TP de Chimie rganique SYNTHÈSE DE L ACIDE BENZÏQUE PAR XYDATIN DE L ETHYLBENZÈNE - 1 -
TP de Chimie rganique 1. Introduction 1.1 But du projet Le but de cette expérience est de synthétiser de l acide benzoïque (C6H5CH) par oxydation de l ethylbenzène (C6H5C2H5). L acide benzoïque est un acide faible souvent utilisé comme conservateur. Il est peu soluble dans l eau à cause de son cycle aromatique apolaire. (voir schéma de la molécule ci-dessous). L acide salicylique et l acide acétylsalicylique (aspirine) sont les principaux dérivés de l acide benzoïque. [1] 1.2 Schéma de la réaction K 4 C 2 H éthylbenzène Acide benzoïque Le mécanisme de la réaction est peu connu, mais il serait de ce type : Premièrement un carbocation est formé par déprotonation. Ce qui permet l attaque nucléophile de la molécule 4-. -H + - Par la suite, il y a une formation d une cétone, par réarrangement des électrons, et le groupe 3- est libéré. H + - - 2 -
TP de Chimie rganique Il est alors possible d écrire l isomère de cette molécule, par tautomérie céto-énolique et d oxyder la double liaison par le ion 4-. C est là que le mécanisme exacte est encore mal connu. Finalement il y a obtention du produit, l acide benzoïque et la libération du ion 2- et CH2. H 4 - H H + CH 2 + 2. Déroulement de la synthèse Une solution est préparée et placée dans un ballon de 500mL. La solution contient 5.14 g de Na2C3, 10.15 g d K4, 150 ml d eau et 3.5 ml d éthylbenzène. Le tout est placé à reflux pendant une heure et demie. La solution est de couleur violette-brune et l on distingue difficilement un composé solide aussi de couleur brune, il s agit du 2. 50 ml d acide chloridrique concentré sont lentement ajoutés, afin d acidifié la solution, et 5 g de sulfite de sodium sont ajoutés afin de dissoudre le 2. Le mélange est placé dans un bain de glace afin de permettre la cristallisation de l acide benzoïque. Le précipité obtenu par la cristallisation est alors filtré sur büchner. Le précipité est de couleur noire, alors que si uniquement de l acide benzoïque était présent, il devrait être de couleur blanche. Cela indique que le 2 n était pas totalement dissout et qu il est encore présent. Ce composé est alors sécher une nuit au dessicateur. Afin d éliminer toute trace du 2, du toluène est ajouté au précipité afin de dissoudre l acide benzoïque et de ne garder que le 2 sous forme solide. Ce mélange est alors filtrer sur Büchner. Ce filtrat contenant l acide benzoïque et du toluène est passé au rotavapor afin d évaporer entièrement le toluène. L acide benzoïque est alors récupéré et pesé. 3. Résultats et discussions 3.1 Rendement Le rapport entre le réactif (éthylbenzène) et le produit (acide benzoïque) est de 1 :1, par conséquent le nombre de mole d éthylbenzène correspond au nombre de mole d acide benzoïque. n éthylbenzène = n AcideBenzoïque = 28.53 mmol La masse de produit obtenue au final s élève à 0.6 g soit 4.91 mmol. Par conséquent, le rendement est le suivant : η = n obtenu = 4.91 = 0.172 =17.2% n théorique 28.53-3 -
TP de Chimie rganique Le rendement attendu pour cette synthèse n a pu être trouvé, mais il doit certainement être plus élevé que celui obtenu lors de cette expérience. Ce faible rendement peut être expliqué par le fait que lors de la mise au dessicateur, suite à un problème en faisant le vide, une partie du produit à été perdu. De plus, le nombre de manipulation afin de purifier le produit à été augmenté, ce qui engendre plus de perte. Cela dit, le rendement aurait, peut être, pu être amélioré en diluant dans du toluène les eaux mères (celles obtenues après la première filtration). De l acide benzoïque y était, peut-être, encore présent. Ensuite une extraction pour séparer la phase organique (toluène et acide) et la phase aqueuse aurait été effectuée et après passage au rotavapor de l acide benzoïque aurait encore pu être récupéré. 3.2 Analyse spectre RMN Le spectre RMN obtenu, montre un large pic à environs 13 ppm, ce pic correspond à l hydrogène du groupement C2H. Dans la zone entre 7 et 8 ppm, nous observons plusieurs pics. Trois de ces pics sont importants, les autres correspondent certainement à quelques impuretés. Ces trois pics correspondent aux 5 hydrogènes présents dans le cycle aromatique de la molécule d acide benzoïque. H (5) (4) H H (3) H H (1) H (2) Un premier pic est obtenu à environs 7.62 et correspond à une intégration de 30.42. Nous pouvons estimer, en arrondissant, que l intégration d un hydrogène est de 15. Cette estimation est faite d après le pic obtenu aux alentours de 13 ppm, en effet il correspond à l hydrogène contenu dans le groupe C2H, étant donné qu il est le seul hydrogène de ce groupe alors nous estimons que son intégration est de 15. Donc notre premier pic avec une intégration d environs 30 correspond à deux hydrogènes (2x15), il correspond à l hydrogène 1 et 5 de la molécule. Il en va de même pour le troisième pic observé, qui correspond à l hydrogène 2 et 4 de la molécule. Le deuxième pic à une intégration de 15.11 ce qui suggère qu il n y a qu un seul hydrogène, le 3 ème de la molécule. Ce spectre RMN nous permet de déterminer que notre produit est relativement pur. n ne remarque pas trop de pics superflus. De plus il adopte bien la structure attendue d après les bases de données de SDBS. Voir graphique théorique en annexe. [2] 3.3 Analyse spectre IR L analyse infra rouge ne nous permet pas, dans ce cas, de savoir si le produit de départ est encore présent. Par contre l analyse nous confirme que le produit attendu à bien été synthétisé. En effet nous observons un pic majoritaire à 1679 qui correspond d après les tables théoriques à la présence d un groupement cétone. La partie droite du spectre correspond aux liaisons aromatiques et ne nous apporte pas de renseignements importants sur notre composé. La partie gauche du spectre correspond aux liaisons insaturées de la - 4 -
TP de Chimie rganique molécule, ce qui nous importe peu car le réactif et le produit contiennent de telles liaisons. Cette région et aussi caractéristique des groupements H dans les acides, mais il est impossible de déterminer un pic précis comme étant celui du groupement H. Le tableau ci-dessous illustre les valeurs des pics attendus par la littérature et les pics relevés comme correspondant sur le spectre IR obtenu. Tous les pics attendus ont pu être identifié sur le spectre du produit de la synthèse. Pics littérature IR (CHCl3, cm -1 ) Pics IR (CHCl3, cm -1 ) 3076 3071 2688 2666 2564 2555 1675 1679 1607 1602 1587 1583 1429 1420 1333 1323 1292 1288 1179 1180 1126 1128 1075 1073 1030 1026 934 931 812 809 705 704 684 684 666 666 3.4 Questions 3.3.1 xydation aromatique L oxydation de la chaîne d un composé aromatique se fait toujours au carbone qui est le plus près du noyau aromatique. Expliquez ce fait. Le carbone le plus proche du noyau aromatique est le carbone le plus stable. En effet, cela est dû à la délocalisation des électrons, il est possible pour eux de tourner dans le cycle aromatique ce qui rend le composé plus stable. - 5 -
TP de Chimie rganique 3.3.2 Comparaison des acidités Comparez l acidité des acides benzoïque, acétique et oxalique. H H H benzoic acid H acetic acid oxalic acid Rappelons que plus l acide est fort, plus sont pka est petit. La constante d acidité Ka est une mesure directe de l acidité d un composé. Tableau n 1 : Valeurs des pka des différents acides [3] Acide pka Benzoïque 4.19 Acetique 4.76 xalique 1.23 et 4.19 L acide benzoïque montre une acidité plus forte que celle de l acide acétique, cela est la conséquence de la délocalisation de la charge sur son site aromatique. H H H Cela dit, l acide oxalique est l acide le plus fort étant donné que c est un diacide. Car les liaisons H des acides polyprotiques sont plus faibles en raison des effets attracteurs d oxygènes. - 6 -
TP de Chimie rganique 4. Conclusion La synthèse présentée lors de cette expérience à relativement bien fonctionné, le produit obtenu est bien l acide benzoïque et sa pureté est relativement bonne. Son rendement par contre n est que peu satisfaisant, mais cela est certainement du à des soucis lors de la manipulation cité précédemment. L acide benzoïque peut être synthétisé à partir d autre réaction tel que l hydrolyse d un composé (par exemple le benzonitrile) : H + /H 2 H N benzonitrile benzoic acid ou bien encore avec un organomagnésien en partant, par exemple du bromobenzène : Br Mg MgBr C 2 H H 2 bromobenzene benzoic acid 5. Annexes Spectre RMN Spectre RMN théorique SDBS Fiche de toxicité Spectre IR (à venir) 6. Sources bibliographiques [1] http://fr.wikipedia.org/wiki/acide_benzoïque (23.11.09) [2] http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi (23.11.09) [3] http://pedagogie.ac-montpellier.fr:8080/disciplines/scphysiques/academie/abcdorga/famille/produit/pka.html (23.11.09) [4] Vollhart,Schore, «Traité de chimie organique», (1999) - 7 -