Figure 1 : Diagramme énergétique de la photo émission. E B = hν - E C



Documents pareils
La plate-forme Caractérisation CIM PACA

- I - Fonctionnement d'un détecteur γ de scintillation

Les rayons X. Olivier Ernst

Ecole d été des spectroscopies d électrons.

La gravure. *lagravureparvoiehumide *lagravuresèche

PRINCIPE MICROSCOPIE CONFOCALE

APPLICATIONS DE L'IMPLANTATION IONIQUE POUR LE BIOMEDICAL

DIFFRACTion des ondes

Résonance Magnétique Nucléaire : RMN

Sujet. calculatrice: autorisée durée: 4 heures

101 Adoptée : 12 mai 1981

Chapitre 02. La lumière des étoiles. Exercices :

M1 - MP057. Microscopie Électronique en Transmission Diffraction Imagerie

Interactions des rayonnements avec la matière

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

SPECTROSCOPIE D ABSORPTION DANS L UV- VISIBLE

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

LES CAPTEURS CCD/CMOS

ANALYSE SPECTRALE. monochromateur

Application à l astrophysique ACTIVITE

La spectrophotométrie

Objectifs pédagogiques : spectrophotomètre Décrire les procédures d entretien d un spectrophotomètre Savoir changer l ampoule d un

Chapitre 11: Réactions nucléaires, radioactivité et fission

PLATE-FORME DE MICROSCOPIE ÉLECTRONIQUE À TRANSMISSION

Comprendre l Univers grâce aux messages de la lumière

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

Capacité Métal-Isolant-Semiconducteur (MIS)

Un spectromètre à fibre plus précis, plus résistant, plus pratique Concept et logiciel innovants

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

Sujet. calculatrice: autorisée durée: 4 heures

Molécules et Liaison chimique

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

Caractérisations des nanomatériaux par microscopies électroniques

Caractérisations des nanomatériaux par microscopies électroniques

Les techniques expérimentales. IV - Les techniques d analyse

Contrôle non destructif Magnétoscopie

A chaque couleur dans l'air correspond une longueur d'onde.

L PRESENTATION GENERALE SCPIO

Chapitre II PHÉNOMÈNES RADIATIFS: PROPRIÉTÉS D EMISSION. f AB = mc 2 e 2. β 1 k(υ)dυ N

Élaboration et caractérisation de cellules photovoltaïques de troisième génération à colorant (DSSC)

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

Procédés plasmas à faisceau d ions. P.Y. Tessier

INTRODUCTION À LA SPECTROSCOPIE

5.5.5 Exemple d un essai immunologique

- MANIP 2 - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE

TP N 3 La composition chimique du vivant

DELTA. Technologie XRF portable pour les applications PMI

METHODES D ANALYSE DES COMPOSES AMORPHES

Spectrophotomètre double faisceau modèle 6800

DIPLÔME INTERUNIVERSITAIRE D ECHOGRAPHIE. Examen du Tronc Commun sous forme de QCM. Janvier h à 16 h

TP 03 B : Mesure d une vitesse par effet Doppler

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

La physique nucléaire et ses applications

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

Etude des nanofils en trois dimensions et à l échelle atomique par sonde atomique tomographique.

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

Fiche 19 La couleur des haricots verts et cuisson

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

EXERCICES SUPPLÉMENTAIRES

Simulation d'un examen anthropomorphique en imagerie TEMP à l iode 131 par simulation Monte Carlo GATE

Mécanique Quantique EL OUARDI EL MOKHTAR LABORATOIRE MÉCANIQUE & ÉNERGÉTIQUE SPÉCIALITÉ : PROCÈDES & ÉNERGÉTIQUE. dataelouardi@yahoo.

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome

Cycle de production et cycle des déchets

METHODES SPECTROMETRIQUES D'ANALYSE ET DE CARACTERISATION

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

Chapitre 4 - Spectroscopie rotationnelle

De la physico-chimie à la radiobiologie: nouveaux acquis (I)

Professeur Eva PEBAY-PEYROULA

Critères pour les méthodes de quantification des résidus potentiellement allergéniques de protéines de collage dans le vin (OIV-Oeno )

Contribution des faisceaux d ions à l élaboration de dispositifs pour l électronique souple

Mise en pratique : Etude de spectres

Sensibilité (bas niveaux de lumière, hauts niveaux de lumière) Spectre de sensibilité : visible ( nm) mais aussi IR, UV, RX

UNIVERSITÉ D ORLÉANS. Spectroscopie et imagerie Raman de matériaux inhomogènes

Université de Nice Sophia Antipolis Licence de physique

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

Activité 1 : Rayonnements et absorption par l'atmosphère - Correction

Evaluation de la variabilité d'un système de mesure

CHAPITRE IX : Les appareils de mesures électriques

Oléagineux, Corps Gras, Lipides. Volume 9, Numéro 5, 296-8, Septembre - Octobre 2002, La filière

Nouvelles techniques d imagerie laser

NUAGES INTERSTELLAIRES ET NEBULEUSES

Animations. Liste des 114 animations et 145 vidéos présentes dans la Banque de Ressources Physique Chimie Lycée. Physique Chimie Seconde

Indicateur d'unité Voyant Marche/Arrêt

Les impulsions laser sont passées en quarante ans de la

TD 9 Problème à deux corps

MESURE DE LA TEMPERATURE

RAMAN SPECTROSCOPIE ECOLE MINES SAINT-ETIENNE. Axe " Génie des Procédés", centre SPIN, Ecole des Mines de Saint-Etienne. Page 1

Traitement numérique de l'image. Raphaël Isdant

D ETECTEURS L UXMETRE SUR TIGE C OMPTEUR DE FRANGES A FIBRE OPTIQUE. Détecteurs

LE COSMODETECTEUR : UN EXEMPLE DE CHAÎNE DE MESURE

FORMATION ASSURANCE QUALITE ET CONTROLES DES MEDICAMENTS QUALIFICATION DES EQUIPEMENTS EXEMPLE : SPECTROPHOTOMETRE UV/VISIBLE

Chapitre 18 : Transmettre et stocker de l information

10. Instruments optiques et Microscopes Photomètre/Cuve

DEMONSTRATION AMIENS

Microscopie de fluorescence Etat de l art

Microscopies Électroniques

Transcription:

ANALYSE XPS (ESCA) I - Principe La spectroscopie XPS (X-Ray Photoelectron Spectroscopy) ou ESCA (Electron Spectroscopy for Chemical Analysis) est basée sur la photo émission. Lors de l'irradiation par des photons X, les atomes d'un solide émettent, par effet photoélectrique, des électrons appelés photoélectrons. Le principe de la spectroscopie XPS consiste à analyser en énergie cinétique les photoélectrons émis lors de l'irradiation par un faisceau mono énergétique de photons X. Le diagramme énergétique du phénomène est alors représenté par la figure suivante : Figure 1 : Diagramme énergétique de la photo émission L'énergie de liaison E B caractérisant un électron d'un niveau électronique donné, est directement accessible par la simple relation de conservation de l'énergie : E B = hν - E C où hν est l'énergie des photons X incidents et E C l'énergie cinétique mesurée. Tout électron des couches électroniques de cœur ou de valence dont l'énergie de liaison est inférieure à hν peut être extrait. Le spectre des énergies de liaisons des électrons de cœur est spécifique d'un atome ce qui permet son identification et son dosage dans un composé donné. Tous les atomes possédant des niveaux de cœur (tous sauf H et He) sont détectables. L'XPS est une méthode d'analyse élémentaire. Lors du transfert de l'électron vers la surface à travers le solide, celui-ci peut subir des interactions inélastiques qui se traduisent par l'existence d'un libre parcours moyen. Ce libre parcours moyen joue un rôle prépondérant en limitant l'épaisseur analysée : λ dépend de l'énergie cinétique de l'électron et du matériau (composition, densité) et est de l'ordre de 1 à 5 nanomètres. Le transfert des électrons dans la matière suit une loi d'absorption exponentielle et l'on montre que 98 % du signal provient d'une profondeur inférieure à 3λsinθ (figure 2). L'XPS est donc une méthode d'analyse de surface. 1

Analyseur Photons X e θ 100 P (%) 0 λ (63 %) 2λ (23 %) Echantillon z 3λ (9 %) Figure 2 : Evolution du signal XPS en fonction de la profondeur Enfin, compte tenu des faibles doses utilisées pour les photons incidents, les dégradations induites en surface des échantillons sont donc relativement limitées : l'xps est une méthode non ou très faiblement destructive. II - Les spectres II - 1 Analyse élémentaire Les spectres des photoélectrons sont représentés directement en énergie de liaison et l'identification des éléments présents en surface du matériau est effectuée à partir des pics photoélectriques qui apparaissent sur le spectre de survol (grande fenêtre en énergie) : O1s O KLL C1s Si2s Si2p O2s 1200 1000 800 600 400 200 0 Energie de liaison (ev) Figure 3 : Spectre de survol de SiO 2 La figure 3, correspondant au spectre de la silice, illustre parfaitement le type de spectres obtenus : une série de pics apparaît, ceux-ci reflètent directement la structure électronique des atomes. Les pics sont indexés de la même façon que les couches électroniques dont sont issus les photoélectrons. Ils sont repérés par les nombres quantiques n, l, j. Les niveaux p, d, f sont dédoublés par l'interaction spin-orbite, les rapports d'intensité des doublets p(1/2, 3/2), d(3/2, 5/2) et f(5/2, 7/2) sont respectivement 1/2, 2/3 et 3/4. L'écart entre les raies d'un doublet varie de quelques ev à quelques dizaines d'ev (cf. cas du silicium avec les pics Si2p3/2 et Si2p1/2 sur la Figure 4). 2

II - 2 Analyse chimique Si2p3/2 Si2p1/2 C-O CH SiO 2 Si O-C=O 108 106 104 102 100 98 96 294 292 290 288 286 284 282 280 278 Energie de liaison Energie de liaison Figure 4 : Déplacement chimique - spectres Si2p (silicium oxydé) et C1s (PET) Lorsque l'atome est engagé dans un composé chimique, les niveaux de cœur réagissent à la modification de l'environnement électronique par rapport à l'atome isolé, avec en particulier des variations d'énergie d'orbitales de 0.1 à quelques ev. Cette variation est appelée "déplacement chimique" car il dépend des liaisons chimiques établies par l'atome émetteur et est caractéristique de la nature et du nombre de coordinats entourants l'atome émetteur. Les informations obtenues à partir du déplacement chimique concernent la nature des liaisons chimiques (groupements fonctionnnels : cas du carbone C1s du PET sur la figure 4), l'identification de composés, la détermination des degrés d'oxydation (voir pic Si2p du silicium avec une couche d'oxyde), etc.... L'XPS est une méthode d'analyse chimique. La détermination des formes chimiques est obtenue à partir d'une étape de traitement numérique des spectres appelée décomposition : l'opérateur définit le nombre de composantes chimiques, leur forme et leur position sur le pic photoélectrique. II - 3 Analyse quantitative L'intensité I d'un pic photoélectrique permet de réaliser la quantification d'un élément ou d'une espèce chimique émettrice et de déterminer les stœchiométries avec une exactitude pouvant être meilleure que 5 %. L'XPS est une méthode d'analyse quantitative. Cette intensité, mesurée sur un spectre particulier après soustraction du bruit de fond, dépend de la concentration atomique N de l'élément considéré (dans le cas d'une couche homogène d'épaisseur infinie) selon la relation : z I = KNσλ[1 exp(- λsinθ )] K est une constante qui dépend de l'appareillage et notamment de la fonction de transmission de l'appareil qui nécessite d'être connue dans la gamme d'énergie étudiée. σ est la section efficace de photoionisation (probabilité d'ionisation du niveau de cœur considéré). Ces valeurs de σ ont été calculées pour la plupart des niveaux électroniques excités par la raie Kα de l'aluminium (tables de Scofield). λ est le libre parcours moyen de l'électron. Dans une première approche, pour les énergies cinétiques supérieures à 100 ev, il est admis que le libre parcours moyen de l'électron varie comme la racine carrée de l'énergie cinétique : λ = (E c ) 1/2. θ et z sont respectivement l'angle d'analyse et la profondeur d'analyse. Ainsi, il est possible d'établir très facilement les rapports atomiques de deux éléments A et B d'après la formule : N A N = I A σ B (E B ) 1/2 B I B σ A (E A ) 1/2 3

La limite de détection de la technique dépend bien évidemment de la section efficace de photoionisation de l'élément considéré : celle-ci peut être meilleure que 0.1 % d'une monocouche dans le cas des éléments les plus sensibles. III - Appareillage L'XPS est une technique qui nécessite l'emploi de l'ultravide (~ 10-9 - 10-10 mbar), en effet, il convient d'éviter aux électrons d'être diffusés par les molécules de l'atmosphère résiduelle au cours de leur trajet jusqu'au détecteur. Les principaux éléments d'un spectromètre de photoélectrons sont : - une source de RX - un analyseur permettant la mesure de l'énergie cinétique des électrons - un système de détection et de comptage (associé à une informatique d'acquisition) La source de RX est constituée d'une anode dont la surface est recouverte de l'élément à partir duquel on souhaite obtenir la radiation X : il s'agit le plus souvent des raies Kα de l'aluminium ou du magnésium (respectivement à 1486.6 ev et 1253.6 ev). L'émission X est alors obtenue par irradiation de l'anode à l'aide d'un faisceau d'électrons de haute énergie. Cette émission est constituée d'une raie principale accompagnée de raies satellites : l'utilisation d'un monochromateur permet d'éliminer ces raies satellites et de minimiser la largeur de la raie X principale et ainsi d'améliorer les performances spectrales du spectromètre. L'analyseur le plus répandu sur les spectromètres XPS est l'analyseur hémisphérique à énergie d'analyse constante (CAE). L'analyseur joue le rôle de filtre et l'application d'un potentiel retard à l'entrée de l'analyseur jusqu'à l'énergie d'analyse (dénommée aussi énergie de passage) permet de balayer l'ensemble du spectre de photoélectrons avec une résolution constante. Ce type d'analyseur, outre sa haute résolution en énergie, permet de conserver une transmission élevée. La détection des électrons est assurée par un multiplicateur d'électrons (de type Channeltron ou galette de micro-canaux appelée aussi ChannelPlate) placé après la fente de sortie de l'analyseur. Enfin, le plus souvent les spectromètres XPS sont équipés d'un canon à électrons (appelé aussi Flood Gun) dans le but d'analyser les surfaces isolantes : les charges positives créées par la photoémission sont compensées au cours de l'analyse par le flux d'électrons de faible énergie du canon. 4

L'ensemble de ces éléments est décrit Figure 5. Analyseur Hémisphérique Détecteur (Channel plates) 7 Critaux disperseurs RX monochromatisés Lentilles Caméra CCD Echantillon Anode Aluminium Figure 5 : Schéma de principe du Scienta 200 IV - Applications Le champ d'application de l'xps est très vaste car cette technique permet d'analyser tout type de surface compatible avec l'ultravide : - métaux - céramiques - semi-conducteurs - matériaux composites - polymères et bio polymères Spectroscopie * La première application est bien évidemment la détermination de la composition au voisinage de la surface : - mesure de la stœchiométrie et détermination des formes chimiques des éléments détectés. - détection et identification des éléments de contamination. Mesure d'épaisseurs * Dans le cas de recouvrements homogènes, il est possible de mesurer l'épaisseur d'une couche superficielle (contaminations, oxydes, dépôts...) d'après l'expression du II-3. Cette mesure peut être réalisée soit à partir du signal de l'élément caractéristique du dépôt soit à partir de l'atténuation du signal du substrat. 5

Profils de concentration et imagerie * Comme nous l'avons cité précédemment, la profondeur analysée dépend de l'angle θ d'analyse formé entre la surface de l'échantillon et le détecteur. Si l'on agit sur cet angle (plus la mesure est rasante, plus le signal provient d'une couche superficielle), il est alors possible de mesurer l'évolution du rapport des pics des différents éléments et d'établir ainsi des profils de concentration en fonction de la profondeur analysée. Cette méthode est non destructive et est utilisée le plus souvent pour mettre en évidence des ségrégations superficielles. * Il est aussi possible d'établir des profils de concentration sur des épaisseurs beaucoup plus importantes : l'échantillon est bombardé par un faisceau d'ions (en général de l'argon) de quelques kev induisant ainsi une abrasion de la surface. L'alternance de points d'analyse et d'étapes de pulvérisation permet de reconstituer des profils de concentration. Cette méthode, qui est destructive, nécessite une bonne connaissance des vitesses de pulvérisation si l'on souhaite tracer l'évolution des concentrations en fonction de la profondeur. * Les nouvelles générations de spectromètres permettent désormais d'obtenir aussi une information spatiale du signal XPS avec une résolution latérale variant de 5 à 20 µm : - nous pouvons ainsi réaliser des profils des concentrations élémentaires ainsi que des formes chimiques le long d'une ligne ("linescan"), - mais aussi obtenir une image chimique (2D) de la surface, ce qui a une application dans le cas d'échantillons hétérogènes (piqûres de corrosions, zones de contaminations, lithographies, etc....). 6