Travaux de CARTOGRAPHIE (L1ST GEOSCIENCES 1) Université Claude Bernard Lyon 1 DE LA CARTE TOPOGRAPHIQUE A LA CARTE GEOLOGIQUE SIMPLE

Documents pareils
CLUB DE MARCHE Ballade et Randonnée

Mesurer les altitudes avec une carte

Savoir lire une carte, se situer et s orienter en randonnée

Étude de la carte de Vézelise. Initiation à la lecture du relief sur une carte topographique

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

GÉODÉSIE, COORDONNÉES ET GPS

TD: Cadran solaire. 1 Position du problème

Cours IV Mise en orbite

Cours de tracés de Charpente, Le TRAIT

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

CONSTRUCTION DES PROJECTIONS TYPES DE PROJECTION. Projection => distorsions. Orientations des projections

REPRESENTER LA TERRE Cartographie et navigation

Fonctions de plusieurs variables

L inégale répartition de l énergie solaire est à l origine des courants atmosphériques

Lecture graphique. Table des matières

Géoréférencement et RGF93

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Trait de côte Histolitt v1.0 Descriptif technique Version du document 1.0 *** Sommaire

CHAPITRE 6 : LE RENFORCEMENT DU MODELE PAR SON EFFICACITE PREDICTIVE

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Décrets, arrêtés, circulaires

Oscillations libres des systèmes à deux degrés de liberté

Résumé non technique. Tableaux d estimation

ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE

S'orienter et se repérer sur le terrain avec une carte

Thème Le domaine continental et sa dynamique

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Continuité et dérivabilité d une fonction

PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F)

Cours de Mécanique du point matériel

Ce guide se divise en six chapitres, dont quatre sont dédiés à une catégorie de bâtiment :

Accessibilité / voirie et espaces publics DDE

F411 - Courbes Paramétrées, Polaires

La base de données régionale sur les sols. d Alsace. La base de données régionale sur les sols d Alsace

LES ESCALIERS. Les mots de l escalier

ROULER EN AVANT ROULER EN AVANT ROULER EN AVANT

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Le seul ami de Batman

La Mesure du Temps. et Temps Solaire Moyen H m.

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

LIDAR LAUSANNE Nouvelles données altimétriques sur l agglomération lausannoise par technologie laser aéroporté et ses produits dérivés

MONTREAL NOTICE DE MONTAGE. Réf Carport une place à toit plat 298 x 500 cm. Charge tolérée (neige) : 100 kg/m2 Hauteur utile : 235 cm

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

La nouvelle RÉGLEMENTATION PARASISMIQUE applicable aux bâtiments

Angles orientés et fonctions circulaires ( En première S )

Territoire3D. Descriptif de contenu. Institut Géographique National. Date du Document : Mars 2011

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Représenter un pays : la carte de France

PARTIE NUMERIQUE (18 points)

HUMAIN SIMPLE LYON. ACCeSSIBLE FACILE. aménager A TOUS ACCUEILLANT. Janvier Les clés de la réglementation

Voyez la réponse à cette question dans ce chapitre.

Chapitre 02. La lumière des étoiles. Exercices :

VOS PREMIERS PAS AVEC TRACENPOCHE

TSTI 2D CH X : Exemples de lois à densité 1

Les Cheminements piétons

ETUDE D IMPACT ACOUSTIQUE

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

Formation tableur niveau 1 (Excel 2013)

Galion: Le lidar éolien ultime

Indications pour une progression au CM1 et au CM2

Chapitre 0 Introduction à la cinématique

EPFL TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian

Action de soutien à la mobilité

Coup de Projecteur sur les Réseaux de Neurones

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Cours Fonctions de deux variables

P.L.U. Plan Local d'urbanisme PRESCRIPTION D'ISOLEMENT ACOUSTIQUE AU VOISINAGE DES INFRASTRUCTURES TERRESTRES DOCUMENT OPPOSABLE

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Planifier et contrôler un projet avec Microsoft Project

Rosemont- La Petite-Patrie. Îlots de chaleur urbains. Tout. savoir! ce qu il faut

communes du pays de brouilly. Four du hameau de Chardignon Saint-Lager

INTRODUCTION AU GPS. Claude Maury. Ah! si j avais eu un GPS. Egypte Désert blanc Introduction au GPS - Claude Maury

COMFORTLIFT ONE VOTRE MONTE-ESCALIER DISCRET.

qu une partie de l année? Où pourrez-vous demander de l aide en cas de problème (poste de police, bureaux de la mairie, pompiers, hôpitaux, etc.).

CHAPITRE 2 POSITIONNEMENT

METEOROLOGIE CAEA 1990

Repérage d un point - Vitesse et

I Mise en place d un SIG pour la gestion des équipements sur les routes départementales de la Loire I

Caractéristiques des ondes

1S Modèles de rédaction Enoncés

LISTE DES PRIX PORTE-BADGE.BE

enquête pour les fautes sur le fond, ce qui est graves pour une encyclopédie.

Le point de vue du contrôleur technique

Calcul intégral élémentaire en plusieurs variables

LE LAVOIR DE LA MONTAGNE - RAPPORT DE PRESENTATION - DOSSIER PHOTOGRAPHIQUE

Chapitre 15 - Champs et forces

Fonctions de deux variables. Mai 2011

Leçon N 4 : Statistiques à deux variables

Celestia. 1. Introduction à Celestia (2/7) 1. Introduction à Celestia (1/7) Université du Temps Libre - 08 avril 2008

La médiatrice d un segment

Adobe Illustrator Logiciel de dessin vectoriel et de Cartographie Assistée par Ordinateur

PROBLEME(12) Première partie : Peinture des murs et du plafond.

Chapitre 2 : Caractéristiques du mouvement d un solide

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

mesure des débits et des volumes dérivés par les canaux gravitaires

Transcription:

Travaux de CRTOGRPHIE (L1ST GEOSCIENCES 1) Université Claude ernard Lyon 1 Coordonnateurs : G. Suan & C. Maréchal - Observatoire des Sciences de l'univers DE L CRTE TOPOGRPHIQUE L CRTE GEOLOGIQUE SIMPLE Une carte est une image plane, réduite et symbolique (les symboles sont conven de données au moins sp ales. La plupart des cartes sont établies sur un fond figurant une po de la surface de la Terre ; ce fond est dit topographique. Parfois, ce fond est autre (imagerie médicale). Ici, nos obje seront : - la lecture des cartes topographiques en général ; - la compréhension des rapports entre les symboles de la carte, qui est à deux dimensions, et des structures géologiques qu elle représente, qui sont généralement à trois dimensions. Il s agit d une à l li on de cartes géologiques plus complexes. I) LOCLISTION SUR UNE CRTE TOPOGRPHIQUE 1. d échelle L échelle d une carte est le rapport entre la longueur d un objet sur la carte et sa longueur réelle. L échelle s exprime sous la forme d une f on simple ; par exemple une carte est dite «au 1/50 000» lorsqu 1 cm sur la carte correspond à 50 000 cm sur le terrain, soit m. Le choix d une échelle est guidé par le type 2. Systèmes de on La carte, plane, représente une on d un objet «globalement» sphérique, la Terre. Pour simplifier, en une première étape, on assimilera la Terre au «géoïde» : surface du niveau moyen des océans (sur les zones émergées, elle est théorique et calculée), forme très proche d un ellipsoïde de révolu on aux dimensions suivantes : Rayon équatorial a = 6378,14 km Rayon polaire b = 6356,755 km f = (a-b)/a = 1/298,257 Le géoïde tourne autour d'un axe dont les traces définissent les pôles. Le plan orthogonal à l'axe des pôles et passant par le centre du géoïde recoupe la surface de la Terre selon l équateur (figure 1). Pour repérer un point à la surface de la Terre, on se réfère à un système de méridiens et parallèles : Méridien = ligne marquant l in on entre un plan passant par les 2 pôles et le géoïde. On définit un méridien origine (passant par Greenwich à Londres ; arc NS). On peut aussi définir le méridien d un point P quelconque du géoïde : il passe par les pôles et par P. Parallèle = ligne marquant entre un plan parallèle au plan équatorial et le géoïde. Ce parallèle sera celui du point P s il passe par P. Méridien origine N Parallèle de P O P Méridien de P Equateur Figure 1 Pour tout point P, on peut définir sa longitude (angle O) et sa tude (angle OP). La longitude est mesurée de 0 à 180, en précisant «vers l Est» ou «vers l Ouest». La tude est mesurée de 0 à 90, en précisant ou «Sud». On appelle proje on la tran on, nécessaire à la on d une carte, du réseau de méridiens et parallèles du géoïde en réseau plan à coordonnées cartésiennes. Il existe de mul ples systèmes de projec Ici, on parlera de la projec on Lambert adoptée par Géographique (IGN) en France. Elle est «conforme» (les surfaces y gardent leur forme, mais pas leurs dimensions), et conique. Elle est assimilable à la proj géométrique d une po du géoïde sur un cône dont le sommet est situé sur l axe des pôles et qui est tangent à l ellipsoïde le long d un parallèle dit «parallèle moyen de contact» (figure 2). S

Figure 2 N Cône tangent 2700 Y Figure 3 parallèle moyen couronne concernée par la projection Lambert 2200 X 1700 0 600 1200 S Traits fins : quelques méridiens et parallèles. Traits gras : quadrillage du système Lambert, avec x et y en km. La figure 3 est un croquis de principe du résultat pour la France. Le croquis se limite à la projection «Lambert 2 étendue» qui couvre tout le territoire. Les régions éloignées du centre de la France montrent un écart excessif entre le quadrillage Lambert et le système parallèles méridiens. Il existe donc d autres projections Lambert adaptées aux régions frontalières (projection «Lambert 3» pour le SE; «Lambert 4» pour la Corse; etc). 3. Coordonnées Lambert d un point La projection Lambert se traduit sur la carte par un quadrillage «approximativement» orienté N S et W E, plus souvent esquissé que complet (repéré par des graduations en marge de la carte, dont les numéros sont espacés de 1km sur le terrain ou par des croix discrètes à l intersection des axes du quadrillage qui correspondent à des chiffres ronds de la numérotation en marge de la carte). utour du point dont on veut mesurer les «coordonnées Lambert», 1016 repérer les 4 croix «encadrantes». On en déduit dans quel carreau kilométrique il est situé. Ici (figure 4), les coordonnées Lambert de M sont : M Figure 4 x=512,75 km ; y=1015,50 km 1015 4. Lecture de la carte topographique 512 513 La surface de la Terre étant maintenant «remise à plat», on distingue deux grands types de cartes : topographiques et thématiques. Sur la carte topographique, on trouve des éléments naturels (relief, cours d eau, végétation, ) et artificiels (bâtiments, voies de communication, ). Tout est symbolisé par des signes conventionnels. Signes conventionnels ils sont des symboles évocateurs des détails du terrain (qu ils soient naturels ou artificiels), qu on appelle la planimétrie. La légende de la carte indique tous les symboles utilisés. Sur les cartes polychromes, le bleu représente le réseau hydrographique, le vert la végétation, le noir les éléments anthropiques, la toponymie, les limites administratives, le rouge et le blanc le réseau routier. Le brun et le gris sont réservés à l altimétrie, c'est à dire la représentation du relief. Représentation du relief elle se fait par l intermédiaire des courbes de niveau et des points cotés. Une courbe de niveau est l intersection de la surface topographique avec un plan horizontal d une altitude donnée. Elle forme une ligne d'égale altitude et portera le nom de cette altitude. Les courbes correspondent à des altitudes régulièrement espacées et à chiffres ronds. Cet espacement vertical est l équidistance e. L écartement des courbes de niveau donne une mesure qualitative de la pente. Les courbes sont d autant plus serrées que la pente est importante. Pour faciliter la lecture, certaines courbes de niveau sont renforcées. Elles représentent les courbes maîtresses (au 1/50 000, dans les régions non montagneuses, e = 50 m entre deux courbes maîtresses). Les autres courbes (4 entre 2 courbes maitresses) sont dites intercalaires. Les points cotés, sur la carte, sont figurés par des points noirs, chacun étant associé à une altitude en m. Mesures d une distance et d une pente si on ne tient pas compte du relief, la mesure d une distance découle directement de la définition de l échelle (= distance apparente, à «vol d oiseau»). La distance réelle est > à la distance apparente si on tient compte du relief. Elle est égale à la distance apparente / cos de la pente.

Pente = inclinaison de la surface topographique par rapport à l horizontale. Elle est à peu prêt égale au rapport entre la différence d altitude de 2 points et la distance de leurs images sur un plan horizontal. Figure 5 Le travail sur carte demande de projeter les courbes de niveau et le point coté sur le plan horizontal de la carte Figure 6 Trajet = distance vu de réelle profil relief à représenter 483+ 483 + 400 200 400 P3 P2 200 P1 P Sur une carte, soient et, 2 points d un relief d altitudes connues. Sur la carte, le segment représente, dans l espace, à la fois le segment C, distance horizontale, séparant les 2 points et le segment situé sur la pente topographique entre les points et d altitudes différentes. tgϕ = C/C, angle de la pente Distance réelle, sur la pente topographique, entre et : cosϕ = C/ = distance réelle = C/cosϕ Mesure d une direction la direction d une droite sur une carte est l angle compté en partant du, dans le sens horaire, jusqu à la première rencontre avec cette droite. Si la droite a un sens (direction de marche par exemple), l angle est compté dans un intervalle de 360 (on parle d azimut ici). Dans le cas d une droite de sens indifférent, on réduit l intervalle de mesure à 180 et on parle de direction. Direction de : N40 zimut de : N220 5. Exercices Carte de LYON 225 220 - Quelle est l échelle de la carte? - Quelles sont les coordonnées Lambert du point, coté 373, situé le long de la départementale 42 au sud de Limonest? - Placez sur la carte le point de coordonnées Lambert x = 791,775 ; y = 2096,875. - Calculez la distance apparente (à vol d oiseau) entre les points et. - Quelle est l équidistance des courbes de niveau? - En considérant une pente moyenne entre le Mont Thou et le point, calculez la «distance réelle» qui sépare ces deux points. - Quelle est la direction de la droite qui joint les points et? II) CONSTRUCTION D UN PROFIL TOPOGRPHIQUE ϕ sur le plan de la carte = distance apparente (sur la carte) échelle m C Figure 7 Un profil topographique est l intersection de la surface du sol par un plan vertical de direction donnée. 1. La procédure Le profil est construit sur un diagramme rectangulaire, en reportant le point d intersection de chaque courbe de niveau avec la trace du plan vertical de direction donnée, ainsi que d éventuels points cotés. Le report fait intervenir les coordonnées X (distance à l origine) et Y (altitude) de chaque point repère. Ensuite, il faut relier ces points «en souplesse» pour donner une vision réaliste du relief. Cette opération doit s effectuer en respectant l échelle de la carte. O 40

Exemple : profil topographique le long de. Le long de, cochez sur une bande de papier millimétré les inters ns avec les courbes de niveau, notez leurs s, et les points cotés s il y en a, les vallées, les sommets. Reportez ces données sur un trait horizontal de longueur. Dessinez à l aplomb de et une échelle cale correspondant à la succession des des des courbes. Pour l équidistance, adopter la même valeur que sur la carte. Construisez point par point le profil du relief. Reliez-les ensuite en tenant compte du style de paysage de la région là où manquent des points. 400 Figure 8 200 P 400m 200 2. Exercices - Tracez les profils topographiques et CD correspondant à différentes formes de relief (pentes régulières, ruptures de pentes, falaises, talwegs). Pentes régulièrement variables 400 400 200 200 1000 m 1000 m Rupture de pente Falaise 700 0 1000 m 0 1000 m

Vallées - Sur la carte de Lyon, et sur papier millimétré, tracez le profil topographique entre les points et III) GEOMETRIE DU PLN Les objectifs sont ici de savoir orienter un plan dans l espace, et de comprendre comment on peut représenter des structures géologiques (en 3D) sur une carte (en 2D). 1. Les cartes géologiques Carte géologique = représentation, sur un fond topographique, des formations géologiques qui affleurent à la surface, où qui sont masquées par un mince recouvrement superficiel (le sol). Cartes les plus fréquemment utilisées en France : - 1/50 000, établie à partir de levées sur le terrain effectuées sur un fond topographique au 1/25 000 - Cartes de synthèse au 1/250 000 (régionale), 1/1 000 000 et 1/1 000 (nationale). La carte géologique au 1/50 000 représente la nature lithologique et la disposition géométrique des formations à l aide d un symbolisme. C est l image des observations faites sur les affleurements (carte d affleurement sur fond topographique), et le fruit d une interpolation entre ces mêmes affleurements. Toutes les cartes géologiques sont accompagnées, en marge, d une légende (unités géologiques et leur chronologie, symboles conventionnels, signes d orientation des couches ) et d une notice détaillée (histoire géologique, inventaire des ressources naturelles ). La difficulté de la lecture des cartes géologiques réside dans la détermination de la géométrie tridimensionnelle des formations géologiques d après l image plane de leur intersection avec la surface topographique. Si on sait déterminer l orientation d un plan incliné dans l espace, la reconnaissance, sur la carte géologique, de nombreuses structures géologiques (tabulaires, monoclinales) sera facilitée. En effet, celles ci peuvent être considérées, en première approximation, comme faites de divers plans inclinés. C est le cas pour les structures monoclinales (les limites de couches sont planes et parallèles, mais présentent un PENDGE). Ici, orienter les couches géologiques, c est orienter des plans dans l espace. 2. Orientation d un plan dans l espace L orientation d un plan dans l espace nécessite la définition de deux droites remarquables : - L horizontale du plan : matérialise, sur un plan P, la trace d un plan horizontal passant par. - La ligne de plus grande pente : visualise la direction d écoulement d un filet d eau sur P. Cette ligne est orthogonale à l horizontale du plan. C est un axe puisqu on la polarise selon son plongement.

N Figure 9 Représentation de l orientation d une couche sur une carte : Direction W 75 E 40 S Pendage Ligne de plus grande pente α Dessin Davide Olivero Plan horizontal passant par 40 L orientation de ce plan est : Direction = N75 Pendage = 40 S On mesure, à l aide d un OUSSOLE : 1. La direction de l horizontale du plan (direction = droite correspondant à l intersection d une couche inclinée avec un plan horizontal; mesurée / au, sens horaire). 2. L intensité α du plongement de la ligne de plus grande pente (angle entre une couche et un plan horizontal ; mesuré avec le clinomètre de la boussole) 3. Le secteur géographique du plongement de la ligne de plus grande pente. L angle du pendage (compris entre 0 et 90 ) est l angle de la couche avec un plan horizontal. 3. D un plan incliné à sa trace sur la carte Soit un plan incliné P (figure 10). Imaginons des plans horizontaux P1, P2, P3. Par commodité, on les espacera régulièrement en altitude (cet espacement est l équidistance ; 50 m dans cet exemple), et on choisira des chiffres ronds pour ces altitudes. Figure 10 Horizontale de P P H150 H100 δ H150 H100 Carte H50 Figure 11 H50 50 m échelle - P1, P2, P3 recoupent P selon les horizontales H50, H100, H150 de P, parallèles entre elles. - Soit un point dans P, par exemple sur une horizontale. Traçons un vecteur partant de et suivant la ligne de plus grande pente. La géométrie dans l espace démontre que cette ligne recoupera perpendiculairement les horizontales de P, par exemple en. - Le plan P sera désormais défini par au moins deux horizontales, et une ligne de plus grande pente, du point de vue de leur inclinaison. - Nous pouvons maintenant ne plus considérer le plan P. Nous nous intéressons seulement à son système d horizontales (2 sont nécessaires et suffisantes) et une ligne de plus grande pente. - La figure 11 représente la projection de ces éléments sur le plan horizontal d une carte. Il y a parallélisme et équidistance des projections des horizontales entre elles. Il y a perpendicularité entre la projection de la ligne de plus grande pente et celles des horizontales. Lorsqu elles sont projetées sur une carte, les horizontales peuvent être appelées isohypses, chacune correspondant à une altitude donnée (i50, i100, 150). L angle δ entre une des isohypses et le est la direction de cette isohypse (figure 11). C est également la direction du plan. Elle est mesurée en partant du et en allant dans le sens horaire.

Le signe «T» placé à coté des isohypses (figure 11) est facultatif sur les cartes. Le long trait est parallèle aux isohypses. Le petit trait, perpendiculaire aux isohypses, est le sens du plongement du plan. Parfois, un chiffre y est joint. C est un signe de pendage (en degrés). Construction des isohypses d un plan : considérations - Courbe de niveau = ensemble des points de la surface topographique qui sont à la même altitude. - La trace cartographique d un plan géologique (S ; figure 12) incliné représente l ensemble des points de ce plan situés sur la surface topographique. C est donc l intersection de ce plan avec les courbes de niveau - La droite joignant 2 points au moins déterminés le long d une même courbe de niveau est l isohypse d altitude correspondant à celle de la courbe de niveau. Figure 12 Réseau d horizontales du plan S, vues dans l espace et en carte Exemple simple : soit la trace cartographique d un plan (figure 13), donner la géométrie (direction et pendage) de ce plan Figure 13 i150 i100 i50 carte L obtention de l intensité de l angle du pendage se fait à l aide d un rapport trigonométrique simple tgϕ 150 100 50 échelle m Direction : angle entre le géographique et la direction d une des isohypses du plan Pendage : rapport trigonométrique établi dans un plan de coupe vertical perpendiculaire à la direction des isohypses (passant par la ligne de plus grande pente) tg ϕ = différence d altitude entre 2 isohypses/distance apparente* (calcul qui fait abstraction de la topographie : tgϕ = '/') *distance apparente = écartement (sur carte) entre ces 2 isohypses Figure 14 150m 50 ϕ ϕ, échelle50m

Détermination du sens des pendages : «règle des V ; du chevron» (figure 15) Le contour dessine, dans les vallées, un «V» dont la pointe est dirigée selon la direction de plongement des surfaces (sauf quand pendage < pente). C est l inverse sur les lignes de crêtes (ouverture du V dirigée dans le sens du pendage). Figure 15 4. Exercice - l'ouest : la trace cartographique d'un plan P1 affleure au sol en 3 points, et C. Par construction des isohypses de ce plan, trouver la direction et le pendage du plan, et dessiner sa trace complète sur la carte (rappel : cartographier la trace d un plan, c est repérer les intersections entre les isohypses de ce plan et les courbes de niveau de même altitude, et relier ces points d intersection en souplesse - l'est : la trace d'un plan P2 touche le sol au point D. Sa direction est N135. Quant au pendage, le plan plonge de 50 m pour une distance de 100m, vers le NE. Par construction des isohypses, dessiner la trace du plan sur la carte.

IV) DE L CRTE L COUPE GEOLOGIQUE EN SYSTEME MONOCOUCHE L objectif est de construire une coupe géologique sous un profil topographique, en ne considérant ici qu une seule couche. 1. De la trace cartographique d un plan à sa géométrie Il est fréquent, en particulier dans le cas des couches sédimentaires, qu elles puissent être définies comme une succession de plans limites de couches (joints de stratification) parallèles. partir de la trace cartographique de deux de ces plans limites, on peut déterminer l épaisseur e de la couche qu ils délimitent. e = d X sin ϕ, d étant la distance apparente (sur la carte) entre 2 isohypses de même altitude, situées aux limites inférieure et supérieure de la couche ssociée au pendage ϕ, cette donnée permet de reconstituer la succession des couches sous un profil topographique, c'est à dire de construire une COUPE GEOLOGIQUE. Soit un itinéraire FG (figure 16) sur la carte géologique (à gauche) : la représentation en coupe (à droite) de la structure monoclinale cartographiée passe par le tracé, dans un plan vertical à FG : 1) du profil topographique 2) des divers plans géologiques, en profondeur sous le profil et arrivant jusqu'à la surface topographique Figure 16 F M N O D 800 G F 100m M N P1 O P2 h e G 800 Carte Coupe Comment passer de la carte géologique à la coupe géologique? La méthode est la suivante : Faire le profil topographique selon FG Chercher une trace d'un plan géologique P1qui recoupe 2 fois une même courbe de niveau. Joindre les deux points d'intersection ( et ) : = isohypse de P1, perpendiculaire à FG. Soit M l'intersection entre la trace du plan géologique et FG (M est à l'affleurement), et N l'intersection entre FG et. N est à l'altitude de l'isohypse, et sa distance horizontale FN est mesurable (donc N peut être placé sur le profil topographique). M et N appartiennent tous deux à P1 : leur jonction permet de tracer ce plan sur le profil, et de mesurer directement son pendage. Soit sur la carte un point D où un plan P2 parallèle à P1 est à l'affleurement : on peut tracer une seconde isohypse, parallèle à la première = DO. L'altitude de O est connue (= celle de la courbe de niveau passant par D), et la distance horizontale FO est mesurable. On peut donc placer O sur le profil topographique. On obtient ainsi une coupe géologique des couches cartographiées, et l'épaisseur de la couche géologique comprise entre P1 et P2 est mesurable (toujours perpendiculairement aux plans).

2. Exercices Chacune des figures ci dessous présente les traces cartographiques de deux plans parallèles (trais gras) encadrant une couche sédimentaire dont l affleurement à la surface du sol est grisé. Les courbes en traits fins sont les courbes de niveau. Sur chaque carte, deux points et sont indiqués. Dans chacun des trois cas, déterminez la direction, le pendage, et l épaisseur de la couche qui affleure en grisé Dans chacun des trois cas, faites un profil topographique entre les points et et placez les plans limites de couche. 320 320 450 450 450 400 450 400 400 100m 360 370 100m 360 370 320 450 450 400 400 100m 360 370

V) DE L CRTE L COUPE GEOLOGIQUE EN SYSTEME MULTICOUCHE On s adresse maintenant à des superpositions de couches géologiques. On prendra ici des couches aux limites planes et parallèles les unes aux autres (structures tabulaires et monoclinales) du moins tant qu on ne franchit pas de faille. 1. Construction des coupes géologiques tabulaires Nous avons vu que si les limites de couches sont parallèles aux courbes de niveau, alors c est qu elles sont horizontales, et que la structure géologique est tabulaire. Dans ce cas, en suivant la méthode vue précédemment dans le cas de structures monocouches, et sous le profil topographique : on commence par construire les couches les plus superficielles, car situées près du sol, elles sont plus faciles à mettre en place. on construit les couches plus profondes (en s aidant si c est possible des données de sondage) on orne chaque couche de figurés, qui sont des dessins symbolisant la nature lithologique de chaque couche. 2. Construction de coupes géologiques monoclinales Si les couches ne sont pas horizontales, il faut construire la géométrie des plans limites de couches selon les règles vues auparavant dans le cadre des structures monocouches. La procédure générale est la suivante : On trace le profil topographique. On trace les plans de failles s il y en a. Ils sont indiqués sur les cartes par des traits gras. Ils se construisent comme les plans limites de couches des exercices précédents. On construit les accumulations de couches situées entre les failles. Chacune s appelle un compartiment. Le pendage dans un compartiment est constant, compte tenu des suppositions que l on a faites (pas de structures plissées). On construit les couches les plus superficielles d abord, puis les couches plus profondes, enfin on orne chaque couche des figurés symbolisant la nature de chaque couche. ttention, chaque compartiment peut avoir son propre pendage de couches. 3. Exercices Sachant que les couches sont toutes horizontales, que la couche m 4 = 400 m d épaisseur (à l aplomb de la côte 1033) et que m 3 = 250 m (couche résistante à l érosion), donner l allure du profil topographique et de la coupe géologique transversaux à la vallée. Sur la carte géologique ci dessous, reconstituez la coupe géologique le long du plan vertical défini entre les points cotés 140 (Ouest) et 120 (Est). près le tracé du profil topographique, vous commencerez par la coupe du compartiment Ouest, puis celle du compartiment Est, puis enfin, si vous avez le temps, celle du compartiment central.

Document préparé par E. Jautée, J. P. ourseau, F. Quillévéré