BTS CHIMISTE GÉNIE CHIMIQUE. Durée : 3 h Coefficient : 3 OBTENTION DU SUCRE À PARTIR DE LA BETTERAVE SUCRIÈRE

Documents pareils
Annexe 3 Captation d énergie

RUBIS. Production d'eau chaude sanitaire instantanée semi-instantanée.

Sécheuses. Sécheuses SECHEUSE, SR/E ,00 955,00. 12,43 NO 3x10+T - 63 A 4x4+T - 32 A 64,00

Site : mail : mennier@isnab.fr SUJET ES - session 2003 Page 1 68-(7(6VHVVLRQ

LA QUALITE DES CROQUANTES OU NOUGATINES:

Page : 1 de 6 MAJ: _Chaudieresbuches_serie VX_FR_ odt. Gamme de chaudières VX avec régulation GEFIcontrol :

TRAITEMENT D'AIR DES PISCINES COUVERTES

XTR. Humidificateur vapeur à électrodes

NORME CODEX POUR LES SUCRES 1 CODEX STAN

Equipement d un forage d eau potable

Ce dispositif fiscal, mis en place en 2005, est en vigueur jusqu'en 2016.

BREVET DE TECHNICIEN SUPÉRIEUR QUALITÉ DANS LES INDUSTRIES ALIMENTAIRES ET LES BIO-INDUSTRIES

Le séchage des ateliers :

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

Sécheurs par adsorption à régénération par chaleur

CODEX ŒNOLOGIQUE INTERNATIONAL. SUCRE DE RAISIN (MOUTS DE RAISIN CONCENTRES RECTIFIES) (Oeno 47/2000, Oeno 419A-2011, Oeno 419B-2012)

EasiHeat Unité de production d'eau chaude

Calcaire ou eau agressive en AEP : comment y remédier?

Bonnes Pratiques de Fabrication des médicaments à usage humain et vétérinaire

Rincez à l'eau froide. Ensuite, lavez immédiatement avec une lessive.

Liste et caractéristiques des équipements et matériaux éligibles au CITE

Informations produit

Instructions d'utilisation

Les sols, terreau fertile pour l EDD Fiche activité 3 Que contient un sol?

Production d eau chaude sanitaire thermodynamique, que dois-je savoir?

Système de gestion d une citerne de récupération des eaux de pluies

TARIF DES DOUANES - ANNEXE IV - 1

MÉTHODE DE DÉSEMBOUAGE DE CIRCUITS DE CHAUFFAGE

Comment utiliser les graines de soja à la cuisine

Variantes du cycle à compression de vapeur

Eau chaude Eau glacée

L eau dans le corps. Fig. 6 L eau dans le corps. Cerveau 85 % Dents 10 % Cœur 77 % Poumons 80 % Foie 73 % Reins 80 % Peau 71 % Muscles 73 %

2.0. Ballon de stockage : Marque : Modèle : Capacité : L. Lien vers la documentation technique :

Chapitre 11 Bilans thermiques

LA MESURE DE PRESSION PRINCIPE DE BASE

Emission 2 1 ère épreuve : Baba

Vitodens 100-W. climat d innovation

Présentation générale des principales sources d énergies fossiles.

Questions avant intervention pour dépannage Enomatic

36% T.Flow VMC hygroréglable & chauffe eau thermodynamique QUAND LA VENTILATION RÉINVENTE L EAU CHAUDE. BÉNÉFICIEZ DE

SERIE S Technologie Mouvex

Le triac en commutation : Commande des relais statiques : Princ ipe électronique

L ensilage de maïs en Ardenne? D un point de vue alimentaire. Isabelle Dufrasne Ferme expérimentale Service de Nutrition FMV Université de Liège

La Vinification en Alsace

Armoire de traitement d'air. Ciatronic System. Solutions pour data centers N D

LISTE V AU PROTOCOLE A MAROC. Description des produits

P7669 MACHINE A VAPEUR MINIATURE P7669R A mouvement alternatif P7669T Turbine

Mesurer la consommation d air comprimé ; économiser sur les coûts d énergie

LA TRADITION ET L'EXPÉRIENCE ITALIENNES.

Hydrolyse du sucre. Frédéric Élie, octobre 2004, octobre 2009

Les Petites Toques PLAT CHAUD. STEAK HACHE PETIT MODELE Poids net pour une part : 80 g Ingrédients : Steak haché (origine Union Européenne).

Vannes 3 voies avec filetage extérieur, PN 16

TABLEAU RECAPITULATIF DES CONDITIONS DE REALISATION DE TRAVAUX EN MÉTROPOLE

Puissant et écologique à la fois

Chauffage à eau chaude sous pression

BlendingLine. MINICOLOR V MINICOLOR G GRAVICOLOR Doseurs et mélangeurs. smart solutions

LEER, Inc. 206 Leer Street, P.O. Box 206 New Lisbon, WI

TECHNIQUE DU FROID ET DU CONDITIONNEMENT DE L AIR. confort = équilibre entre l'homme et l'ambiance

Baccalauréat STI2D et STL spécialité SPCL Épreuve de physique chimie Corrigé Session de juin 2014 en Polynésie. 15/06/2014

Datacentre : concilier faisabilité, performance et éco-responsabilité

DOCUMENT RESSOURCE SONDES PRESENTATION

Notice technique La filtration sur terre

I ntroduction. Coffrets pour la régulation de la température et de l hygrométrie. Caractéristiques et avantages

Crédits d impôt énergie TVA réduite à 7% Prêt à taux zéro 2012

Transmetteur de pression de haute qualité pour applications industrielles Type S-10

Comprendre l efflorescence

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE

à lever : pyrophosphate de soude, bicarbonate de soude, sorbate de potassium, sel fin, xanthane

Aide à l'application Preuve du besoin de réfrigération et/ou d humidification de l air Edition mai 2003

Manomètre pour pression différentielle avec contacts électriques Exécution soudée Types DPGS43.1x0, version acier inox

Registres de fermentation lente. Critères d inspection

Les capteurs et leurs branchements

SALLE DE BAIN, DOUCHE, PLAN DE TRAVAIL CUISINE, PISCINE... Collage et jointoiement. L Epoxy facile

FLUXUS Energie. Gérer efficacement l'énergie en utilisant la technologie de mesure non-intrusive. Mesure de débit énergétique et d'air comprimé

Des systèmes de chauffage avec pompe à chaleur et accumulateur de chaleur pour les construction dans les zones de montagne.


Le chauffage, épisode 2 : plomberie

Instructions de montage DHP-AQ

Récapitulatif de l audit énergétique de la copropriété 1 relais de la Poste à RANTIGNY 25/11/13

Les Énergies Capter et Stocker le Carbone «C.C.S»

GUIDE DE BONNES PRATIQUES POUR LA COLLECTE DE PILES ET ACCUMULATEURS AU LUXEMBOURG

Circulaire relative aux dispositions applicables aux banques alimentaires et associations caritatives

GANACHE AU CHOCOLAT BLANC. Lait Selection 33,5% Lait Caramel 34,5% Crème fraîche à 35%

PARTIE 7: ICEMATIC PARTIE 7: ICEMATIC ICEMATIC. Types de glace. Machines à glaçons. Machines à glace en grains. Silos. Crushers. Titel. Titel.

Étape 1 : Balancer la chimie de l'eau

COMMENT CONSTRUIRE UN CRIB A MAÏS?

ÉJECTEURS. CanmetÉNERGIE Juillet 2009

Mesures calorimétriques

Compresseurs d air respirable. Intelligent Air Technology

Modes économiseurs des systèmes de refroidissement des datacenters

Systèmes R-22 : à quels fluides frigorigènes les convertir? Serge FRANÇOIS*

Formulaire standardisé pour un chauffe-eau solaire

Formulaire standardisé pour un chauffe-eau solaire

à la fonction remplie par la pièce. AMP 1200 est un système de ventilation décentralisée d'applications. AMP 1200 est une centrale

À DRAINAGE GRAVITAIRE

LYCEE TECHNIQUE PIERRE EMILE MARTIN BOURGES ETUDE D UN TRAITEMENT DE SURFACE

MANUEL D'UTILISATION

Nouvelle réglementation

Montrouge, le 9 février Centre national d équipement nucléaire (CNEN) EDF 97 avenue Pierre Brossolette MONTROUGE

Alfa Laval échangeurs de chaleur spiralés. La solution à tous les besoins de transfert de chaleur

Transcription:

BTS CHIMISTE GÉNIE CHIMIQUE Session 2001 Durée : 3 h Coefficient : 3 Calculatrice autorisée OBTENTION DU SUCRE À PARTIR DE LA BETTERAVE SUCRIÈRE L'étude se propose de faire découvrir différents aspects du fonctionnement d'une sucrerie qui vise à obtenir le sucre (saccharose) à partir des betteraves sucrières récoltées à l'automne. A- DESCRIPTION DU PROCÉDÉ Le schéma de principe simplifié est donné en annexe 1, page 8/10. 1. Transformation des betteraves en cossettes Les betteraves contiennent, en masse, environ 20 % de sucre et 2 % de matières sèches. Après la récolte, elles sont acheminées vers la sucrerie où elles sont nettoyées mécaniquement de la terre par passage d'un courant d'eau. Après cette étape de lavage, des machines munies de couteaux les découpent en fines lanières nommées cossettes. 2. Diffusion La diffusion consiste à extraire le sucre contenu dans les cellules végétales par circulation à contre-courant d'un courant d'eau chaude à 80 C et de cossettes à l'intérieur d'un cylindre nommé le diffuseur. Les cossettes fraîches et l'eau pure pénètrent à des extrémités opposées. Les cossettes "épuisées" en sucre (pulpes utilisées pour l'alimentation animale) sortent du côté de l'eau pure avec une teneur réduite en sucre tandis que le jus brut quitte le diffuseur à l'extrémité opposée avec une teneur d'environ 1 % en sucre. 3. Épuration Le jus brut contient encore environ 3 % d'impuretés minérales et organiques. On procède alors à une addition de lait de chaux, Ca(OH) 2, pour faire précipiter les impuretés sous forme de sels de calcium. Pour aider à la séparation on additionne une nouvelle fois du lait de chaux puis on fait barboter du dioxyde de carbone dans la masse. Une filtration permet d'éliminer les impuretés précipitées et le carbonate de calcium formé. On obtient un jus clair également à 1 % en sucre. 4. Évaporation Le jus clair est d'abord préchauffé à 80 C à l'aide de deux échangeurs. L'évaporation d'eau permet finalement d'obtenir à la fin de l'opération un jus à environ 70 % en sucre. On utilise un évaporateur à multiples effets dont on ne représente en annexe 1, page 8/10, que deux effets (évaporateurs) E1 et E2 par souci de simplification. 1/10

. Cristallisation La cristallisation s'effectue dans le cristalliseur par évaporation sous vide. Les cristaux de sucre apparaissent au sein d'un jus coloré par les dernières impuretés. 6. Essorage et séchage Le sucre cristallisé blanc est séparé du sirop impur dans une essoreuse avant d'être séché par de l'air chaud dans des sécheurs rotatifs. B- ÉTUDE DU PROCÉDÉ Les parties 1., 2., et 3. sont indépendantes. Dans les parties 1., 2., les pourcentages indiqués pour les compositions correspondent à des titres massiques. 1. Diffuseur Le débit massique d'alimentation en cossettes est de 2, 10 kg.h -1. Une analyse des cossettes montre qu'elles contiennent à l'entrée de l'appareil 20 % en sucre et 2 % en matières sèches, le complément étant de l'eau. Le débit volumique d'eau pure utilisé est de 180 m 3.h -1. On récupère en sortie un jus sucré contenant 1 % en sucre. Le débit massique de cossettes épurées (pulpes) est égal à 1,0 10 kg.h -1. On admet qu'aucune matière sèche ne passe dans le jus sucré. Données : 1.1 Remplir le tableau en annexe 2, page 9/10, à rendre avec la copie, en justifiant les résultats afin de déterminer les débits massique et volumique de jus sucré ainsi que la composition massique des cossettes épurées. 1.2. En déduire le rendement de l'extraction en sucre. - masse volumique de l'eau pure : 1000 kg.m -3 - masse volumique du jus sucré : 1020 kg.m -3 2/10

2. Évaporateur à deux effets Le schéma de principe de l'installation est donné ci-dessous : V 1 V 2 V 0 E1 2 E2 A, w 0 L 1, w 1 L 2, w 2 On assimile le jus sucré à une solution aqueuse de sucre. Le jus sucré passe successivement dans les deux évaporateurs. La vapeur de chauffe utilisée dans le premier évaporateur se condense entièrement dans celui-ci : sa pression relative est de 2, bar et son débit massique V 0 de 1,6 10 kg.h -1. La vapeur issue de l'évaporation dans le premier effet constitue la vapeur de chauffe du second effet : elle se condense aussi totalement. Le débit massique d'alimentation A de la série d'évaporateurs est de 3,3 10 kg.h -1 avec un titre w 0 de 1 % en sucre : sa température est de 80 C à l'entrée dans E1. Les températures d'ébullition des jus sucrés à l'intérieur des évaporateurs E1 et E2 sont respectivement de 120 C et 90 C. 2.1. Déterminer à l'aide d'un bilan thermique le débit massique d'eau évaporée V 1 dans le premier évaporateur. 2.2. En déduire L 1 le débit massique de jus concentré à la sortie du premier évaporateur puis w 1 le titre massique en sucre de ce jus. 2.3. Déterminer à l'aide d'un bilan thermique le débit massique d'eau évaporée V 2 dans le second évaporateur. 2.4. En déduire L 2 (débit massique de jus concentré à la sortie du second évaporateur) et w 2, titre massique correspondant. 2.. Calculer le rapport de la masse totale d'eau évaporée sur la masse de vapeur de chauffe fournie. 2.6. Calculer la surface nécessaire pour l'échange thermique dans le premier évaporateur. 3/10

Données: - coefficient global de transfert thermique : K = 240 W.m -2.K -1 - chaleur massique des solutions aqueuses de sucre : c P = 4,0 kj.kg -1.K -1 - on admet que les enthalpies massiques de vaporisation de l'eau sont les mêmes pour de l'eau pure et pour les solutions aqueuses de sucre : L V (θ) = 23 2,9 θ avec θ en C et L V en kj.kg -1 - la pression P, en bar, et la température θ, en C, d'un liquide en ébullition sont reliées par la relation : P = (θ / 100) 4 3. Sécheur Dans le schéma de principe on applique les notations suivantes : θ température de l'air ( C) H enthalpie de l'air (kj / kg d'air sec) Y humidité absolue de l'air (g d'eau / kg d'air sec) ε humidité relative de l'air (%) Les indices 0, E et S correspondent respectivement aux valeurs à l'entrée du réchauffeur, à la sortie du réchauffeur (qui sont les mêmes à l'entrée du sécheur), et à la sortie du sécheur. F S1 est le débit massique de sucre "humide" à l'entrée du sécheur (w S1 le titre massique en eau), F S2 est le débit massique de sucre "pratiquement sec" à la sortie du sécheur (w S2 le titre massique en eau). 4/10

Les tableaux donnés en annexe 3, page 10/10, sont tirés du diagramme de l'air humide et constituent une source de renseignements pour la résolution de cette partie. L'air ambiant après un traitement de déshumidification entre à une température θ 0 de 20 C dans le réchauffeur avec une humidité relative ε 0 de %. Le débit de cet air humide est de 1,08 10 4 m 3.h -1. On note F A le débit massique de cet air humide. Le réchauffeur fournit à cet air une puissance thermique de 29 kw. On rappelle que le réchauffeur permet, entre autres, de diminuer l'humidité relative de l'air afin d'avoir un séchage plus efficace. Le débit massique F S1 de sucre cristallisé humide à l'entrée du sécheur est de 3, 10 4 kg.h -1 et son titre massique en eau w S1 est de 1 %. Données : 3.1. Déterminer l'humidité absolue de l'air Y 0 à l'entrée du réchauffeur. L'humidité absolue Y E à la sortie du réchauffeur est-elle différente? 3.2. Calculer le débit massique d'air humide F A. À cause de la faible teneur en eau de cet air, on admettra dans la suite que ce débit est identique à un débit d'air sec. 3.3. Déterminer la température de l'air θ E à la sortie du réchauffeur. En déduire l'humidité relative ε E et l'enthalpie de l'air humide H E à cette sortie. On admet que les caractéristiques de l'air à la sortie du réchauffeur ne varient pas jusqu'à l'entrée du sécheur. Le séchage s'effectue dans des conditions isenthalpiques pour l air. L'humidité relative ε S de l'air à la sortie du sécheur est de 8 %. 3.4. En déduire la température de l'air θ S à la sortie du sécheur puis son humidité absolue Y S. 3.. Déterminer le titre massique résiduel w S2 en eau du sucre quittant le sécheur. On fera l'hypothèse que les deux valeurs suivantes ne dépendent pas de la composition en eau de l'air. - chaleur massique de l'air : 1,01 kj.kg -1.K -1 - masse volumique de l'air : 1,2 kg.m -3 /10

C- QUESTIONS SUR LE PROCÉDÉ Chaque question demande une réponse brève (cinq lignes au plus). 1. Indiquer l'intérêt de travailler à contre-courant dans l'étape de diffusion. 2. L'étape nommée diffusion dans ce procédé correspond à une opération unitaire classique en génie chimique. Donner le nom de cette opération. 3. Préciser l'intérêt d'utiliser un évaporateur à multiple effet par rapport à un évaporateur simple effet. 4. Le sucre est une substance thermosensible susceptible de caramélisation. Dans l'évaporateur à multiple effet, la vapeur de chauffe et le jus sucré circule à co-courant. Justifier ce choix.. Expliquer pourquoi aucune pompe n'est utilisée pour transférer le jus entre les deux évaporateurs. D- SCHÉMA Représenter (dessin format A4 sur la fiche bristol quadrillée fournie) la partie de l'installation correspondant à l'évaporation en tenant compte des indications données ci-dessous, en respectant les règles de sécurité et en assurant le bon fonctionnement de l'installation. 1. Après l'étape d'épuration, le jus clair à 1 % est stocké dans un réservoir tampon au niveau fixé en hauteur qui permet l'alimentation des évaporateurs au moyen d'une pompe centrifuge montée en charge. Avant d'entrer dans E1, il est préchauffé à 80 C dans deux échangeurs tubulaires verticaux en série. Le second échangeur est alimenté en vapeur alors que le premier utilise comme fluide chaud les condensats issus de la vapeur de chauffe de E2 relevés par une pompe. Un réservoir (ballon de condensats) est placé entre E2 et la pompe. 2. L'évaporation s'effectue dans un système à deux effets avec pour le premier de la vapeur de chauffe à une pression relative de 2, bar et avec pour le second de la vapeur provenant de l'évaporation du jus de E1. La pression absolue est supérieure à 2 bar dans l'enceinte de E1 alors qu'on se trouve à une pression inférieure à la pression atmosphérique dans E2. Le débit de vapeur de chauffe dans le premier effet est asservi au débit de sortie du jus de E1. Les condensats de la vapeur de chauffe de E2 sont utilisés pour réaliser en partie le préchauffage de l'alimentation. 6/10

Un schéma d'évaporateur est fourni ci-dessous pour être utilisé sans modification dans le schéma demandé. La partie supérieure est équipée d'un dispositif de séparation mécanique Les deux évaporateurs en série sont des cylindres verticaux assimilables dans le partie inférieure à un échangeur tubulaire dont le tube central a un diamètre beaucoup plus important. La vapeur de chauffe est injectée dans la calandre et le jus sucré circule à l'intérieur des tubes. Le liquide à ébullition et la vapeur d'eau sont éjectés au dessus des tubes et ce liquide concentré retombe dans le tube central vers le collecteur qui permet l'évacuation de la solution concentrée La partie supérieure est équipée d'un dispositif de séparation mécanique permettant d'empêcher que des gouttes de liquide soient entraînées dans la phase vapeur qui s'échappe au sommet. L'alimentation en jus s'effectue à la base au moyen d'une rampe d'injection. Le niveau du jus concentré dans les tubes est régulé au tiers supérieur du faisceau. 3. Les vapeurs issues de E2 passent dans un condenseur à mélange au sommet duquel s'effectue la prise de vide. Une régulation est à prévoir pour contrôler la valeur de la pression. Un condenseur à mélange est une capacité recevant de la vapeur à condenser par le bas et de l'eau froide pulvérisée par le haut. La récupération des condensats s'effectue à la base grâce à une colonne barométrique. 4. Le jus concentré à 70 % de E2 est dirigé par pompe vers le réservoir tampon (à ne pas représenter) alimentant la cristallisation. 7/10

ANNEXE 1 : schéma de principe 8/10

ANNEXE 2 À RENDRE AVEC LA COPIE ENTRÉES % Débits (kg.h -1 ) SORTIES % Débits (kg.h -1 ) COSSETTES sucre matières sèches 20 2 COSSETTES sucre matières sèches eau eau Débit massique (kg.h -1 ) : 20000 Débit massique (kg.h -1 ) : 100000 EAU sucre 0 sucre 1 eau 100 eau 8 Débit massique (kg.h -1 ) : Débit massique (kg.h -1 ) : Débit volumique (m 3.h -1 ) : 180 Débit volumique (m 3.h -1 ) : JUS SUCRÉ Les pourcentages correspondent à des pourcentages massiques 9/10

ANNEXE 3 : tableau des caractéristiques de l'air humide On rappelle les notations habituelles : θ température de l'air C ε humidité relative % Y humidité absolue g d'eau / kg d'air sec H enthalpie de l'air kj / kg d'air sec TABLEAU 1 TABLEAU 2 TABLEAU 3 ε Y θ Y θ ε H ε H Y θ 0,2 76 0 78 8 74 18, 26,3 0,3 10 81 30 82 8 78 19,8 27,4 0,4 1 86 2 87 8 82 20,8 28,3 20 91 20 93 8 86 22 29,2 1 2 96 1 97 8 90 23,1 30 1,3 30 101 10 102 8 94 24,3 30,9 1,7 3 106 <10 108 8 98 2,8 32 2,3 40 111 <10 113 8 102 26,9 32, 3 4 116 <10 118 8 106 28,1 33,2 3,9 0 121 <10 123 8 110 29,3 34 126 <10 128 8 114 30,4 34,8 10/10