LA RADIOACTIVITE. L atome est formé d un et d qui gravitent autour. Le noyau est chargé, les négativement. L atome est électriquement..



Documents pareils
Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

P17- REACTIONS NUCLEAIRES

La physique nucléaire et ses applications

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

Chapitre 11: Réactions nucléaires, radioactivité et fission

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

Transformations nucléaires

EXERCICES SUPPLÉMENTAIRES

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

Équivalence masse-énergie

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

Dossier «L énergie nucléaire»

NOYAU, MASSE ET ENERGIE

C4: Réactions nucléaires, radioactivité et fission

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

Chapitre 5 : Noyaux, masse et énergie

Lycée français La Pérouse TS. L énergie nucléaire CH P6. Exos BAC

8/10/10. Les réactions nucléaires

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

Chap 2 : Noyaux, masse, énergie.

LA RADIOACTIVITE NATURELLE RENFORCEE CAS DE LA MESURE DU RADON - A L G A D E

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème /2015

FICHE 1 Fiche à destination des enseignants 1S 16 Y a-t-il quelqu un pour sauver le principe de conservation de l énergie?

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION

La physique nucléaire

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

Radioactivité et chimie nucléaire

Professeur Eva PEBAY-PEYROULA

5 >L énergie nucléaire: fusion et fission

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

Introduction à la physique nucléaire et aux réacteurs nucléaires

Physique nucléaire. 1 Introduction 1.1 LE PROBLEME DE L ENERGIE

Chapitre 2 RÉACTIONS NUCLÉAIRES

La mesure du temps en géologie. Jacques Deferne

Parcours de visite, lycée Exposition: LA RADIOACTIVITÉ De Homer à oppenheimer

L'ÉNERGIE ET LA MATIÈRE PETITE EXPLORATION DU MONDE DE LA PHYSIQUE

Atelier : L énergie nucléaire en Astrophysique

Complément: Sources naturelles de rayonnement

RADIATION ALERT NOTICE D EMPLOI POUR LES COMPTEURS MONITOR 4, MONITOR 4EC, MONITOR 5 ET MC1K VEUILLEZ LIRE ATTENTIVEMENT L INTÉGRALITÉ DE CE MANUEL

C3. Produire de l électricité

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

Interactions des rayonnements avec la matière

Transformations nucléaires

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

RAPPORT DE STAGE Par Sébastien BERCHET

Historique. Les radiations nucléaires 1

L ÉNERGIE C EST QUOI?

La vie des étoiles. La vie des étoiles. Mardi 7 août

La Fusion Nucléaire (Tokamak) Nicolas Carrard Jonathan Carrier Guillomet 12 novembre 2009

EPREUVE COMMUNE DE TIPE 2009 partie D ANALYSES RADIOCHIMIQUES ET ISOTOPIQUES : LES TRACEURS RADIOACTIFS

ANF Becquerel Assurance qualité Normalisation.

Unités, mesures et précision

Production mondiale d énergie

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

Leçon n 1 : «Les grandes innovations scientifiques et technologiques»

BTS BAT 1 Notions élémentaires de chimie 1

L ÉLECTRICITÉ C EST QUOI?

- I - Fonctionnement d'un détecteur γ de scintillation

Baccalauréat STI2D et STL spécialité SPCL Épreuve de physique chimie Corrigé Session de juin 2014 en Polynésie. 15/06/2014

Energie nucléaire. Quelques éléments de physique

Stage : "Développer les compétences de la 5ème à la Terminale"

Chapitre 02. La lumière des étoiles. Exercices :

Le réchauffement climatique, c'est quoi?

LE VIDE ABSOLU EXISTE-T-IL?

LE COSMODETECTEUR : UN EXEMPLE DE CHAÎNE DE MESURE

Résonance Magnétique Nucléaire : RMN

L ÉLECTRICITÉ, C EST QUOI?

DIFFRACTion des ondes

TSTI 2D CH X : Exemples de lois à densité 1

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

Principe et fonctionnement des bombes atomiques

THE SEPARATION OF A TRACER FOR THE RADIOCHEM1CAL ANALYSIS OF RADIUM 226.

Filière énergétique : le nucléaire

Bleu comme un Schtroumpf Démarche d investigation

ANALYSE SPECTRALE. monochromateur

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

ELEC2753 Electrotechnique examen du 11/06/2012

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Henri Becquerel : Découverte de la radioactivité

PHY113 : Cours de Radioactivité

A) Les réactions de fusion nucléaire dans les étoiles comme le Soleil.

Les effets de température

Physique, chapitre 8 : La tension alternative

DETERMINATION DE LA CONCENTRATION D UNE SOLUTION COLOREE

Panorama de l astronomie

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

3 Charges électriques

N/Réf. : CODEP-PRS Hôpital d'instruction des Armées du Val de Grâce 74 boulevard de Port Royal PARIS

Estimation et tests statistiques, TD 5. Solutions

TD 9 Problème à deux corps

Étude et modélisation des étoiles

Jauges nucléaires et sécurité au travail

I - Quelques propriétés des étoiles à neutrons

Chapitre 6 : les groupements d'étoiles et l'espace interstellaire

Sophie Guézo Alexandra Junay

Compléments - Chapitre 5 Spectroscopie

I- Définitions des signaux.

Chapitre 1: Facteurs d'échelle

Transcription:

Séance n 3 : LA RADIOACTIVITE A. LES NOYAUX ATOMIQUES 1. QUELQUES DEFINITIONS En vous servant de vos connaissances, compléter le texte suivant : L atome est formé d un et d qui gravitent autour. Le noyau est chargé, les négativement. L atome est électriquement.. Le noyau est assimilable à une dont le diamètre est de 10000 à 100000 fois plus que celui de l atome, mais il renferme la quasi totalité de la masse de l atome ( plus de 99,9 %). Le noyau renferme des et des qui ont des voisines de 1,67.10-27 kg. Le porte une charge positive de valeur 1,6.10-19 C. Le ne porte pas de charge électrique. Les protons et les neutrons, comme constituant du noyau, sont appelés les. Z, numéro, correspond au nombre de contenus dans le noyau., nombre de masse, correspond au nombre de contenus dans le noyau. Le nombre de neutrons contenus dans le noyau s obtient par ; il vaut.. Un nucléide regroupe un ensemble d atomes possédant des noyaux identiques. Il est caractérisé par les deux nombres. et. On le note où X est le symbole de l correspondant. Un élément. est constitué par des nucléides de même atomique Z. On appelle, des nucléides qui ont même Z mais qui diffèrent par leurs valeurs de A. 12 13 14 Exemple : 6 C 6 C 6 C Deux nucléides.. ont même nombre de, ils différent par leurs nombres de.. Ils peuvent avoir des propriétes très différentes : l un peut être stable alors que l autre ne l est pas. La stabilité dépend du nombre de nucléons. 2. UN EXERCICE D APPLICATION On donne les nucléides suivants identifiés par les couples (Z, A) : (38, 94) ; (54, 139) ; (92, 235) ; (38, 95) ; (54, 140) ; (93, 238) ; (92, 238) 1) Préciser la signification des lettres Z et A. 2) Déterminer les nucléides isotopes. 3) En utilisant le tableau extrait de la classification périodique des éléments, identifier parmi les nucléides cités ceux qui sont isotopes de l uranium U. 90 Th 91 Pa 92 U 93 Np 94 Pu 4) Ecrire les symboles des nucléides correspondants et préciser la composition de leur noyau respectif. 5) Quel est l isotope le plus léger? 6) L isotope le plus léger représente 0,7 % de l uranium naturel, l autre 99,3 %. Si l on dispose de 2000 noyaux d uranium naturel, combien de noyaux lourds a-t-on? Combien de noyaux légers a-t-on? La radioactivité Page 1 sur 8

B. LA RADIOACTIVITE 1. UNE SURPRISE POUR UN PHYSICIEN DE LA FIN DU XIX ème SIECLE En 1896, le physicien français Henri Becquerel (1852-1908) avait rangé sa plaque photographique près de sels d'uranium qu'il était en train d'étudier. Quelle ne fut pas sa surprise quand il s aperçut que le film photographique avait été impressionné sans avoir été exposé à la lumière. Il en déduit que l'uranium émettait des rayonnements invisibles ressemblant aux rayons X découverts, l année précédente, par Wilhelm Roentgen, physicien allemand, et découvre ainsi la radioactivité. Marie Curie (1867-1934) et Pierre Curie (1859-1906) se consacrent à l étude de la radioactivité et découvrent deux corps radioactifs : le radium et le polonium. Ces travaux leur valent la prix Nobel de physique en 1903, qu ils partagent avec Henri Becquerel. Marie Curie obtient encore le prix Nobel de chimie en 1911. 2. QU EST-CE QUE LA RADIOACTIVITE? La radioactivité provient de la structure minuscule nichée au centre de l'atome : le noyau. La plupart du temps, ce noyau constitue un édifice stable. Mais pour certains d'entre eux l'équilibre est imparfait : ils changent d'état (on dit qu ils se désintègrent), en rayonnant au passage une énergie considérable et une particule. Les éléments constitués d atomes ayant des noyaux instables sont des éléments radioactifs ou radioéléments. Des éléments radioactifs existent dans la nature ; le plus connu est l uranium U que l on extrait de certains gisements miniers mais qui se trouve à l état de traces dans presque tous les sols. D autres, 40 moins connus sont pourtant très répandus dans la nature : c est la cas du potassium K que l on trouve dans presques tous les organismes vivants. Il existe des éléments radioactifs qui sont produits artificiellement, en particulier dans les centrales 131 137 239 nucléaires : c est le cas de l iode I, du césium Cs et du plutonium Pu. L énergie produite par une désintégration radioactive peut être utilisée à différentes fins : production d éléctricité, usage médical ou militaire. L action des rayonnements sur les matériaux et sur l homme peut avoir des effets désastreux. 3. LES PARTICULARITES DE LA RADIOACTIVITE Pour un élément radioactif, la désintégration est un phénomène : nucléaire : c est-à-dire ne concernant que le noyau de l atome, unique : chaque noyau ne peut se désintégrer qu une fois, spontané : la désintégration ne nécessite aucune intervention extérieure, incontrôlable : il est impossible d arrêter une désintégration, aléatoire : le moment où débute la désintégration d un noyau est indéterminé. 4. QUELLE EST LA NATURE DES RAYONNEMENTS RADIOACTIFS? Lors de sa désintégration, un noyau peut émettre différents types de rayonnements : le rayonnement alpha (α) : il se traduit par l émission de deux protons et de deux neutrons formant un noyau d hélium. La radioactivité Page 2 sur 8

le rayonnement bêta (β) : On distingue deux types de rayonnements β : o le rayonnement β + : il se traduit par l émission d un positon. o le rayonnement β - : il se traduit par l émission d un électron. le rayonnement gamma (γ) : il s agit d un rayonnement électromagnétique, de même nature que la lumière, les ondes radios ou les rayons X mais bien plus intense et énergétique. Ces rayons γ peuvent être produits seuls ou accompagner les rayons α et β. 5. COMMENT DETECTER UN RAYONNEMENT RADIOACTIF? Du fait de leurs effets néfastes, il est absolument nécessaire de détecter les rayonnements radioactifs. Pour ce faire, il existe plusieurs dispositifs dont le plus connu est le compteur Geiger- Muller. Il émet un crépitement à chaque désintégration et compte le nombre de désintégrations pendant une durée donnée. Dans un laboratoire de physique de lycée, on l habitude d utiliser un compteur Geiger-Muller CRAB associée à une source radioactive de césium 137 émettrice de rayonnement β - et γ. Expérience (professeur) : Effectuer des comptages successifs sur une durée de 50s lorsque la source est à 4,5 cm du détecteur. Observations : Il n y a aucune régularité dans les résultats de comptage. Conclusion : On vérifie bien le caractère aléatoire de la désintégration radioactive. 6. COMMENT SE PROTEGER D UN RAYONNEMENT RADIOACTIF? La protection contre les rayonnements radioactifs met en jeu des stratégies d absorption. Il faut donc s interesser à leur pouvoir de pénétration dans la matière. Ce pouvoir n est évidemment pas le même pour les trois types de rayonnements, il augmente en passant des rayons α aux rayons γ. Le rayonnement α est peu pénétrant, il est absorbé et peut être stoppé par une feuille de papier. Qu en est-il des rayonnements β et γ? a) Activité expérimentale Expérience : On utilisera le CRAB et ses écrans d aluminium. La radioactivité Page 3 sur 8

Placer la source à 4,5 cm du détecteur. Intercaler des écrans d aluminium d épaisseur croissante allant jusqu à 4 mm. Effectuer, pour chaque épaisseur, un comptage d une durée de 50 s chacun. Pour chaque comptage, noter la valeur N du nombres de désintégrations obtenues et compléter le tableau de mesures. Mesures : e (mm) 0 0,1 0,2 0,4 0,6 0,8 1,0 2,0 4,0 N 13831 6230 3784 2076 1420 1093 1015 1011 973 Exploitation des mesures : Tracer, au fur et à mesure, la courbe N = f (e) à l aide d un logiciel adapté. Interprétation des résultats : Que peut-on dire de l influence des écrans d aluminium sur l absorption des rayonnements? Le nombre de désintégrations détectées diminue lorsque l épaisseur de l écran d aluminium augmente. Quel est le rayonnement absorbé par l aluminium? Sachant que le rayonnement β - est moins pénétrant que la rayonnement γ, il sera absorbé en premier et donc par l aluminium. A quoi correspondent les 1000 «désintégrations» détectées pour e = 4 mm? Il s agit du rayonnement γ non absorbé par l aluminium. Quelle est l épaisseur d aluminium capable de stopper le rayonnement β -? Le rayonnement β - est stoppé par 1 mm d aluminium. b) Interprétation d une expérience La radioactivité Page 4 sur 8

On se propose d interpréter les résultats d une expérience tout à fait similaire à la précédente. La seule différence est que l écran métallique est constitué d une épaisseur de 1 mm d aluminium et d une succession d écrans de plomb de diverses épaisseur e. Graphe : N = f (e ) Interprétation des résultats : Que peut-on dire de l influence des écrans de plomb sur l absorption du rayonnement γ? Le nombre de désintégrations détectées diminue lorsque l épaisseur de l écran de plomb augmente. Le plomb absorbe donc le rayonnement γ. Le rayonnement γ est-il stoppé par le plomb au même titre que le faisait l aluminium pour le rayonnement β -? Le rayonnement γ est stoppé par un écran de plomb dont nous ne pouvons pas déterminer l épaisseur grâce au graphe. c) Conclusion Le rayonnement α peut traverser quelques centimètres d air et être absorbé par quelques millimètres de papier. Le rayonnement β peut traverser quelques dizaines de centimètres d air et être absorbé par quelques millimètres d aluminium. Le rayonnement γ peut traverser plusieurs centaines de mètres d air et être absorbé par quelques dizaines de centimètres de plomb ou bien quelques mètres de béton. La radioactivité Page 5 sur 8

7. QUELLE EST LA DUREE DE VIE D UN ECHANTILLON DE MATIERE RADIOACTIVE? a) La décroissance radioactive Le traitement de l'hyperthyroïdie par l'iode radioactif repose sur le fait que la glande thyroïde a un besoin naturel d'iode pour produire l'hormone thyroïdienne. La thyroïde est la seule partie du corps capable de capter et de retenir l'iode. Dans l'hyperthyroïdie, les cellules thyroïdiennes sont trop stimulées et produisent des quantités excessives d'hormones, lesquelles sont secrétées dans le sang et causent les symptômes propres à l'hyperthyroïdie (goître, tachycardie, fatigue, insomnie, amaigrissement, ). Lors du traitement à l'iode radioactif, la glande thyroïdienne ne peut détecter si l'iode est radioactif ou non, et l'absorbe normalement de façon proportionnelle à l'activité de la thyroïde. Ainsi, l'iode radioactif s'accumule dans les cellules qui produisent l'hormone thyroïdienne et y demeure assez longtemps pour irradier la glande et ralentir sa production. L'iode radioactif qui n'est pas retenu par la glande thyroïde est rapidement éliminé par l'organisme (dans les deux ou trois jours), principalement par le rein et dans l'urine. 131 Afin de soigner sa glande thyroïde, un patient absorbe à la date t = 0 une masse m = 1 µg d iode I. On étudie l évolution de la masse d iode dans le corps du patient en fonction du temps et on obtient la courbe suivante : Il est impossible de prédire à quel moment un atome instable va se transformer. Mais lorsque l'on considère un ensemble d'atomes d un même élément, le rythme de transformation des atomes est statistiquement mesurable. On obtient la courbe de décroissance radioactive. b) La période radioactive Chaque radioélément est caractérisé par sa période radioactive (ou temps de demi-vie). La valeur de la période radioactive est extrêmement variable d un élément à l autre : Radioélément Période 235 U 4,5.10 9 ans 239 Pu 24300 ans 137 Cs 57 Co 131 La radioactivité Page 6 sur 8 I 234 Th 212 Po 30 ans 270 jours 8 jours 1,05 s 3.10-7 s

A l aide de ce tableau et en étudiant le graphe ci-dessus, formuler une définition de la période radioactive. Voici plusieurs propositions : «La période est la durée au bout de laquelle la moitié des noyaux radioactifs initialement présents se désintègrent.» «La période est la durée au bout de laquelle la moitié des noyaux radioactifs initialement présents ont été désintégrés.» «La période est la durée au bout de laquelle la moitié des noyaux radioactifs initialement présents se sont désintégrés.» «La période est la durée au bout de laquelle tous les noyaux radioactifs initialement présents se sont désintégrés.» c) Une application importante de la décroissance radioactive : la datation Activité documentaire (à faire à la maison) : Document n 1 : Les noyaux radioactifs sont des chronomètres naturels qui fonctionnent comme de vraies machines à remonter le temps.toutes les méthodes de datation sont fondées sur un principe simple : la décroissance progressive de la radioactivité contenue dans les objets que l'on veut dater. Grâce à des isotopes comme le carbone 14, on peut ainsi remonter jusqu'à -40000 ans. Le carbone présent dans l'atmosphère est constitué de carbone 12 stable, et d'une très faible quantité de carbone 14 dont la période radioactive est de 5730 ans. Les organismes vivants, les animaux en respirant, les végétaux par la photosynthèse, échangent sans cesse du carbone 14, produit dans la haute atmosphère, avec le milieu extérieur. A leur mort, l'échange de carbone 14 cesse mais il continu à se désintégrer à l'intérieur de l'organisme. Progressivement, la teneur en carbone 14 va donc baisser. En faisant le rapport quantité de carbone 14 sur quantité de carbone 12, on peut alors dater la mort d'un organisme. Moins il reste de carbone 14 dans l'échantillon à dater et plus la mort est ancienne. Cette méthode a démontré que la grotte Cosquer découverte en 1991 dans les calanques de Marseille, avait été fréquentée à deux périodes successives : les peintures de mains sont estimées à environ 27000 ans; celles d'animaux ont été réalisées 10000 ans plus tard. Le couple (uranium 238 et plomb 106) a permis de résoudre une autre énigme : celle de l'âge de la Terre. Question qui, à toutes les époques, a intrigué les hommes. Les exégètes (interprètes) de la Bible estimaient son âge à 10000 ans avant J-C. D'autres, reprenant l'hypothèse du refroidissement d'un centre chaud de la Terre, l'estimaient à 75000 ans. A la fin du XIXe siècle, Lord Kelvin pensait que l'âge du monde ne pouvait dépasser 100 millions d'années. La radioactivité a mis tout le monde d'accord : notre bonne vieille planète Terre mérite bien ses 4,5 milliards d'années! D'autres isotopes rendent des services plus inattendus. C'est le cas du radium utilisé pour le calcul de l'âge des homards! Une pyramide des âges précise est un préalable essentiel à la validation des quotas de pêche. Lorsque le homard calcifie sa carapace, le radium présent dans l'eau de mer se transforme en thorium par désintégration radioactive. La proportion radium/thorium nous donne alors l'âge de l'animal à 15 jours près. Document n 2 : On définie l activité radioactive d une source comme le nombre de désintégrations par seconde ; on la mesure en Becquerel (Bq). 1 Bq = 1 désintégration par seconde La radioactivité Page 7 sur 8

Document n 3 : Des fragments d os ont été prélevés sur un site préhistorique. La mesure de l activité du carbone 14 des fragments d os anciens donne 110 désintégrations par heure. La même masse de fragements d os actuels donne 880 désintégrations par heure. Questions : 1) Quelle est la période radioactive du carbone 14? 2) Quelle est l activité exprimée en Becquerel des fragments d os anciens? 3) Quel est l âge approximatif des fragments d os? La radioactivité Page 8 sur 8