NOTIONS DE BIOCHIMIE À L USAGE DU CHIMISTE

Documents pareils
CHAPITRE 3 LA SYNTHESE DES PROTEINES

- pellicule de fruits qui a un rôle de prévention contre l'évaporation, le développement de moisissures et l'infection par des parasites

Partie 1. Addition nucléophile suivie d élimination (A N + E) 1.1. Réactivité électrophile des acides carboxyliques et groupes dérivés

TP N 3 La composition chimique du vivant

2 C est quoi la chimie?

INTRODUCTION À L'ENZYMOLOGIE

ACIDES BASES. Chap.5 SPIESS

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Univers Vivant Révision. Notions STE

Synthèse et propriétés des savons.

Effets électroniques-acidité/basicité

BREVET DE TECHNICIEN SUPÉRIEUR QUALITÉ DANS LES INDUSTRIES ALIMENTAIRES ET LES BIO-INDUSTRIES

ATELIER SANTE PREVENTION N 2 : L ALIMENTATION

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

1.2 Coordinence. Notion de liaison de coordinence : Cas de NH 3. et NH 4+ , 3 liaisons covalentes + 1 liaison de coordinence.

TD de Biochimie 4 : Coloration.

Le trajet des aliments dans l appareil digestif.

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

ULBI 101 Biologie Cellulaire L1. Le Système Membranaire Interne

LES SUBSTITUTIONS NUCLÉOPHILES EN SÉRIE ALIPHATIQUE S N 1 ET S N 2

Questions. d'actualité. 1 Du sucre ou des sucres?

Exemple de cahier de laboratoire : cas du sujet 2014

La reconnaissance moléculaire: la base du design rationnel Modélisation moléculaire: Introduction Hiver 2006

Séquence 4. La nature du vivant. Sommaire. 1. L unité structurale et chimique du vivant. 2. L ADN, support de l information génétique

Fiche professeur. Rôle de la polarité du solvant : Dissolution de tâches sur un tissu

Quel sirop choisir pour le nourrissement d hiver.

Allégations relatives à la teneur nutritive

Tout sur le sucre Octobre 2012

BACCALAURÉAT TECHNOLOGIQUE

Respiration Mitochondriale

Formavie Différentes versions du format PDB Les champs dans les fichiers PDB Le champ «ATOM» Limites du format PDB...

(72) Inventeur: Baijot, Bruno Faculté des Se. Agronom. de l'etat Dép. de Technol. agro-alimentaire et forestière groupe Ceteder B5800 Gembloux(BE)

Exercices sur le thème II : Les savons

VALORISATION DES CO-PRODUITS ISSUS DE LA PRODUCTION INDUSTRIELLE DE BIOCOMBUSTIBLES

IMMUNOLOGIE. La spécificité des immunoglobulines et des récepteurs T. Informations scientifiques

Insulinothérapie et diabète de type 1

Les Confitures. Photo : M.Seelow / Cedus. Dossier CEDUS Avec la collaboration de l Université de Reims : Prof Mathlouthi, MC Barbara Rogè.

Qui sont-ils? D où viennent-ils? Où sont-ils?

Portrait du Groupe Roquette

CHAPITRE 2 : Structure électronique des molécules

Hydrolyse du sucre. Frédéric Élie, octobre 2004, octobre 2009

Suivi d une réaction lente par chromatographie

MAÎTRISER LA LECTURE DES ÉTIQUETTES NUTRITIONNELLES

Séquence 2. L expression du patrimoine génétique. Sommaire

LISTE V AU PROTOCOLE A MAROC. Description des produits

ANALYSE SPECTRALE. monochromateur

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

PROPRIETES DES SUCRES DANS LES ALIMENTS

École secondaire Mont-Bleu Biologie générale

lire les Étiquettes et trouver les sucres cachés

Le ph, c est c compliqué! Gilbert Bilodeau, agr., M.Sc.

SESSION 2013 ÉPREUVE À OPTION. (durée : 4 heures coefficient : 6 note éliminatoire 4 sur 20) CHIMIE

L universalité et la variabilité de l ADN

5.5.5 Exemple d un essai immunologique

Compléments - Chapitre 5 Spectroscopie

BTS BAT 1 Notions élémentaires de chimie 1

Utilisation des substrats énergétiques

CHAPITRE 3 LES TASQ COMME PLATEFORME POUR LA CATALYSE PSEUDO-ENZYMATIQUE

Concours. Annales corrigées. 17 sujets d annales. Épreuves d admission

1) Teneur en amidon/glucose. a) (Z F) 0,9, b) (Z G) 0,9, où:

Fiche professeur. L analyse spectrale : spectroscopies IR et RMN

PHYSIQUE-CHIMIE DANS LA CUISINE Chapitre 3 : Chimie et lavage

Résonance Magnétique Nucléaire : RMN

TRAVAUX PRATIQUESDE BIOCHIMIE L1

Bioélectrodes enzymatiques pour des applications en biocapteurs et en biopiles

Nicolas DEPRUGNEY Julien CARTON 1 SA TPE 1 S. Les Phéromones de la Fourmi

Ordonnance du DFI sur les sucres, les denrées alimentaires sucrées et les produits à base de cacao

ne définition de l arbre.

Master professionnel aliments, microbiologie, assurance qualité

Semestre 2 Spécialité «Analyse in silico des complexes macromolécules biologiques-médicaments»

Les isomères des molécules organiques

Chapitre II La régulation de la glycémie

Enseignement secondaire

Conception de Médicament

SÉRIE SCIENCES ET TECHNOLOGIES DE LA SANTÉ ET DU SOCIAL

SECTEUR 4 - Métiers de la santé et de l hygiène

Le monde nano et ses perspectives très prometteuses.

Travaux dirigés de Microbiologie Master I Sciences des Génomes et des Organismes Janvier 2015

Séquence 5 Réaction chimique par échange de protons et contrôle de la qualité par dosage

Résume de Cours de Chimie Organique (Prof. M. W. Hosseini) Notions acquises Définitions et conventions : Ordre de grandeur de longueur d'une liaison

BASES DE L ENTRAINEMENT PHYSIQUE EN PLONGEE

TS 31 ATTAQUE DE FOURMIS!

Tableau récapitulatif : composition nutritionnelle de la spiruline

VI- Expression du génome

Site : mail : mennier@isnab.fr SUJET ES - session 2003 Page 1 68-(7(6VHVVLRQ

Tâche : Comparer l étiquette de produits alimentaires afin de connaître leur valeur nutritive.

STÉRÉOISOMÉRIE CONFIGURATIONNELLE STÉRÉOISOMÉRIE OPTIQUE COMPOSÉS OPTIQUEMENT ACTIFS À UN SEUL CARBONE ASYMÉTRIQUE

Titre alcalimétrique et titre alcalimétrique complet

«Cette action contribue au PNNS». À CHÂTEAU THIERRY

Journée SITG, Genève 15 octobre Nicolas Lachance-Bernard M.ATDR Doctorant, Laboratoire de systèmes d information géographique

Les biopiles enzymatiques pour produire de l électricité

LA MITOSE CUEEP - USTL DÉPARTEMENT SCIENCES BAHIJA DELATTRE

AGREGATION DE BIOCHIMIE GENIE BIOLOGIQUE

Marine PEUCHMAUR. Chapitre 4 : Isomérie. Chimie Chimie Organique

1. Principes de biochimie générale. A. Bioénergétique et dynamique. a) Intro: Les mitochondries passent leur temps à fabriquer de l énergie.

Propriétés et intérêts nutritionnels NOVEMBRE 2011 V2 C 0 M 4 0 J N 0 C 33 M 0 J 73 N 0. Ad o b e C a s l on Pro

REACTIONS D OXYDATION ET DE REDUCTION

A B C Eau Eau savonneuse Eau + détergent

Dr E. CHEVRET UE Aperçu général sur l architecture et les fonctions cellulaires

Informations produit

Transcription:

NOTIONS DE BIOCHIMIE À L USAGE DU CHIMISTE I. LES ACIDES -AMINÉS ET LES PROTÉINES I.1 LES ACIDES -AMINÉS I.1.1 Structure Les acides -aminés sont les briques élémentaires des organismes vivants. Ils sont au nombre de 20 et possèdent tous un groupe fonctionnel amine et un groupe acide carboxylique liés à un même atome de carbone : on parle de position l un par rapport à l autre. Les acides -aminés sont des espèces amphotères, en raison de la présence simultanée de ces deux groupes fonctionnels. La formule semi-développée générale des acides -aminés s écrit : R représente une chaîne latérale, susceptible de contenir d autres fonctions acide-base. Figure 1. Les 20 acides -aminés naturels. Les deux structures grisées sont des acides -aminés qui ne sont pas universellement rencontrés dans le monde vivant. A l exception de la glycine, tous les acides -aminés sont chiraux et existent sous la forme de deux énantiomères. Tous les acides -aminés que l on rencontre dans la nature ne sont présents que sous l une des deux formes énantiomères, celui de la série L. ADS et TIPE 1/8

I.1.2 Propriétés acido-basiques La glycine, l acide -aminé le plus simple (R = H), présente deux acidités successives (pk a1 = 2,3 ; pk a2 = 9,6) : + L espèce (b) est une espèce amphotère, car le groupe carboxylate peut capter un proton, tandis que le groupe ammonium peut céder un proton. Cette forme portant à la fois une charge positive et une charge négative est appelée un zwittérion, ou amphion. Le zwittérion de la glycine est globalement neutre. On dit qu il porte une charge nette nulle, et il ne migre pas sous l action d un champ électrique. Le point isoélectrique d un acide aminé est le ph pour lequel il ne se déplace pas sous l action un champ électrique. L acide aminé porte alors une charge nette nulle. Dans le cas de la glycine, l acide aminé ne migre pas lorsque le zwittérion AH ± est majoritaire en solution. Le point isoélectrique de la glycine est le ph d une solution de l ampholyte AH ±. Ainsi : I.2 LES PROTÉINES ph i = ½ (pk a1 + pk a2 ) = 6,0 Les protéines sont des macromolécules jouant un rôle central dans la vie d un organisme. Elles peuvent avoir un rôle structural pour les cellules, moteur pour par leur présence dans les muscles, catalytiques pour les enzymes, etc Les protéines sont composés d une ou plusieurs chaînes d'acides -aminés liés entre eux par des liaisons peptidiques. On parle de protéine lorsque la chaîne contient au moins 100 acides aminés, et de peptide pour des assemblages de plus petite taille. I.2.1 Structure primaire C est l enchaînement des acides aminés selon des liaisons peptidiques (amides). Les acides aminés se suivent linéairement dans un ordre précis, appelé séquence peptidique. ADS et TIPE 2/8

I.2.2 Structure secondaire Les protéines adoptent des structures spatiales particulières, dues aux interactions intermoléculaires. Ainsi, les structures les plus souvent retrouvées localement dans la protéine sont les hélices, les feuillets et les coudes. Ces structures sont dues à l existence de liaisons hydrogène entre l hydrogène porté par un azote et l oxygène d une fonction carbonyle. Une hélice est un enchaînement d acides aminés dans la protéine, qui tourne dans le sens du tire-bouchon. Elle est stabilisée dans sa forme hélicoïdale par des liaisons hydrogène établies entre l hydrogène d un groupe aminé et l oxygène d un groupe carbonyle situé quatre acides aminés plus loin dans la chaîne. La double hélice de l ADN est également une double hélice Les feuillets se forment quand des parties de la chaîne protéinique se replient et se longent l une l autre, côte à côte, en formant des liaisons hydrogène entre elles. On parle de feuillets parallèles quand les chaînes vont dans le même sens et antiparallèles quand elles vont dans des directions opposées. Structure de l hélice d une protéine Structure d un coude Enfin, les coudes sont, comme leur nom l indique, des tournants que prend la chaîne localement lorsqu elle change de direction. Il existe de très nombreux types de coudes. I.2.3 Structures tertiaire et quaternaire La structure tertiaire est constituée par la conformation générale de la protéine. La structure quaternaire correspond à l agencement précis, les unes par rapport aux autres de plusieurs protéines. ADS et TIPE 3/8

I.3 LES ENZYMES Les enzymes sont des protéines jouant un rôle de catalyseur biologique. Leurs caractéristiques sont : pouvoir catalytique très élevé : elle peut accélérer jusqu'à plusieurs millions de fois les réactions chimiques du métabolisme. spécificité vis-à-vis d une réaction : une enzyme catalyse une réaction donnée et une seule d où leur classification selon les réactions catalysées : oxydoréductases, hydrolases, lyases spécificité vis-à-vis du substrat : les enzymes sont capables de reconnaître spécifiquement un stéréoisomère du substrat. L existence du complexe enzyme-substrat explique la spécificité des enzymes. Seule une partie de l enzyme intervient dans l acte catalytique : le site actif. Le site actif a une structure chimique et stéréochimique (structure secondaire et tertiaire) très précise qui ne peut convenir qu à un substrat précis. Schématiquement, il a la forme d'une cavité ou d'un sillon dans lequel vont se fixer les substrats grâce à plusieurs liaisons chimiques faibles. Une fois fixés, les substrats vont réagir et se transformer en produit. C est le modèle clef-serrure. Figure 2. Action d une enzyme. II. L ADN ET L ARN L'acide désoxyribonucléique (ADN) est une molécule, présente dans le noyau des cellules qui porte l'information génétique (le génotype). L ADN, est constitué d une double hélice, composée de deux brins complémentaires associés par des liaisons hydrogène. Chaque brin est un enchaînement de nucléotides, ces derniers étant fabriqués à partir de désoxyribose, de groupes phosphates et de bases azotées. Le génotype est inscrit dans l'ordre dans lequel s'enchaînent les quatre nucléotides. Figure 3. Structure de l ADN. ADS et TIPE 4/8

Il existe 4 bases azotées pouvant exister dans l ADN : l adénine A, la guanine G, la cytosine C, et la thymine T. Leur structure est donnée ci-après : Les deux brins de l ADN interagissent ainsi grâce aux liaisons hydrogène formées entre les bases de chaque brin : l adénine interagit avec la thymine selon 2 liaisons hydrogène, et la guanine avec la cytosine selon 3 liaisons hydrogène. Ainsi, il y a nécessairement dans les brins autant d adénine que de thymine et de guanine que de cytosine, et les interactions C-G sont plus fortes que les interactions A-T. En plus de ces interactions entre les deux brins, d autres liaisons hydrogène, similaires à celles vues précédemment pour les protéines, implique que le double brin prend la forme d une double hélice. L'acide ribonucléique (ARN) est une molécule chimiquement très proche de l'adn. Une des fonctions principales de l'arn est de servir de support intermédiaire des gènes pour fabriquer les protéines dont les cellules ont besoin. Les différences structurales avec l ADN sont : le ribose remplace le désoxyribose (pas de OH en position 2 ) de l'adn ; la thymine T de l'adn y est remplacée par l'uracile U, qui possède les mêmes propriétés d'appariement de base avec l'adénine. Figure 4. Structure d un nulcéotide de l ARN (phosphate + ribose + base). Figure 5. Uracile. ADS et TIPE 5/8

III. LES LIPIDES Les lipides constituent la matière grasse des êtres vivants. Ce sont des molécules hydrophobes ou amphiphiles molécules hydrophobes possédant un domaine hydrophile très diversifiées, comprenant entre autres les graisses, les acides gras (acide oléique, acide palmitique, etc ) les stérols (cholestérol, hormones stéroïdiennes comme la testostérone,etc ), ou encore les phospholipides. Voir le chapitre sur les dérivés d acides pour des exemples de structures. Les cellules de l organisme sont entourées par des membranes lipidiques. Ces membranes sont constituées d acides gras, formés d une tête polaire de type acide carboxylique ( COOH) et d une queue apolaire (de type hydrocarbure). Ainsi, les interactions de Van der Waals entre la tête polaire COOH et l eau H 2 O sont importantes et accompagnées de liaisons hydrogène : la tête polaire est ainsi dite hydrophile. A l inverse, la queue apolaire interagit peu avec l eau polaire (forces de Van der Waals faibles) : la queue est dite hydrophobe. tête hydrophile queue hydrophobe Figure 6. Structure d un acide gras. La membrane lipidique est une bicouche d acides gras (une couche extérieure et une couche intérieure). Elle est donc hydrosoluble : les têtes polaires de la couche extérieure s orientent vers l extérieur, ce qui rend la membrane soluble en milieu aqueux. D autre part, les têtes polaires de la couche intérieure s orientent vers l intérieur, interagissant avec le milieu aqueux de l intérieur de la cellule. membrane lipidique (double couche) molécule d'eau liaison hydrogène interaction de Van der Waals (hydrophobe) Figure 7. Structure d une membrane lipidique. Sans ces interactions intermoléculaires, la membrane lipidique ne serait pas stable en milieu aqueux : elle s ouvrirait et la cellule ne serait pas protégée par une membrane. ADS et TIPE 6/8

IV. LES GLUCIDES Les glucides sont une classe de molécules organiques contenant un groupement carbonyle (aldéhyde ou cétone) et plusieurs groupements hydroxyle (-OH). Ils sont habituellement répartis entre oses (monosaccharides tel que le glucose, le galactose ou le fructose) et osides, qui sont des polymères d'oses (oligosaccharides et polysaccharides). Seuls les monosaccharides et les disaccharides ont un pouvoir sucrant. Les polysaccharides, comme l'amidon, sont insipides. IV.1 LES OSES Les plus connus sont les hexoses comme le glucose et le fructose qui sont isomères de constitution. Le glucose est le carburant essentiel pour fournir l énergie dont l organisme a besoin. C est une molécule chirale qui existe sous deux formes énantiomères, notées L et D. Seul le D-Glucose est présent dans la nature. Il en est de même pour tous les oses, seule la série D existe à l état naturel. OH OH O HO 5 H OH OH Figure 8. D-Glucose. Le D-glucose peut se cycliser pour donner deux structures cycliques diastéréoisomères, notées et qui se différencient par la configuration absolue du carbone portant la fonction hémiacétal créée par la réaction entre la fonction aldéhyde et la fonction alcool en position 5. Les deux formes cycliques sont en équilibre via la forme ouverte linéaire, selon une réaction appelée mutarotation. Figure 9. D-Glucose cyclique (forme ) Figure 10. D-Glucose cyclique (forme à gauche et forme à droite) IV.2 LES OSIDES Exemple : Le saccharose (dimère : glucose + fructose), c est le «sucre» de cuisine, extrait de certaines plantes, principalement de la canne à sucre et de la betterave sucrière. On remarquera que les deux oses sont reliés par une double fonction acétal : Figure 11. Différentes représentations du saccharose. ADS et TIPE 7/8

Le lactose (dimère : glucose + galactose), un des constituant du lait L amidon (polymère du glucose) : C est d'une molécule de réserve pour les végétaux supérieurs et un constituant essentiel de l'alimentation humaine. On le trouve dans les féculents (pommes de terre, céréales, haricots, pâtes alimentaires, etc ) qu on appelle parfois «sucres lents» puisque l amidon doit être hydrolysé par donner le glucose utilisable pour fournir de l énergie. Les monomères sont reliés entre eux par des fonctions acétal. La cellulose (polymère du glucose). C est le principal constituant des végétaux et en particulier de la paroi de leurs cellules. C est la matière organique la plus abondante sur la Terre (plus de 50 % de la biomasse). La quantité synthétisée par les végétaux est estimée à 50-100 milliards de tonnes par an : Figure 12. Cellulose. Les monomères sont reliés entre eux par des fonctions acétal. Lecture fortement recommandée pour la culture générale en chimie organique et biochimie : Disponible au CDI ADS et TIPE 8/8