Chapitre I CONCEPTS FONDAMENTAUX DE LA SPECTROSCOPIE



Documents pareils
DIFFRACTion des ondes

Correction ex feuille Etoiles-Spectres.

ANALYSE SPECTRALE. monochromateur

Chapitre 02. La lumière des étoiles. Exercices :

Comprendre l Univers grâce aux messages de la lumière

Rayonnements dans l univers

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.»

Mécanique Quantique EL OUARDI EL MOKHTAR LABORATOIRE MÉCANIQUE & ÉNERGÉTIQUE SPÉCIALITÉ : PROCÈDES & ÉNERGÉTIQUE. dataelouardi@yahoo.

SPECTROSCOPIE D ABSORPTION DANS L UV- VISIBLE

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

Activité 1 : Rayonnements et absorption par l'atmosphère - Correction

Nouveau programme de première S (2011) : l essentiel du cours.

Chapitre 6 : les groupements d'étoiles et l'espace interstellaire

La spectrophotométrie

Sensibilisation à la Sécurité LASER. Aspet, le 26/06/2013

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

1STI2D - Les ondes au service de la santé

Sujet. calculatrice: autorisée durée: 4 heures

A chaque couleur dans l'air correspond une longueur d'onde.

INTRODUCTION À LA SPECTROSCOPIE

FICHE 1 Fiche à destination des enseignants

RDP : Voir ou conduire

Atelier : L énergie nucléaire en Astrophysique

pka D UN INDICATEUR COLORE

Meine Flüssigkeit ist gefärbt*, comme disaient August Beer ( ) et Johann Heinrich Lambert ( )

Objectifs pédagogiques : spectrophotomètre Décrire les procédures d entretien d un spectrophotomètre Savoir changer l ampoule d un

Chapitre 4 - Spectroscopie rotationnelle

Panorama de l astronomie. 7. Spectroscopie et applications astrophysiques

Chapitre 6 La lumière des étoiles Physique

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

Mémento à l usage du personnel des laboratoires

Les rayons X. Olivier Ernst

Fluorescent ou phosphorescent?

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

Nouvelles techniques d imagerie laser

Les Contrôles Non Destructifs

Application à l astrophysique ACTIVITE

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

LE CORPS NOIR (basé sur Astrophysique sur Mesure / Observatoire de Paris :

Module HVAC - fonctionnalités

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

Comment réaliser physiquement un ordinateur quantique. Yves LEROYER

Comment expliquer ce qu est la NANOTECHNOLOGIE

Mesures de PAR. Densité de flux de photons utiles pour la photosynthèse

BACCALAURÉAT GÉNÉRAL

101 Adoptée : 12 mai 1981

FORMATION ASSURANCE QUALITE ET CONTROLES DES MEDICAMENTS QUALIFICATION DES EQUIPEMENTS EXEMPLE : SPECTROPHOTOMETRE UV/VISIBLE

Interactions des rayonnements avec la matière

PROPRIÉTÉS D'UN LASER

Molécules et Liaison chimique

Une nouvelle technique d'analyse : La spectrophotométrie

Dossier enseignant Etude d un tableau. grâce aux ondes électromagné ques Lycée Service Éduca on

TP n 1: Initiation au laboratoire

OPTIQUE GEOMETRIQUE POLYCOPIE DE COURS

Professeur Eva PEBAY-PEYROULA

Champ électromagnétique?

D ETECTEURS L UXMETRE SUR TIGE C OMPTEUR DE FRANGES A FIBRE OPTIQUE. Détecteurs

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir?

Présentation du programme. de physique-chimie. de Terminale S. applicable en septembre 2012

TS 31 ATTAQUE DE FOURMIS!

Fiche professeur. L analyse spectrale : spectroscopies IR et RMN

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème /2015

Résonance Magnétique Nucléaire : RMN

Chapitre II PHÉNOMÈNES RADIATIFS: PROPRIÉTÉS D EMISSION. f AB = mc 2 e 2. β 1 k(υ)dυ N

THEME 3. L UNIVERS CHAP 2. LES SPECTRES MESSAGES DE LA LUMIERE DES ETOILES.

BTS BAT 1 Notions élémentaires de chimie 1

Quelques liens entre. l'infiniment petit et l'infiniment grand

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

La lumière. Sommaire de la séquence 10. t Séance 4. Des lumières blanches. Des lumières colorées. Les vitesses de la lumière

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies

Faculté de physique LICENCE SNV EXERCICES PHYSIQUE Par MS. MAALEM et A. BOUHENNA Année universitaire

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

Animations. Liste des 114 animations et 145 vidéos présentes dans la Banque de Ressources Physique Chimie Lycée. Physique Chimie Seconde

TP 03 B : Mesure d une vitesse par effet Doppler

Les impulsions laser sont passées en quarante ans de la

1 Problème 1 : L avion solaire autonome (durée 1h)

Les unités de mesure en physique

TD 9 Problème à deux corps

La physique quantique couvre plus de 60 ordres de grandeur!

ÉNERGIE : DÉFINITIONS ET PRINCIPES

Mise en pratique : Etude de spectres

La chanson lumineuse ou Peut-on faire chanter la lumière?

Structure quantique cohérente et incohérente de l eau liquide

Parrainage par Monsieur Philippe PAREIGE de notre classe, presentation des nanotechnologies.

TP Détection d intrusion Sommaire

Photons, expériences de pensée et chat de Schrödinger: une promenade quantique

Exposition des salariés aux rayonnements optiques artificiels

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

Spectrophotomètres. Spectrophotomètres modèle Les spectrophotomètres Série 67 : 3 modèles uniques

Chapitre 2 Les ondes progressives périodiques

Qu est-ce qui cause ces taches à la surface du Soleil?

METHODES SPECTROMETRIQUES D'ANALYSE ET DE CARACTERISATION

EXERCICE II : LE TELEPHONE "POT DE YAOURT" (5 points)

I - Quelques propriétés des étoiles à neutrons

Transcription:

Chapitre I CONCEPTS FONDAMENTAUX DE LA SPECTROSCOPIE I - DEFINITION La spectroscopie est l analyse du rayonnement électromagnétique émis, absorbé ou diffusé par les atomes ou les molécules. Elle fournit des informations sur l identité, la structure et les niveaux énergétiques des atomes et des molécules du fait de l interaction des rayonnements électromagnétiques avec la matière. II - HISTORIQUE L'histoire de la spectroscopie commence avec la théorie des couleurs proposée par Isaac Newton en 672. La lumière «blanche» est décomposée par un prisme en ses composantes élémentaires (élémentaires puisqu'elles ne sont plus décomposées par un autre prisme) constituant les sept couleurs de l arc en ciel. Ces couleurs sont en fait une succession de radiations visibles de longueurs d onde continuellement variables. Le rayonnement infrarouge fut découvert par Frédéric Wilhelm Herschel en 800: en mesurant les températures dans différentes zones du spectre solaire, il constata que le maximum se situait en dehors du domaine visible. En 803, Inglefield suggéra qu'il pouvait y avoir des rayons invisibles au-delà du violet. L'existence de ces rayons ultraviolets fut démontrée par Ritter et Wollaston. Le physicien Gustav Robert Kirchhoff et le chimiste Robert Wilhelm Bunsen énoncèrent, en 860, le principe de l'analyse chimique fondée sur l'observation du spectre. Au début du XX ème siècle, il n'existait que quelques spectromètres permettant d'étudier ces radiations. Après 945, leur nombre s'est accru dans des proportions considérables. Cela est dû d'une part au développement de la technologie et d'autre part à l'utilisation croissante de la spectroscopie. III - DOMAINES D APPLICATION DE LA SPECTROSCOPIE La spectroscopie permet d expliquer un grand nombre de phénomènes qui nous entourent en permanence : la couleur de nos habits, la couleur du ciel. Dans les laboratoires, elle permet : - l identification des molécules - la détermination des structures - l étude des cinétiques de réaction - la détermination des mécanismes réactionnels - les dosages - les analyses médicales (IRM, scintigraphie, mammographie ) Elle connaît aussi des applications importantes en astrochimie.

IV - INTERACTION RAYONNEMENT-MATIERE IV. - Rayonnement - Nature ondulatoire : Un rayonnement électromagnétique (ou radiation électromagnétique) est une onde constituée par deux champs oscillants : un champ électrique E et un champ magnétique H à la fois perpendiculaires entre eux et perpendiculaires à la direction de propagation. On caractérise un rayonnement électromagnétique par sa fréquence, sa longueur d'onde ou son nombre d onde. L'énergie du rayonnement est reliée aux grandeurs précédentes par la relation fondamentale de Planck : E = hν ; h est la constante de Planck. Elle est égale à 6,624.0-34 J.s. L ensemble des radiations constitue le spectre électromagnétique. 2

- Nature corpusculaire : La nature ondulatoire de la lumière ne permet pas à elle seule d interpréter les phénomènes d interaction entre lumière et matière. Planck puis Einstein proposèrent la théorie des quanta : La lumière est composée de grains d énergie : les photons. Le photon est une particule qui se propage à la vitesse de la lumière et possède un quantum d énergie : E = h ν ; h est la constante de Planck. IV.2 - Niveaux d énergie moléculaire Une particule élémentaire (atome, ion ou molécule) ne peut exister que dans certains états d énergie quantifiés. Dans le cas d une molécule, on considère que l énergie totale est la somme des termes : E = Eélectronique + Evibration + Erotation + Espin. Les ordres de grandeurs sont très différents : Ee >> Ev >> Er >> Es. Les niveaux d'énergie électronique, de vibration et de rotation sont représentés par un diagramme dans lequel chaque niveau est schématisé par un trait horizontal et caractérisé par un ensemble de nombres quantiques n, v et J reliés respectivement aux mouvements électroniques, de vibration et de rotation de la molécule. 3

Une particule peut se retrouver dans l'un ou l'autre de ces états. Le nombre de particules sur un niveau énergétique donné s appelle la population. La population sur un niveau i par rapport à la population du niveau fondamental obéit à la loi de distribution de Maxwell-Boltzmann : N i / N 0 = (g i / g 0 ) e -((E i -E 0 ) / kt) Ni : nombre de particules dans l'état excité i N0 : nombre de particules dans l'état fondamental 0 gi et g0 : dégénérescence des états i et 0 respectivement Ei et E0 : énergie des états i et 0 respectivement k : constante de Boltzmann (,38.0-23 J.K - ) T : température en Kelvin. IV.3 - Interaction entre l onde et la matière Les échanges d énergie entre matière et rayonnement ne peuvent s effectuer que par quanta : E = hν. Quatre processus sont à la base des phénomènes spectroscopiques : l absorption, l émission spontanée, l émission stimulée (cas des lasers) et la diffusion. Suite à l échange d énergie, le rayonnement électromagnétique entraîne une perturbation du mouvement interne moléculaire d où une transition d un niveau d énergie donné vers un autre selon le type de mouvement provoqué. 4

Radiation absorbée Effet sur la matière Ondes radio Micro-onde Infrarouge Transitions de spins nucléaires (résonance magnétique nucléaire RMN) Rotation moléculaire. Transitions de spins électroniques (résonance paramagnétique électronique RPE) Rotation et vibration moléculaire Visible et ultraviolet Saut des électrons de valence Rayons X Extraction des électrons des couches internes de l'atome V - REGLES DE SELECTION L interaction onde-matière étant un phénomène quantique, il s accompagne de règles de sélection. Les règles de sélection déterminent si une transition est autorisée ou interdite. L interaction onde-molécule ne peut se faire que si : - la fréquence de la lumière correspond à l écart énergétique ( E) entre les niveaux concernés - le mouvement provoque, à la même fréquence, la variation du moment dipolaire μ du système. Si μ est le moment dipolaire électrique, alors les transitions sont de type dipolaire électrique. Les phénomènes observés dans l UV, le visible et l IR relèvent essentiellement de ce mécanisme. Si μ est le moment dipolaire magnétique, on a affaire, dans ce cas, à des transitions dipolaires magnétiques. De telles transitions sont responsables des phénomènes de résonance magnétique nucléaire et de résonance paramagnétique électronique. VI - LOI D ABSORPTION DE LA LUMIERE - LOI DE BEER-LAMBERT Lorsque la lumière arrive sur un milieu homogène de longueur l (trajet optique), une partie de cette lumière incidente notée I0 est absorbée par le milieu et le reste, noté I, est transmis. La fraction de la lumière incidente absorbée par une substance de concentration C contenue dans une cuve de longueur l est donnée par la loi de Beer-Lambert : A = log(i0/i) = ε l C. 5

A : absorbance autrefois appelée densité optique (D.O.) l : épaisseur de la cuve exprimée en centimètres ε : coefficient d'extinction. C est une grandeur caractéristique du composé. Si la concentration est exprimée en gramme par litre, ε est appelé coefficient d'extinction spécifique. Si la concentration est exprimée en mole par litre, ε est appelé coefficient d'extinction molaire. On définit également la transmission T comme le rapport de l'intensité transmise à l'intensité incidente : T = I /I0 log (/T) = A Le pourcentage de la transmission (% T) est la transmittance. Validité de la loi de Beer-Lambert - Lumière monochromatique - Faibles concentrations - La solution ne doit être ni fluorescente, ni hétérogène (bulles, précipité ) - La solution n est pas le siège d une réaction photochimique. Additivité des absorbances Dans le cas où la solution à étudier contient plusieurs espèces absorbantes, l absorbance mesurée à une longueur d onde donnée est la somme des absorbances des espèces prises séparément, à condition que ces dernières n interagissent pas l une sur l autre. 6

VII - SPECTRE D ABSORPTION L'enregistrement graphique - réalisé par un appareil appelé spectrophotomètre - de la quantité de lumière absorbée ou transmise par une substance en fonction de la longueur d'onde, de la fréquence ou du nombre d onde donne le spectre d'absorption de la substance. Selon une représentation en absorbance ou en transmittance, on a les allures suivantes : La position du maximum d'absorption d une bande correspond à la longueur d'onde de la radiation qui a provoqué la transition. Quant à l'intensité, on peut montrer qu'elle est liée au moment dipolaire. VIII - UNITES, CONVERSIONS ET CONSTANTES USUELLES VIII. - Unités Selon le domaine considéré, par commodité, on utilise une grandeur différente pour caractériser l onde. IR : le nombre d'onde (cm - ). UV-visible : le nanomètre (nm). nm = 0-9 m. VIII.2 - Facteurs de conversion pour unités d énergie employées en spectroscopie Unité kj.mole - ev Hz cm - cm - Hz kj.mole - ev,9.0-2 3,98.0-3 96,56,24.0-4 4,3.0-5 0,8 3.0 0 4,39.0 3 2,42.0 4 3,33.0 -,68.0 3 8,07.0 3 7

VIII.3 - Constantes usuelles Charge de l électron E =,602773.0-9 C Masse de l électron au repos me = 9,093898.0-3 kg Masse du proton mp =,672623.0-27 kg Nombre d Avogadro N = 6,022367.0 23 molécules.mole - Constante de Planck h = 6,6260755.0-34 J.s - Vitesse de la lumière dans le vide c = 2,9979246.0 8 m.s - Constante de Boltzmann k =,380658.0-23 J.K - IX - EXERCICES D APPLICATION I - Parmi les rayonnements micro-ondes, visibles et RX, quel est le plus énergétique? Justifier votre réponse. II - La thermographie permet de mettre en évidence les différences de température au niveau de la peau du corps humain. Lors de cet examen, un rayonnement de fréquence ν =3,22.0 3 Hz et de longueur d'onde λ est émis par le corps humain et capté par le système de détection de l'appareil. On donne la relation : λ= c /ν. - Calculer en micromètre la longueur d'onde λ du rayonnement émis. 2 - Calculer l'énergie libérée par ce rayonnement. Données : c = 3.0 8 m.s - ; h = 6,624. 0-34 J.s III - On donne pour la cobalamine, en solution de concentration C, les valeurs des intensités des rayonnements incident I0 et transmis I. Calculer le coefficient d'extinction molaire de la cobalamine à la longueur d onde 35 nm. Longueur du trajet optique : cm. C (mol.l - ) Io I,95.0-5 94,2 32,8 8