- REACTIONS NUCLEAIRES

Fiche de lecture du projet de fin d étude

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières

L ENERGIE CORRECTION

ANALYSE SPECTRALE. monochromateur

Professeur Eva PEBAY-PEYROULA

Transcription:

L eau, sa pollution, et son traitement René Moletta «Moletta Méthanisation» 1504 Route des Bottières 73470 Novalaise (France) e mail : rene.moletta@yahoo.fr nota bene : Toute mises en œuvre de ce qui est décrit dans les chapitres doivent être faites avec une personne compétente 1. Origine de l eau L eau a son origine dans l espace Chapitre 1 : L eau, son origine et ses caractéristiques L eau est partout, dans l air, sur terre, sous terre, dans notre corps. Les êtres vivants sont incapables de vivre sans elle. Les 80 milliards d êtres humains qui se sont succédés sur terre depuis la préhistoire, ont partagé la même eau qui se recycle sans cesse. Sur notre planète Terre, elle apparaît sous différentes formes : solide, gazeuse et liquide. Dans l espace, pour l instant, on ne la connaît que sous une forme gazeuse et solide. Au XVIII ème siècle, le physicien anglais Cvendish démontre que l eau était formée d hydrogène et d Oxygène. En 1805, Gay Lussac écrivit la formule de l eau «H 2 O». Elle signifie que l eau est une molécule formée de deux atomes d hydrogène et d un atome d oxygène (figure 1). L hydrogène est l élément le plus abondant de l Univers, il a été produit dès sa formation (lors du «Big bang») avec l hélium, qui lui est placé en seconde position. L oxygène résulte des réactions de fusions nucléaires dans les étoiles. Il est en troisième position par rapport à l abondance des éléments présents dans notre Univers. Il a une forte affinité pour l hydrogène. La molécule d eau s est donc très rapidement réalisée dans l espace. (voir encadré). H H O Figure 1 : La molécule d eau est formée de deux atomes d hydrogène (H) et d un atome d oxygène (O). Les pointillés indiquent que ces atomes sont solidaires entre eux par des liaisons fortes. 1

La chimie de l espace L univers a 15 milliards d année. Le premier élément formé dans l espace dès les premières minutes après le «big bang» fut l hydrogène (le proton). Avec l expansion de l univers ; la température diminua et une partie de l hydrogène s associa avec des neutrons pour donner du deutérium rapidement transformé en hélium. La température moyenne actuelle de l univers est de 2,725 K. Lors de la formation des premières galaxies et les premiers éléments de la chimie de l univers étaient donc principalement constitué d hydrogène (76 %), d hélium (24%) avec des traces de deutérium (0,002%), d Hélium 3 (0,001%), de Lithium 7. L étape de la formation des étoiles est à la base de la diversité des éléments que nous apporte la chimie de l univers. L univers présente alors des masses de gaz (composées d hydrogène et d hélium) qui vont s effondrer sur elles-mêmes sous l effet de la gravitation. Ce gaz donc se contracte pour formera les étoiles. En se contractant, les températures centrales augmentent ouvrant la portes à une variété de réaction nucléaire différente. Cet effondrement se fait par étapes, et est entrecoupées de longues périodes de stabilité. A chaques étapes, l effondrement de la masse de gaz augmente la température centrale, ouvrant la portes à de nouvelles réactions nucléaires. La première étape est la formation d hélium par l hydrogène lorsque la température du centre, sous l effet de la contraction, atteindra 10 millions de degrés. Ces réactions ne consomment que quelques pour cents de l hydrogène de l univers ce qui conduit actuellement à avoir 28 % d hélium. Lorsqu une étoile a tout transformé son cœur en hélium, les réactions nucléaires s arrêtent, la température et la pression tombent. Les couches externes s effondrent vers le cœur ce qui va faire monter sa température et sa pression. Lorsque la température atteint 100 millions de degrés, 3 noyaux d hélium s assemblent pour former un noyau de carbone. On a alors une «Géante Rouge». Le devenir de l étoile va ensuite dépendre de sa masse. Pour les étoiles massives (par exemple de 30 fois la masse de notre soleil) la durée de la réaction produisant du carbone est de l ordre de 60 millions d années. En fin de réaction nucléaire produisant le carbone, la température et la pression baissent de nouveau et les couchent extérieures sous l effet de la gravitation vont de nouveau s effondrer jusqu à trouver un nouvel équilibre à 400 millions de degrés. A cette température, la fusion du carbone avec un autre noyau d hélium va donner l oxygène. Ensuite le processus continu et, en fonction des températures, apparaîtront les nouveaux éléments tel que le néon, le magnésium, le silicium, le fer. En fin se réaction nucléaire menant au fer, le noyau se contracte à nouveau mais comme le fer possède une stabilité nucléaire maximale, il est le dernier de la série et l étoile explose pour donner ce que l on appelle une super nova. Elle va disséminer ses nouveaux éléments dans l espace. Ce sont les étoiles de masse importantes qui vont le plus contribuer à ma genèse des éléments. Les vents stellaires (dues à la luminosité des étoiles) sont la seconde origine de la distribution des éléments dans l espace. Les éléments plus lourds que le fer, comme les le plomb, l uranium, l argent, l or, le platine, les «terres rares» ont tous été formé lors de l explosion des supers nova! Actuellement, l hydrogène et l hélium représentent 98,1% de la masse totale de la matière, l oxygène, le carbone représentent 1,38%. Le fer, le magnésium et le silicium sont les trois métaux les plus abondant, et avec le néon et le souffre, ils représentent 0,49 %. La température des étoiles est trop élevée pour que forment les molécules 2

C est la basse température de l espace qui a permis la réalisation des molécules. La grande affinité de l hydrogène et de l oxygène ont conduit à la formation de la molécule d eau qui s y trouve sous forme gazeuse ou solide (glace). Cette chimie de l espace à conduit à la formation d une centaine de molécules comme des silicates, du méthane, de l ammoniac qui sont sous formes gazeuses ou solides en fonction de leur nature. L eau est donc une résultante de la chimie des étoiles, de la chimie de l espace! Elle s est retrouvée sous forme gazeuse et sous forme de particules de glace souvent fixées sur des poussières de matière interstellaire. Ces poussières ont des dimensions de quelques microns à quelques dizaines de microns. Notre système solaire s est formé, il y a 4,5 milliards d années, à partir de gaz et de poussières qui se sont agglomérés pour former notre soleil et les planètes. On pense que la présence de l eau sur terre a deux origines principales : La première considère que, lors de la formation de la terre, l eau était présente sous forme de glace (dans les particules de poussières) et de gaz qui se sont condensées sous l effet de la gravitation, et elle s est retrouvée prisonnière dans le manteau terrestre. Elle a rejoint la surface grâce à l activité volcanique. La seconde origine pourrait provenir d un bombardement de comètes et de météorites qui se sont abattues sur notre planète lors du premier milliard d années après la formation de la terre. Il semblerait que la première hypothèse soit à l origine de plus de 85 % de l eau sur terre. 2. L eau et l attraction terrestre La présence d eau liquide sur terre résulte de la géométrie de notre système solaire Si l on trouve l eau sous forme liquide sur terre c est parce que sa distance au soleil conduit des températures compatibles à cet état. Si notre planète eut été trop près du soleil, l eau se serait retrouvée sous forme gazeuse uniquement, si elle eut été trop loin, l eau se serait retrouvée uniquement sous forme de glace. L autre raison qui a permis de conserver l eau sur terre est due au fait que notre planète a une masse (une taille) suffisante pour générer une force de gravitation (force d attraction) permettant de la retenir dans l atmosphère. Si la masse de notre terre eut été plus petite, cette force d attraction n aurait pas été suffisante et l eau serait partie et retournée dans l espace. Grâce aux températures et à la masse de la terre et grâce à la pression atmosphérique qui règne sur notre planète, l eau est dans tous ses états : solide, liquide et gazeuse. Ceci est pour l instant considéré comme exceptionnel dans notre Univers où on ne la retrouve uniquement que sous forme solide et gazeuse. 3

3. Caractéristiques physico-chimiques de l eau L eau a des caractéristiques physico-chimiques particulières L eau a modelé notre planète, elle a donné la vie et les sociétés se sont structurées autour d elle. Pourquoi cette petite molécule a-t-elle eu un si grand destin? Parce que l eau a des propriétés physico-chimiques exceptionnelles et qu elle est présente en une immense quantité sur notre planète! Mais quels sont ses caractéristiques si précieuses? Sous forme liquide, elle a une densité de 1,000 000 à 3,982 C et 0, 999 867 à 0 C. Le passage de son état liquide à l état gazeux se traduit par une diminution de la densité et ceci est une propriété extrêmement rare. Sa chaleur massique est, après celle de l ammoniac (NH 3 ), la plus élevée des liquides avec 4,18 10 3 J.kg -1. C -1. Cette dernière propriété lui donne une grande inertie thermique ce qui explique la régulation qu opèrent les océans sur nos climats. Donc la température dans l eau de subit généralement pas de variations brusques comme cela peut se passer dans l air. L eau est un solvant extraordinaire. C est la forme de sa molécule qui lui donne une structure polaire (positive d un côté, négative de l autre). Ceci est une caractéristique qui a eu des applications sans fin. Elle permet de détacher de la matière d un support (comme la fonction de laver), de transporter des molécules d un endroit à un autre, comme des éléments nutritifs dans notre corps, dans les plantes, dans le sol L eau comme beaucoup de liquide est incompressible et ne se dilate pas avec la température. Lorsqu un qu un corps est plongé dans un liquide, il subit une poussée du bas vers le haut, équivalente au poids de la masse d eau déplacée. Ceci a permis aux animaux de se déplacer dans l eau et aux végétaux de se déployer. C est aussi grâce à ce principe que les bateaux flottent. La liaison hydrogène entre les molécules d eau génèrent des caractéristiques physicochimiques différentes des molécules de masses moléculaires voisines. L atome d hydrogène est un atome très petit et peut se rapprocher des autres atomes. Les centres positifs d une molécule et les centres négatifs d une autre peuvent donc se rapprocher et créer des forces d attraction très importantes. Ces liaisons sont toujours liées à la présence d un atome d hydrogène d où le nom de «liaisons hydrogène». Elles influent énormément sur les caractéristiques de la molécule d eau (solvatation mutuelle avec l éthanol, viscosité de liquides : eau, glycérol ). Elle a aussi un rôle capital dans la structure spatiale des macromolécules biologiques comme les protéines, les acides nucléiques L eau permet de stocker de l énergie. Le fait que la molécule d eau possède une masse d un kilogramme par litre d eau, lui permet de stocker de l énergie sous forme cinétique (énergie récupérée dans des chutes d eau des barrages par exemple) ou sous forme 4

thermique, lorsqu elle est chaude. Une différence de température, de concentration en sel entraîne des mouvements de liquide qui se traduisent par exemple par des courants marins importants dans les océans et les mers. Pour faire passer l eau du stade solide au stade liquide puis sous forme de gaz, il faut apporter de l énergie. La chaleur latente de fusion de l eau est de 0,334.10 6 J.kg -1 alors que sa chaleur latente de vaporisation est de 2,503.10 6 J.kg -1. La sublimation (passage direct de la phase solide à la phase gazeuse) est la somme des chaleurs latentes des deux. C est ce qui se passe dans l espace ou l eau est soit sous forme solide soit gazeuse. L eau peut échanger de l énergie avec l extérieur par variation de température mais aussi par changement d état sans variation de température. Lors de la fusion ou de la vaporisation, l énergie est utilisée exclusivement pour accomplir le travail nécessaire pour vaincre les forces de cohésions. Sa tension superficielle (7,2 10 9 N.m -1 ) est la plus élevée des liquides. Ceci lui permet de s insérer dans de très petites anfractuosités des rochers (dans des fibres végétales ) par exemple et son augmentation de volume lors de sa transformation en glace génère des forces très importantes capable de faire éclater les rochers. Et d autres caractéristiques encore L eau pure n existe à l état liquide que sous des conditions de température et de pression étroite (entre 0 et 374 degrés Celcius et 6,1 à 22,1 10 3 hectos Pascal). Un autre état de l eau est obtenu dans des conditions particulières de température et de pression, c est l état «supercritique» où elle n est ni liquide, ni gaz mais englobe les deux états. Au-delà de 374 C et 22,1 10 6 Pa, elle devient un fluide supercritique, sa densité est alors de 0,3. Sa capacité de solvatation augmente considérablement et se comporte comme un solvant organique. Les sources hydrothermales du fond des océans peuvent être un lieu où l on trouve cet état supercritique. On dit souvent que l eau gèle à 0 C. Soigneusement refroidie, elle peut rester sous forme liquide à 40 C. On dit qu elle est en surfusion. Elle ne cristallise sous forme de glace qu en présence d un «germe» qui a une ressemblance structurelle avec sa maille cristalline élémentaire. La molécule d eau comme toutes les molécules tourne et vibre. Ceci permet une bonne mobilité des éléments qu elle contient. Toutes ces caractéristiques ont largement contribué à l existence de la vie sur terre comme nous le verrons au chapitre suivant. Bibliographie : Delsemme A.(1994), Les origines cosmiques de la vie. Collection Champs Flammarion éditeur.isbn : 2-08-081363-3 Daniel, J-Y., Brahic A., Hoffert M., Schaaf A., Tardy M.(1999) Sciences de la terre et de l univers, Vuibert ed., ISBN : 2-7117-5280-1 5