Thermodynamique TD3 TSI 2

Documents pareils
Premier principe : bilans d énergie

Premier principe de la thermodynamique - conservation de l énergie

Exemples d utilisation de G2D à l oral de Centrale

Variantes du cycle à compression de vapeur

BREVET DE TECHNICIEN SUPÉRIEUR AGRICOLE SUJET

COURS DE THERMODYNAMIQUE

Physique : Thermodynamique

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

Production d eau chaude sanitaire thermodynamique, que dois-je savoir?

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Equipement d un forage d eau potable

1 Thermodynamique: première loi

À propos d ITER. 1- Principe de la fusion thermonucléaire

Page : 1 de 6 MAJ: _Chaudieresbuches_serie VX_FR_ odt. Gamme de chaudières VX avec régulation GEFIcontrol :

Annexe 3 Captation d énergie

Questions avant intervention pour dépannage Enomatic

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Chapitre 4 Le deuxième principe de la thermodynamique

THERMODYNAMIQUE: LIQUEFACTION D UN GAZ

2.0. Ballon de stockage : Marque : Modèle : Capacité : L. Lien vers la documentation technique :

Notions physiques Niveau 2

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes).

ÉJECTEURS. CanmetÉNERGIE Juillet 2009

Fonctions de plusieurs variables

Chapitre 3 LES GAZ PARFAITS : EXEMPLES DE CALCULS DE GRANDEURS THERMODYNAMIQUES

COURS DE MACHINES FRIGORIFIQUES

Filtres pour gaz et air. GF/1: Rp 1/2 - Rp 2 GF/3: DN 40 GF/4: DN 50 - DN 100 GF: DN DN 200

L énergie sous toutes ses formes : définitions

Chapitre 11 Bilans thermiques

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

Le turbo met les gaz. Les turbines en équation

TD 9 Problème à deux corps

de l eau chaude pour toute l a famille, disponible à tout moment. Pompe à chaleur pour la production d Eau Chaude Sanitaire pompes á chaleur

Eau chaude sanitaire FICHE TECHNIQUE

Mesure du volume d'un gaz, à pression atmosphérique, en fonction de la température. Détermination expérimentale du zéro absolu.

Chapitre 2 : Respiration, santé et environnement.

EPFL TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian

Notice d'installation et de mise en service Stations de transfert d énergie : DKCS 8-50

Mesures du coefficient adiabatique γ de l air

Chapitre 5. Le ressort. F ext. F ressort

Fiche de lecture du projet de fin d étude

Incitants relatifs à l installation de pompes à chaleur en Région wallonne

TP 3 diffusion à travers une membrane

1 Savoirs fondamentaux

Mesure de la dépense énergétique

de faible capacité (inférieure ou égale à 75 litres) doivent être certifiés et porter la marque NF électricité performance.

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

3. Artefacts permettant la mesure indirecte du débit

Sommaire. Séquence 2. La pression des gaz. Séance 1. Séance 2. Séance 3 Peut-on comprimer de l eau? Séance 4 Je fais le point sur la séquence 2

T.I.P.E. Optimisation d un. moteur

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY

DP 500/ DP 510 Appareils de mesure du point de rosée mobiles avec enregistreur

Une chaudière mixte est facilement identifiable : elle se déclenche chaque fois que vous ouvrez un robinet d eau chaude.

Eau chaude Eau glacée

Installations de plomberie

Compresseurs d air respirable. Intelligent Air Technology

DROUHIN Bernard. Le chauffe-eau solaire

PROJET D INVERSION DE LA CANALISATION 9B ET D ACCROISSEMENT DE LA CAPACITÉ DE LA CANALISATION 9

Thermodynamique (Échange thermique)

TP 7 : oscillateur de torsion

Systèmes de distributeurs Systèmes de distributeur selon la norme ISO , taille 2, série 581. Caractéristiques techniques

Cours de turbomachine à fluide compressible

La relève de chaudière, une solution intermédiaire économique et fiable.

Collecteur de distribution de fluide

Mesures et incertitudes

Réduction de la pollution d un moteur diesel

Principes généraux de la modélisation de la dispersion atmosphérique

K 4 Compact. K 4 Compact, ,

Caractéristiques des ondes

REGLEMENT SECURITE INCENDIE ERP. DISPOSITIONS ARCHITECTURALES LES DEGAGEMENTS : couloirs,escaliers,sorties,portes

Etudier le diagramme température-pression, en particulier le point triple de l azote.

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

METEOROLOGIE. Aéroclub Besançon La Vèze. Cours MTO - Ivan TORREADRADO 1. F-SO au FL65 over LFQM

Consignes de sécurité Manipulation du dioxyde de carbone CO 2

Pompes à carburant électriques

Le confort de l eau chaude sanitaire. Gamme complète certifiée ACS pour le traitement de l eau chaude sanitaire

Saisie des chauffe-eau thermodynamiques à compression électrique

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

PRINCIPE DE FONCTIONNEMENT DU MOTEUR 4 TEMPS

L énergie de l air extérieur pour une eau chaude sanitaire naturellement moins chère

ALFÉA HYBRID DUO FIOUL BAS NOX

Rappel des principaux éléments de la réglementation valable pour tous les commerces. Accessibilité des établissements recevant du public

PHYSIQUE Discipline fondamentale

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.

TOPAS PMW-basic Compteur d eau chaude

CHAÎNES ÉNERGÉTIQUES I CHAÎNES ÉNERGÉTIQUES. II PUISSANCE ET ÉNERGIE

Atelier B : Maintivannes

Infos pratiques. Choisir sa solution de production d eau chaude sanitaire (ECS) Solution économique. Solution confort. Les chauffe-eau solaires

LE CHAUFFAGE. Peu d entretien. Entretien. fréquent. Peu d entretien. Pas d entretien. Pas d entretien. Entretien. fréquent. Peu d entretien.

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE

SAUVEGARDE DES PERSONNES ET LUTTE CONTRE L INCENDIE DANS LES BATIMENTS D HABITATION DE LA 3ème FAMILLE INC/HAB COL 3/1986-2

Analyse des coûts. 1 ère année DUT GEA, 2005/2006 Analyse des coûts

Rappels sur les couples oxydantsréducteurs

LA MESURE DE PRESSION PRINCIPE DE BASE

RUBIS. Production d'eau chaude sanitaire instantanée semi-instantanée.

FUSION PAR CONFINEMENT MAGNÉTIQUE

Consolidation des argiles. CUI Yu-Jun ENPC-CERMES, INSTITUT NAVIER

Phénomènes dangereux et modélisation des effets

CIRCUITS HYDRAULIQUES.

Prescriptions Techniques

Transcription:

Exercice : Détente de Joule Thomson La détente de Joule Thomson consiste à étudier un écoulement dans une conduite présentant une paroi poreuse et (ou) un étranglement contrariant le fluide dans son écoulement. Nous nous placerons dans les conditions d études suivantes : - En chaque point d un volume de section ( ) d épaisseur de la conduite, on peut affecter une valeur à toute grandeur physique. - L écoulement est stationnaire. - La conduite est horizontale et calorifugée. h + h + 2 2 B) Détente d une phase condensée visqueuse Une phase condensée est peu compressible et peu dilatable. On pourra donc souvent négliger les variations de volume. ) Que dire des volumes et? 2) Si, que dire de par rapport à? On notera les pressions, les vitesses de l écoulement, les températures, les énergies internes, et les volumes et masses associés aux tranches de fluides situées en amont et en aval. A l instant une masse donnée de fluide occupe le volume + et à l instant + la même masse occupe +.,,,,,,,,,, 3) En déduire alors que la détente est isenthalpique. 4) A partir de l identité thermodynamique, montrer que si cet écoulement se produit alors >. 5) Réaliser la détente de Joule avec un simple rétrécissement imposer à une circulation d eau et interpréter le résultat obtenu. A) Questions de cours : ) Montrer que le régime stationnaire implique la conservation du débit massique. 2) Montrer, à partir du premier principe des systèmes fermés que h + h + où h h représentent l enthalpie massique en amont et en aval du bouchon. Comme dans le cours, l hypothèse stationnaire permet d affirmer que la masse de fluide dans le bouchon se conserve : + ( ) + ( + ) Et donc soit L application du premier principe pour la masse étudie conduit à (avec l absence de paroi mobile et donc de travail autre que celui du travail des forces de pression): + 0 Et donc cette relation est valable pour kg de fluide : Si le fluide est incompressible alors et l égalité des sections implique que le fluide est animé d une vitesse à l entrée et. Donc d après le premier principe : 0 Si on utilise l identité thermodynamique de cette transformation adiabatique alors : + 0 Et : < 0 On a donc bien une détente qui est à accorder aux effets de forces interne de viscosité.

Pour le comprendre plus précisément, il faut revenir au e principe et au TEC :, +, +, +, Si on considère un fluide incompressible visqueux alors, 0 (car la distance entre particule ne pas évoluée dans son ensemble) et, représente le travail des forces de viscosité. Donc dans le e principe (si 0): Et : + +,, Donc dans l identité thermodynamique : Implique bien : + 0, < 0 La thermodynamique prend bien en compte le phénomène de perte de charge que l on décrira en mécanique des fluides. Elle rajoute cependant une description plus complète impliquant une variation de température. Cette variation est cependant faible car h + + et 0 Dans le cas d un karcher pour lequel 50 alors 5 Si les sections sont différentes alors un même volume doit se répartir sur deux longueurs différentes et donc être associé à une vitesse d écoulement différente. Si < alors >. Nous pourrons justifier ce résultat plus quantitativement avec des éléments de mécanique des fluides. En effet, pour un écoulement incompressible, on observe une conservation du débit volumique définit, pour un écoulement uniforme sur la section droite, par On comprend alors la possibilité d échange entre l énergie cinétique et l énergie thermique (car h( ) pour les GP et phase condensée idéale). Augmenter la vitesse revient à diminuer la température du fluide si la canalisation se réduit (c est le cas lorsque l on expire en pinçant les lèvres) D) Détente d un gaz si Si on a (et donc si on suppose le gaz faiblement comprimé ce qui impose un écoulement «lent) alors : h 0 ) Un gaz à faible pression supposé parfait pénètre dans le détendeur de Joule. Quelle est sa variation de température? Dans le cas d un gaz réel on a alors + 0. Expérimentalement, avec plusieurs bouchons poreux, en fixant les conditions en entrée, on mesure l état, de sortie. On obtient le graphe ci-dessous lors de l étude de transformations isenthalpiques : C) Détente d un gaz parfait si Un gaz est compressible mais un écoulement stationnaire et «lent» (inférieur à 300m/s) n impose pas des contraintes suffisantes pour modifier notablement la masse volumique. Dans la suite, nous allons donc considérer un gaz parfait de masse volumique quasiuniforme dans la canalisation. ) Que dire des volumes et? 2) Soient et les sections a priori différentes en amont et en aval du bouchon. Si <, que dire de par rapport à? 3) Comment est-il possible de refroidir un gaz supposé parfait avec ce type de dispositif? Proposer alors une géométrie pour la canalisation assurant un refroidissement. La conservation de la masse et de la masse volumique implique la conservation du volume et donc. 2) Comment expliquer à l aide du graphe ci-dessus que la détente isenthalpique de Joule-Thomson de certains gaz puisse conduire à un refroidissement? Au cours d une détente de joule pour un écoulement quasi-incompressible, la conservation de la section assure le maintien de la vitesse et dons de l énergie cinétique : une détente de Joule est donc isenthalpique. Pour un gaz parfait : h 0 implique également que 0.

Pour un gaz réel : On voit apparaître une zone, pour certain gaz, pour laquelle < 0 entraîne aussi < 0 d où un refroidissement possible. Dans les machines thermodynamiques, les détendeurs utilisés permettent ce refroidissement. E) Etude d un détendeur de plongée Pour pratiquer la plongée sous-marine, l'air est stocké dans des bouteilles à la pression 200 et nécessite deux détendeurs de type capillaire pour «oxygéné» le plongeur. On va étudier un compresseur qui prélève de l air avec un débit permanent 00. h dans l atmosphère à la pression et à la température 300, et l envoie comprimé dans un grand réservoir de stockage à pression constante 0 alimentant une installation industrielle (la vitesse de l air est nulle dans l atmosphère et dans le réservoir). L air est supposé équivalent à un gaz parfait de masse molaire 30. ;,5 0... On suppose la compression adiabatique et mécaniquement réversible et on néglige la variation d énergie potentielle., On conserve les hypothèses précédentes (écoulement stationnaire, conduite horizontale calorifugée et variation d énergie cinétique négligée : h 0). Le gaz est ici supposé «réel». Le détendeur primaire, placé sur la bouteille, assure la détente de la haute pression (200 bar à 20 C) vers une moyenne pression (0 bar). Un détendeur secondaire, placé au niveau de la bouche du plongeur, assure la détente vers la basse pression ( bar). La première détente est accompagnée d'une baisse importante de température. L'air se réchauffe ensuite de manière isobare en circulant dans le tuyau arrivant jusqu'au deuxième détendeur. La deuxième détente est pratiquement isotherme, et le plongeur ne ressent pas une sensation d'air froid lors de l'inspiration. Tracer ces transformations sur le graphe donné à la fin du TD. Exercice 2 : Compresseur à air Un compresseur à air fonctionne sur le principe suivant : - Une phase d injection du fluide à comprimer : le fluide pousse la soupape A et pousse le piston. - On ferme ensuite la soupape d injection A et on comprime le gaz (on diminue le volume de la chambre en modifiant la position du piston et le gaz reçoit du travail par le compresseur) - Une phase d éjection du gaz comprimé vers une autre chambre lorsque la pression du gaz est suffisante pour ouvrir la soupape R., ) On différencie deux types de diagramme pour le traitement thermodynamique d un fluide en écoulement. Le diagramme de Watt ( é ) (point de vue du réacteur : admission, refoulement et compression) et le diagramme de Clapeyron ( ) (point de vue du gaz : seule la compression d une quantité donnée de gaz est représentée). Dessiner ces deux diagrammes si le fluide à comprimer est un kilogramme de gaz. Dans le diagramme de Watt, on représente tout le travail utile (celui mis en jeu lors de la phase d admission, de refoulement et celui de la compression). Dans le diagramme de Clapeyron, on ne représente que le travail de compression. Ce dernier diagramme ne rend pas compte du travail des forces de pression lors de l admission et du refoulement. 2) Justifier que le fonctionnement du compresseur soit réversible et montrer que h peut être obtenu graphiquement à l aide du diagramme de Watt.

Pendant la phase d admission, de compression et de refoulement le gaz n est pas en déséquilibre avec l extérieur et l hypothèse GP+mec rev assure que le cycle est réversible. différentielle proche de 0 bar (cf photo cidessous). Mesurer l augmentation de température et commenter. D après l identité thermodynamique : h ce qui correspond à l air sous la courbe de la fonction ( ) qui s identifie au cycle du diagramme de Watt : h + h ( ) On a donc : h ( ) ( ) 3) Estimer la température de l air après compression et la puissance mécanique reçue par l air entre l atmosphère et le réservoir. On prendra 0 / 2 Cette transformation est donc en équilibre mécanique mais aussi en équilibre thermique interne. L absence de frottement la rend donc réversible. La transformation est donc adiabatique et réversible, nous pouvons utiliser les formules de Laplace : Donc : AN : 600 Si on considère l écoulement d une masse alors, pour cette transformation adiabatique, on a rapidement : ( ) ( ) Ainsi pour une masse élémentaire ( ) D où : ( ) ( ( ) ) AN : 0 4) Le lycée possède plusieurs machines thermodynamiques travaillant avec une En mesurant la température du gaz en entrée et en sortie du compresseur on a 50.ce résultat est bien inférieur à celui calculé précédemment. En, effet, l hypothèse du gaz parfait à 0 bar et 300K commence à être très critiquable avec les gaz frigorigènes. Exercice 3 : Compresseur multi étagé Le compresseur précédent présente un défaut : sa compression adiabatique mécaniquement réversible échauffe le gaz ce que ne facilite pas sa compression. On propose dans cet exercice d étudier une alternative : une compression étagée avec une première compression adiabatique mécaniquement réversible de l état (, 300 ), jusqu à un état 2 (, ). Un refroidissement isobare est alors amorcé entre l état 2 et l état 3 (, ) puis une compression mécaniquement réversible jusqu à l état 4 ( 0, ). Un nouveau refroidissement isobare est ensuite opéré pour revenir à 300K. Le gaz sera considéré parfait et le facteur isentropique,5. Les refroidissements sont effectués au contact d échangeurs thermiques (aucun travail échangé pour ces transformations avec le gaz en écoulement). ) Exprimer le travail massique total de compression en fonction de,,, et 2) Déterminer et calculer la pression intermédiaire, conduisant au travail minimal. 3) Tracer les transformations sur le diagramme (h) fourni à la fin du TD 4) Comparer ce compresseur à celui de l exercice précédent en utilisant un diagramme de Clapeyron. Pour la première compression : ( ) ( ) ( )

Pour la deuxième compression : ( ) ( ) ( ) Et le travail est : ( ) 3 4 On voit sur le diagramme de Clapeyron que les refroidissements successifs permettent de diminuer le travail de compression par rapport à une seule adiabatique. On comprend alors qu en se rapprochant d une compression isotherme avec une multitude de paliers, on améliore l efficacité du système (mais en perd en rapidité car il faut un échange thermique avec un échangeur pour assurer le refroidissement et le système est plus complexe!). ( ) + 2 2 Pour N étapes identiques à celle étudiée, on a (en remplaçant les facteurs 2 par N) Il faut ensuite chercher la valeur de, minimisant le travail et donc associé à une dérivée qui s annule en changeant de signe pour cette valeur : ( ) + 2 2 ( ) Le comportement asymptotique de cette fonction est le travail isotherme On peut comparer le travail mis en jeu pour les compresseurs entre les mêmes pressions initiale et finale : 2 2 Donc, et correspond bien à une inversion de signe de la dérivée associée à un minimum. Donc : + 2 ( ) 2 ( ) 3 et avec le graphe : Etat Etat 2 Etat 3 Etat 4 Soit 20% d économie! Exercice 4 : Puissance d un sèche cheveur Matériel : - Sèche-cheveux - Anémomètre (avec capteur de température intégré) Déterminer la puissance totale (mécanique plus thermique) que le sèche-cheveux communique à l air en précisant les hypothèses de travail., 3, 3, 0, 300 450 300 450 On utilise les hypothèses suivantes : - Ecoulement stationnaire et horizontale - Le fluide est dilatable - Vitesse initiale négligeable

La température initiale est de 20 C puis de 60 C en sortie. La vitesse de l écoulement est de l ordre de 30m/s. Le diamètre en sortie est de 4 cm. Volume qui rentre entre et + D après le e principe : Volume qui sort entre et + + 2 + On trouve alors : +,8