Circulation générale et météorologie

Documents pareils
B- Météorologie. En présence de cumulus alignés en bande parallèles vous prévoyez un vent: R : de même direction que les alignements

Contrôle de la convection profonde par les processus sous-nuageux dans LMDZ5B

METEOROLOGIE CAEA 1990

METEOROLOGIE. Aéroclub Besançon La Vèze. Cours MTO - Ivan TORREADRADO 1. F-SO au FL65 over LFQM

Etudes des nuages et de la convection autour des dépressions intenses des moyennes latitudes

METEO n 1. !"#$%$&$'%() enveloppe gazeuse qui entoure la terre, sur quelques centaines de kilomètres. ( ( ( ( ( (

L'atmosphère est subdivisée en plusieurs couches qui ont pour nom troposphère, stratosphère, mésosphère et thermosphère.

The Tropical Warm Pool-International Cloud Experiment TWP-ICE

Profils verticaux de la couverture nuageuse, de ses propriétés et des aérosols: données du lidar CALIOP et du radar CLOUDSAT (DARDAR) de 2006 à 2012

Météo Marine. Benjamin Aymard. Cours CNIF 18 Février 2014 Université Pierre et Marie Curie. ./IMAGES/logo-n

METEOROLOGIE. Test : Les NUAGES.

Colloque des arbitres et des commissaires aux résultats Moulin mer

Etudier le diagramme température-pression, en particulier le point triple de l azote.

THERMODYNAMIQUE: LIQUEFACTION D UN GAZ

1 Mise en application

Réunion de lancement du projet LEFE DEPHY2

Principes généraux de la modélisation de la dispersion atmosphérique

L inégale répartition de l énergie solaire est à l origine des courants atmosphériques

Premier principe : bilans d énergie

Tout commence avec une histoire de masses d'air. Lorsque 2 masses d'air se rencontrent, des fronts se forment.

DEMYSTIFIONS L EMAGRAMME, LE «TEMP» ET L ECHAUFFEMENT DE L ATMOSPHERE, première partie.

Fiche de lecture du projet de fin d étude

août La météo Congrès provincial de l AEFNB Journée de perfectionnement professionnel

République Algérienne Démocratique et Populaire

Les calottes polaires Isostasie Champ de température

Météorologie. Comprendre les phénomènes météorologiques, et leur observation.

Généralités. Front froid

Le CEL exprime la quantité d eau liquide condensée présente dans un mètre cube d air humide (g/m 3 )

Production d eau chaude sanitaire thermodynamique, que dois-je savoir?

DYNAMIQUE DE FORMATION DES ÉTOILES

TRANSPORT CONVECTIF TROPOSPHERE-STRATOSPHERE Importance l échelle globale? Jean-Pierre Pommereau CNRS LATMOS, Guyancourt, France

Le séchage des ateliers :

Développement et Evaluation PHYsiques des modèles atmosphériques

LA DISPERSION ATMOSPHERIQUE

ACTIVITÉ. Configuration de la pression en surface. Matériel. Pointage et analyse de la pression aux stations sur cartes météorologiques.

TRAITEMENT D'AIR DES PISCINES COUVERTES

Rapport. sur l incident survenu le 18 mars 2007 en croisière entre Lyon et Montpellier à l ATR immatriculé F-GVZY exploité par Airlinair

MESURE DE LA TEMPERATURE

Premier principe de la thermodynamique - conservation de l énergie

Du Thermostat à l ordinateur climatique. Vincent Aubret Hortimax

Equation LIDAR : exp 2 Equation RADAR :

Modèle de Climat de Titan

-12. Dispersion atmosphérique (Mécanismes et outils de calcul)

Chapitre 1 : Qu est ce que l air qui nous entoure?

PROJET ACCLIMATE ETUDE SIM-CLIM THEME 3 Etude bilan des possibilités d une simulation climatique régionale

CONCOURS COMMUN 2010 PHYSIQUE

Évolution du climat et désertification

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

Mesure du volume d'un gaz, à pression atmosphérique, en fonction de la température. Détermination expérimentale du zéro absolu.

La combinaison. naturelle DAIKIN ALTHERMA HYDRIDE POMPE À CHALEUR CHAUFFAGE ET EAU CHAUDE SANITAIRE. Informations préliminaires

Equipement d un forage d eau potable

VI.1) Description de la QBO Observation du vent zonal en moyenne zonale à l'équateur Données UARS (Swinbak et Orland)

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Annexe 3 Captation d énergie

Science et technologie : Le truc de Newton

LA MESURE DE PRESSION PRINCIPE DE BASE

Chapitre 4 Le deuxième principe de la thermodynamique

Travaux Pratiques. Sondage Radar de Vénus

Sécheurs par adsorption à régénération par chaleur

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome

Cours Météo, Club Alpin Suisse, Section de Neuchâtel

LA MESURE DE LA PRESSION

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

À propos d ITER. 1- Principe de la fusion thermonucléaire

PARAPENTE PARAPENTE. Manuel de formation. Ce manuel a été téléchargé sur

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

Exercice 1. Exercice n 1 : Déséquilibre mécanique

BREVET 2 * Principes physiques régissant la plongée. Première partie

Améliorations du schéma de nuage et de EDKF dans AROME/MésoNH

Baccalauréat STI2D et STL spécialité SPCL Épreuve de physique chimie Corrigé Session de juin 2014 en Polynésie. 15/06/2014

Physique : Thermodynamique

STÉRILISATION. Réduction des populations. nonus 1

1- Durant votre vol, vous entrez dans un thermique. Décrivez, par un schéma simple, l incidence sur votre voile.

Grille de planification Expédition météo. Spécialiste de la cartographie Graffiti de ce que l équipe sait de la météorologie (10 minutes).

Compte rendu des utilisations du calculateur TITAN au LACy

Activité 1 : Rayonnements et absorption par l'atmosphère - Correction

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

Projet évaluation : précipitation et

4.4. Ventilateurs à filtre. Les atouts. Montage rapide. Polyvalence et fonctionnalité

Whitepaper. La solution parfaite pour la mise en température d un réacteur. Système de régulation. Réacteur. de température

ProSimPlus HNO3 Résumé des nouvelles fonctionnalités, décembre 2008

1 Thermodynamique: première loi

Comment peut-on produire du chauffage et de l'eau chaude à partir de l'air? EFFICACITÉ POUR LES MAISONS

LE CHAUFFAGE. Peu d entretien. Entretien. fréquent. Peu d entretien. Pas d entretien. Pas d entretien. Entretien. fréquent. Peu d entretien.

Mesures du coefficient adiabatique γ de l air

Présentation générale des principales sources d énergies fossiles.

Circuits intégrés micro-ondes

BREVET DE TECHNICIEN SUPÉRIEUR QUALITÉ DANS LES INDUSTRIES ALIMENTAIRES ET LES BIO-INDUSTRIES

Fonctions de plusieurs variables

Notions physiques Niveau 2

MODULE 2.7A NÉPHANALYSE. Introduction et techniques

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES

Eva Mo nteiro Tél. : (# 680 7) C ourri el : mont eiro.e va _ro uqam.ca

FUSION PAR CONFINEMENT MAGNÉTIQUE

ALFÉA HYBRID DUO FIOUL BAS NOX

TECHNIQUE DU FROID ET DU CONDITIONNEMENT DE L AIR. confort = équilibre entre l'homme et l'ambiance

Les rayons X. Olivier Ernst

La modélisation, un outil pour reconstituer (et prédire) climat et végétation

COURS DE THERMODYNAMIQUE

Transcription:

Circulation générale et météorologie B. Legras, http://www.lmd.ens.fr/legras I Instabilités convectives de l'atmosphère humide (supposés connues: les notions de température potentielle sèche et d'instabilité convective sèche, oscillation de Brünt-Vaissala) livres recommandés: - Fundamentals of Atmospheric Physics, Salby, Academic Press - Cloud dynamics, Houze, Academic Press - Storm and cloud dynamics, Cotton, Bryan and van den Heever, Academic Press 1 autres livres (plus avancés): - Thermodynamics of Atmospheres and Oceans, Curry &Webster - Atmospheric Convection, Emanuel, Oxford Univ. Press

Plan Introduction Thermodynamique de l'air humide insaturé Couche limite Thermodynamique de l'air humide saturé Instabilité convective conditionnelle et potentielle CAPE Usage des émagrammes Conditions de déclenchement et lignes de grain 2

Introduction 3

Diagramme thermodynamique de l'eau (pure) Pression partielle Glaciation/fusion 2.21 105 hpa Équilibre vapeur / eau surfondue Vénus Terre Condensation/vaporisation Mars 647K Nucléation/sublimation 4 Les conditions de l'atmosphère terrestre sont telles que l'eau y est présente sous ses trois phases.

Thermodynamique de l'air humide Deux phases gazeuses, air sec(d), vapeur d'eau (v), une phase liquide (l) et une phase glace (i) pression p= pd +e (pression vapeur d'eau notée e ) ρv ρl ρi rapports de mélange en masse r = ρ, r l = ρ, r i = ρ, r T = r +r l + r i d d d M d =29 g M v =18 g R d =287 J kg 1 K 1 Rv =461,5 J kg 1 K 1 C pd =1005,7 J kg 1 K 1 C pv =1870 J kg 1 K 1 C l =4190 J kg 1 K 1 à T >0 C C i =2106 à T 0 C Rd C pv R =ϵ=0.622 =β=1.86 κ= d =0.285 Rv C pd C pd e / ( Rv T ) e r ϵ r= =ϵ e= p pd = p p e ϵ+ r ϵ+r p d / ( Rd T ) S S pression saturante e (T ) et rapport de mélange saturant r ( p,t ) S e r 1+r / ϵ humidité relative Η S = S e r 1+ r / ϵ V a +V l +V i 1+r l (αl /α d )+r i (αi /α d ) αd 1 volume spécifique α ρ = =α d md +mv +ml +mi 1+r T 1+ r T ( ) ( 5 )

Rd T 1 Rd T 1 r / = pd 1 r T p 1 r T 1 r / T 1 0,608 r 1 r 1 r S / 1 r S Air saturé: notion de température de densité T T =T v 1 r T 1 r T Air non saturé: notion de température virtuelle T v T T v est la température de l'air sec qui aurait la même densité que l'air humide dans le cas insaturé : p= Rd T v T est la température de l'air sec qui aurait la même densité que l'air humide dans le cas saturé : p= R d T Dans les régions tropicales où r peut atteindre 0,04, on voit que l'écart entre T et T v peut atteindre 2,5%. T v est toujours supérieur à T. Ce n'est pas le cas pour T qui peut être inférieur à T quand la charge en eau liquide est élevée. Dans le cas insaturé, 6 1 dp g = pdz Rd T v

Thermodynamique de l'air humide non saturé. Couche limite 7

Entropie dans le cas humide insaturé On s'intéresse ici à des transformations pour lesquelles r est conservé. Entropies s d, s v pour la partie sèche de l'air et la vapeur d'eau: s d =C pd ln (T /T 0 ) Rd ln ( p d / p 0), s v =C pv ln(t /T 0 ) Rv ln (e/ p 0 ) Entropie par unité de masse d'air sec : s=s d +r s v =(C pd +r C pv )ln (T /T 0 ) R d (1+r /ϵ)ln ( p / p 0)+ A où on a mis dans A (le calculer) des termes constants (dépendant de r ). En définissant s (C pd +r C pv )ln (θ /T 0)+A, la température potentielle est p0 θ T p ( ) Rd 1+r/ ϵ C pd ( 1+ r C / C ) pv pd T p0 p ( ) Rd (1-0,24 r ) C pd. Elle est conservée pour les transformations réversibles adiabatiques insaturées. Comme r est conservé, on conserve aussi la température potentielle virtuelle θ v T v 8 p0 p ( ) Rd 1+ r / ϵ C pd (1 + r C / C ) pv pd T v p0 p ( ) Rd (1-0,24 r ) C pd. Comparer θv pour deux parcelles revient, lorsqu'elles sont ramenées à la même pression à comparer leurs températures virtuelles et donc leurs densités. C'est le profil de θ v qui détermine la stabilité pour la convection en milieu insaturé

9 Cycle diurne d'une couche limite continentale en régime anticyclonique (couche mélangée pendant le jour, couche stable et couche neutre résiduelle pendant la nuit)

Evolution des profils de température potentielle au cours du cycle diurne 10

Observation du cycle diurne de la couche limite aerosols de surface + cendres volcaniques ashes Lidar (SIRTA) (a) 26 May 11 27 May 28 May

Développement d'une inversion au sommet de la couche limite z m = Evolution de θm par la différence entre les flux à la base et au sommet : d θm h =w ' θ ' 0 w ' θ ' h dt h Croissance h par entrainement : dh =w e dt Evolution du saut d'inversion gap par entrainement et variation de θ m : d θm d Δ θm =w e γ dt dt Equilibration entre flux et entrainment au sommetde la couche limite : Δ θm we = w ' θ ' h m La solution requiert une hypothèse de fermeture sur w c ou w ' θ ' h Nous prenons w ' θ ' h = c E ϕ avec ϕ w ' θ ' 0 d Δ θm γ c E ϕ ϕ (1+c E ) d h ce ϕ D'où = et = dt Δ θm h d t Δ θm Une solution avec h= Δ θm =0 à t =0 est obtenue comme Δ θm = A t et h= B t 2 2 γ ce ϕ 2 ϕ (1+2 c E ) 2(1+c E ) γ ϕ t où A= et B=. Nous avons aussi : θ m= θ0+ 1+2 c E γ 1+2 c E 1/ 2 12 d dz 1/2 La couche d'inversion qui surmonte la couche convective est ainsi une conséquence directe du développement de la couche limite.

A RETENIR L'atmosphère est chauffée par le sol. Une couche limite est engendrée au dessus du sol sur une profondeur de 1000 à 3000m (selon la saison et la latitude). Dans cette couche limite, le brassage convectif maintient un gradient nul de température potentielle virtuelle excepté dans une mince couche de surface où les mouvements sont inhibés. Dans les conditions continentales, la couche limite connaît un cycle diurne important comportant une couche mélangée pendant la journée suivie d'une restratification depuis la surface pendant la nuit surmontée d'une couche neutre résiduelle. 13

Thermodynamique de l'air humide saturé. Instabilité potentielle. Instabilité conditionnelle. 14

III.2 Condensation de l'humidité On caractérise la vapeur d'eau présente dans l'air, soit par sa pression partielle e, soit par son rapport de mélange en masse r = ρv/ρd = (e/pd)(rd/rv) rs(z) où l'indice d se réfère à l'air sec. La pression partielle de saturation dépend de la température (loi de ClausiusClapeyron). (T in K) esliquide = 6,112 exp(17,67( T-273,15) /(T-29,65)) esglace = exp(23,33086-6111,72784/t + 0,15215 Ln(T)) Exemples de rapports saturants 15 à 1000hPa et T=20 C: rs = 14,5 g/kg, à 800 hpa (2000m) et T = 7 C: rs =7,8 g/kg, à 500 hpa et T=-30 C rs =0,47 g/kg, à 100 hpa et T =-80 C rs =0,003 g/kg, (le contenu en eau de l'atmosphère est divisé par presque quatre ordres de grandeur entre le sol et 100 hpa) rs(tadiabatique) rs LCL (lifting condensation level): niveau de condensation des parcelles montées depuis le sol

Formation des nuages convectifs cumulus 16 cumulonimbus

17

Thermodynamique de l'air humide (suite) Equilibre de la température T, et de l'énergie libre g à pression constante entre les deux phases, avec g =u+ p α T s=h T s, h=u+ p α, u et h étant seulement fonction S de T pour un gaz parfait et avec p=e pour la phase vapeur. S S La chaleur latente est L=h v h l =T (s v sl ) Loi de Kirchoff d L=dT [( ) ( ) ] [( ) ( ) ] [ ( )] hv hl T p T p hv hl + dp p T p αl =dt [C pv C l ]+dp α l p p dl =C pv C l dt T Loi du gaz parfait T Volume spécifique de la phase liquide négligeable vaporisation L0 =2,5 10 J kg 6 1 à 0 C. Loi de Clausius-Clapeyron Pour une variation de l'équilibre des deux phases: d g v=d g l 18 En utilisant la définition de g et la première loi de la thermodynamique T ds=du+ p d α sv dt +α v de S = sl dt +α l d e S d e S sv sl L LeS = = dt α v α l T ( α v α l ) R v T 2

Niveau de condensation pour une parcelle montée depuis la surface L'humidité relative étant H =e /e S, la saturation est atteinte lorsque H =1. Nous avons d ln( H )=d ln(e) d ln (e S ) 1 1+r β La transformation étant adiabatique, d ln(e)=d ln ( p)= κ d ln(t ) 1+r /ϵ avec β=c pv /C p. L0 +(C pv C l )(T T 0 ) L Utilisant Clapeyron et Kirkhoff : d ln (e S )= dt = d ln(t ) 2 R T Rv T v 1 1+r β C l C pv T * L 0 +(C l C pd )T 0 D'où ln ( H )= κ + ln + 1+r /ϵ Rv T Rv ( * ) ( )( 1 T * 1 T ) où T est la température au niveau LCL. 2840 Solution approximative T *= +55 avec e en hpa. 3.5 ln(t ) ln (e) 4.805 p * 1 1+r β T * * La pression au niveau LCL p est alors donnée par ln = κ ln p 1+r /ϵ T d T g 1+r et l'altitude du niveau est déterminé en intégrant = dz C pd 1+r β C 1+r β * * d'où z z= pd (T T ) g 1+r 19

Température potentielle équivalente Pour une parcelle d'air humide, l'entropie pour une unité de masse d'air sec est s=sd +r sv +r l sl # s d =C pd ln (T /T 0 ) R d ln ( p d / p 0 ) pour la partie d'air sec, # s v=c pv ln(t /T 0 ) R v ln (e / p 0 ) pour la partie de vapeur d'eau, # sl =C l ln(t /T 0 ) pour la partie d'eau liquide. Utilisant L=T ( sv s l ) et Η=e /e,et après quelques manipulations Lr S s=sd +r T sl + +r (s v s v ) T Lr =(C pd +r T C l )ln (T /T 0 ) R d ln ( p d / p0 )+ r R v ln(η) T Ceci permet de définir une température potentielle équivalente θe telle que s=(c pd +r T C l )log(θe /T 0 ) soit p 0 R / (C + r C ) Lr r R /( C + r C ) θ e =T ( Η) exp pd (C pd +r T C l ) T S S ( ) 20 d pd T l v pd T ( l ) Cette quantité est conservée dans les transformations adiabatiques réversibles humides saturées et non saturées. p 0 R /(C + r C ) L rs Pour une parcelle saturée, θe =T exp. pd (C pd + r T C l )T ( ) d pd T l ( ) Puisque r=r T dans le cas insaturé, θe est toujours fonction de (T, p, r T ).

Instabilité incluant l'humidité La quantité conservée pendant une transformation adiabatique saturée est la température potentielle équivalente S L r T, P e T, p exp C pt e e L rs = 1 0 T T C pt Conditions d'instabilités comparables au cas sec. L'instabilité de l'air insaturé avec d θe/dz < 0 est potentielle car il faut d'abord saturer l'air. 21 Simplification: on néglige la plus faible densité de l'air humide par rapport à l'air sec(effet de température virtuelle) Γd : adiabatique sèche (θ constante) ΓS: adiabatique humide saturée (θe constante)

Note complémentaire: Calcul simplifié du gradient adiabatique saturé Dans une transformation adiabatique saturée, et pour une unité de masse d'air sec : s S C p r S C pv r l C pl dt L d r S Rd T d log p d r R v d log e =0. (termes négligés en vert) En utilisant la loi du gaz parfait, 1 Rd T d log p d = dp= g dz. d Par ailleurs, on écrit la variation de r en fonction de T et p : rs rs s dr = dt dp. T p s On obtient alors, en utilisant encore une fois la loi hydrostatique, rs rs C p L = g 1 L T p dz, soit S = d 22 rs 1 L p s 1 L r C p T d L rs 1 Rd T 2 1 s L r Rv T 2.

Instabilité potentielle L'instabilité potentielle apparaît lorsque d e d 0 mais 0 dz dz Elle se manifeste si une couche d'air potentiellement instable est soulevée, par exemple au passage d'un relief ou lors du mouvement d'un front. A partir du moment où la partie la plus basse devient saturée, la convection se déclenche. 23

Température potentielle pseudo-équivalente Dans une ascendance rapide à l'intérieur d'un nuage précipitant, l'eau liquide forme des gouttes assez grosses qui chutent et ne sont pas entraînées avec l'air ascendant. Une approximation de ce processus est la transformation pseudo-équivalente où on néglige la capacité calorifique de l'eau liquide en considérant que toute la chaleur produite par la condensation passe dans la phase gaz La variation d'entropie par unité de masse d'air sec est donc : ds p =ds+c l r l d ln (T ) qui s'intègre en : T0 s p =s C l T (r r T ) d ln(t ' ) C pd (C pd +r T C l ) ( ) ( ) θep or e T0 sp T = T0 p0 p C pd p0 p ( )e Rd ( )( )e T = T0 p θ ep =T 0 pd ( ) Rd Lr T R d / C pd Lr T T0 H r R v C l T ( r r T )d ln (T ' ) e T0 H r Rv C l T r d ln (T ' ) e r Rv / C pd ( Η) Cl T Lr exp exp r d ln(t ') C pd T C pd T ( ) ( 0 ) * Noter que pour T >T, sous le nuage, r=r T est préservé et ne dépend pas de T * 24 alors que pour T <T, dans le nuage, nous avons r =r (T, p d ) et l'intégrale est calculée le long d'un chemin pseudo-adiabatique. S

Température potentielle pseudo-équivalente (suite) En prenant, sans perte de généralité, T 0 =T * sur chaque colonne, R /C p0 Lr θ ep =T Η r R / C exp en dessous du nuage pd C pd T ( ) p0 θ ep=t pd ( ) Rd / C pd d pd v ( pd ) S Cl T S Lr exp exp r d ln(t ') dans le nuage C pd T C pd T * ) ( ( ) θep est conservée pour une transformation adiabatique jusqu'au niveau LCL suivie d'une pseudo-adiabatique. θep est fonction de T, p d, r pour l'air insaturé et est fonction de T et p d pour l'air saturé. En pratique, excepté dans les régions tropicales très humides, θep diffère peu de θe et peut être utilisée aussi dans les transformations réversibles dans lesquelles l'eau liquide est transportée avec la parcelle d'air. Formule approximative pratique θep (Bolton, 1980) 1000 θep=t p ( 25 0,2854 (1-0,28 r) ) [ exp r (1+0,81 r ) ( 3376 2,54 * T )] Cette expression est précise à 0,3K près dans tout le domaine des conditions atmosphériques.

Température potentielle pseudo-équivalente de saturation Cette température, définie pour l'air ambiant, est la température potentielle pseudo-équivalente de l'air saturé à la même température et pression que l'air ambiant p0 * S e = ep T, p d, r T, p d =T pd Rd / C pd S L r T, p d Cl T S exp exp r T, pd d ln T ' C pd T C pd T * Cette température est seulement fonction de T et p d Pour une parcelle saturée, elle est identique à ep Elle détermine la condition de déclenchement de la convection profonde. En effet, si on veut comparer les températures de l'air ambiant non saturé et d'une parcelle montante saturée conservant ep, on ne peut le faire sur ep car la contribution de l'humidité à cette quantité est différente pour les deux parcelles. Si on ramène l'air ambiant aux mêmes conditions de saturation que la parcelle montante, on est sur qu'une égalité entre *e de l'air ambiant et ep de la parcelle montante conduit à une égalité entre les températures. De même une inégalité entre *e et ep conduit à une inégalité dans le même sens des * 26 e températures car 0 (le vérifier). T On néglige ici les effets de densité plus faible de la vapeur d'eau par rapport à l'air sec. De tels effets sont moins importants que ceux liés à la chaleur latente dans un nuage convectif. Ils peuvent être néanmoins pris en compte dans le cadre d'une théorie plus complète (cf. livre de K. Emanuel)

Instabilité conditionnelle Lorsque qu'une parcelle d'air est déplacée verticalement. Elle s'élève d'abord selon une adiabatique sèche et atteint ainsi son niveau de condensation (LCL). Elle poursuit son chemin en restant saturée selon une pseudo-adiabatique. Elle rencontre son niveau de flottabilité (LFC) lorsque sa température ep Situation convective typique en région tropicale LNB * égale e de l'air ambiant. A ce moment là, la température de la parcelle est égale à celle de l'air ambiant. d *e L'ascension continue si 0 dz C'est le profil de *e et non de e qui décide de la stabilité car une inégalité sur les températures saturées à pression constante entraîne une inégalité de même type sur les températures car * e 0 (exo: le vérifier). T Remarque: on néglige l'effet de l'humidité sur la densité. 27 LCL : lifting condensation level LFC : level of free convection LNB : level of neutral buoyancy LFC LCL

12 à 13 km Fraction nuageuse observée (licar CALIOP) en région tropicale (Fu et al., GRL 2007) Densité de probabilité et probabilité cumulée de θep en région tropicale 28 0,5% des nuages atteignent la tropopause tropicale (17,5 km, 100 hpa, T=200K, θ=380k)

29 Fraction nuageuse observée (lidar CALIOP) en région tropicale en fonction de la saison et du niveau (Yang et al., JGR 2010)

Nuages convectifs au dessus du Brésil (photos prises d'une navette spatiale) 30

A RETENIR A l'intérieur d'un nuage, le mouvement ascendant d'une parcelle non diluée est décrit par une transformation adiabatique (si les condensats sont transportés avec la parcelle) ou une pseudoadiabatique si les condensats précipitent. Les variables thermodynamiques construites pour ces transformations généralisent la température potentielle définie pour l'air sec. Lorsque l'air est saturé, la condition d'instabilité de l'air sec se généralise aisément en utilisant la température potentielle équivalente. Dans l'air insaturé, l'instabilité dépend de la capacité de l'air à devenir saturé et à acquérir une flottaison positive. Dans le cas du mouvement d'une parcelle, la condition est qu'une perturbation finie transporte les parcelles depuis le sol jusqu'au niveau de flottaison 31

Les températures potentielles et leur usage - Θv : température potentielle virtuelle, dépend de r, T, p Conservation : transformations adiabatiques réversibles de l'air humide non saturé Usage : Stabilité de l'air humide non saturé Application : Couche limite mélangée - Θe : température potentielle équivalente, dépend de r, T, p en non saturé (H<1) et de rt, T, p en saturé (H=1) Conservation : transformations adiabatiques réversibles de l'air humide non saturé et saturé, où les condensats sont transportés avec la parcelle d'air ascendante Usage : Stabilité de l'air humide saturé, instabilité conditionnelle Application : Déstabilisation par saturation d'une couche d'air humide - Θep : température potentielle pseudo-équivalente, dépend de r, T, pd en non saturé et de T, pd et T* (température de la base du nuage) en saturé Conservation : transformations pseudo-adiabatiques où les condensats précipitent et disparaissent sitôt formés Usage : ascendance dans un nuage précipitant Application : Détermination du sommet des nuages En pratique, sauf en région tropicale très humide, Θe et Θep sont peu différentes 32

Les températures potentielles et leur usage (suite) - Θ*e : température potentielle pseudo-équivalente de saturation, dépend de T, pd et T* Conservation : non applicable, définie pour l'air ambiant en zone convective Usage et application: stabilité de l'atmosphère vis à vis de la convection profonde, instabilité potentielle - Θl : température potentielle liquide (voir devoir), dépend de T, p, rt, rl (et ri dans la généralisation Θli) Conservation : transformations adiabatiques réversibles saturées et non saturées, conservant les condensats Application : température et flottaison de l'air détraîné par la convection à un niveau donné après évaporation des condensats, paramétrisation de la convection (dernier cours) 33

Se rappeler: l'instabilité conditionnelle est liée au mouvement d'une parcelle d'air qui doit d'abord atteindre son niveau de flottaison pour monter par elle même; l'instabilité potentielle est liée au mouvement d'une couche d'air qui devient instable en s'élevant sous l'effet d'une contrainte (orographie, brise de mer,...) Dans un nuage convectif réel, la plupart des ascendances sont diluées. Il existe cependant un petite quantité d'ascendances non diluées qui déterminent l'altitude atteinte par le nuage et son enclume. 34

CAPE Utilisation des émagrammes 35

Histoire d'une parcelle d'air humide au cours de l'ascendance dans un nuage Energie potentielle: <- Sommet du nuage p P=R p T ' T d ln p T: Température ambiante T': Température de la parcelle ascendante 0 p CAPE= R p T ' T d ln p LFC Niveau de flottabilité LFC -> Niveau de condensation LCL -> (base du nuage) 36 CIN

37

Energie potentielle convective utilisable (CAPE) CAPE = P(pLFC) P(pc) 38

Diagramme météorologique permettant de représenter un sondage 39

CIN CAPE 40

CAPE et diagramme météorologique Latitude tropicale: situation océanique CAPE modérée (1000-2000 J kg-1) et faible CIN facilitant le déclenchement. Latitude tempérée: situation d'été en zone continentale. Forte CAPE (3000-4000 J kg-1) et forte CIN limitant le déclenchement. 41

Exemple de situation d'évolution vers l'instabilité (instabilité potentielle) Trait plein: début Tireté: fin Saturation et destabilisation de la couche 800-870 hpa 42

Déclenchement de la convection Propagation 43

Structure d'une super cellule convective (engendrant tornades et averses de grêle) 44

45 Fronts de cumulonumbus

Formation des courants de densité à partir des courants descendants et déclenchement de la convection 46

Mécanisme de propagation / régénération d'une cellule convective en présence de cisaillement du vent 47

48

49

Ligne de grain: formation d'un alignement de cellules convectives Echo radar composite 50 E c

Ligne de grain se propageant dans un cisaillement modéré. Evolue en s'affaiblissant et s'élargissant. 51 Ligne de grain se propageant dans un cisaillement fort. Composée d'un front de cellules intenses, souvent en forme d'arc.

52