Chapitre 2 et TP 5 La classification périodique des éléments

Documents pareils
BTS BAT 1 Notions élémentaires de chimie 1

CHAPITRE 2 : Structure électronique des molécules

Molécules et Liaison chimique

LES ELEMENTS CHIMIQUES

Enseignement secondaire

1 ère Partie : Concepts de Base

Atelier : L énergie nucléaire en Astrophysique

LES SUBSTITUTIONS NUCLÉOPHILES EN SÉRIE ALIPHATIQUE S N 1 ET S N 2

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

EXERCICES SUPPLÉMENTAIRES

Équivalence masse-énergie

CHAPITRE VI : HYBRIDATION GEOMETRIE DES MOLECULES

8/10/10. Les réactions nucléaires

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

Chapitre 02. La lumière des étoiles. Exercices :

Effets électroniques-acidité/basicité

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

ACIDES BASES. Chap.5 SPIESS

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

1.2 Coordinence. Notion de liaison de coordinence : Cas de NH 3. et NH 4+ , 3 liaisons covalentes + 1 liaison de coordinence.

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

Chapitre 5 : Noyaux, masse et énergie

Application à l astrophysique ACTIVITE

Plan du chapitre «Milieux diélectriques»

Les solutions. Chapitre 2 - Modèle. 1 Définitions sur les solutions. 2 Concentration massique d une solution. 3 Dilution d une solution

La physique nucléaire et ses applications

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

Rappels sur les couples oxydantsréducteurs

De la physico-chimie à la radiobiologie: nouveaux acquis (I)

Transformations nucléaires

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

2 C est quoi la chimie?

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

Panorama de l astronomie

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée

Partie 1. Addition nucléophile suivie d élimination (A N + E) 1.1. Réactivité électrophile des acides carboxyliques et groupes dérivés

Chapitre 11: Réactions nucléaires, radioactivité et fission

Comprendre l Univers grâce aux messages de la lumière

Physique Chimie. Réaliser les tests de reconnaissance des ions Cl -,

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

Lycée français La Pérouse TS. L énergie nucléaire CH P6. Exos BAC

5 >L énergie nucléaire: fusion et fission

SECTEUR 4 - Métiers de la santé et de l hygiène

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème /2015

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir?

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Chapitre 11 Bilans thermiques

Chapitre 6 : les groupements d'étoiles et l'espace interstellaire

Généralités. Chapitre 1

TP N 3 La composition chimique du vivant

Semi-conducteurs. 1 Montage expérimental. Expérience n 29

PROGRAMME DE PHYSIQUE - CHIMIE EN CLASSE DE SECONDE GÉNÉRALE ET TECHNOLOGIQUE

Stage : "Développer les compétences de la 5ème à la Terminale"

C4: Réactions nucléaires, radioactivité et fission

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION

a. Fusion et énergie de liaison des noyaux b. La barrière Coulombienne c. Effet tunnel & pic de Gamov

TD 9 Problème à deux corps

Principe de fonctionnement des batteries au lithium

Découvrir les électrons par le pliage, à partir de 6 ans. supraconductivité. une histoire d électrøns

T4 Pourquoi éteindre les phares d une voiture quand le moteur est arrêté? Comment fabriquer une pile? un accumulateur?

Transformations nucléaires

Professeur Eva PEBAY-PEYROULA

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

Résonance Magnétique Nucléaire : RMN

Production mondiale d énergie

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

nucléaire 11 > L astrophysique w Science des étoiles et du cosmos

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes).

C3. Produire de l électricité

Des molécules hydrophobes dans l eau

Principe et fonctionnement des bombes atomiques

LE VIDE ABSOLU EXISTE-T-IL?

Comment réaliser physiquement un ordinateur quantique. Yves LEROYER

Etudier le diagramme température-pression, en particulier le point triple de l azote.

TECHNIQUES: Principes de la chromatographie

Stabilité et Réactivité Nucléaire

Les lières. MSc in Electronics and Information Technology Engineering. Ingénieur civil. en informatique. MSc in Architectural Engineering

Le monde nano et ses perspectives très prometteuses.

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

FORMATION ET FONCTIONNEMENT D'UNE ETOILE

Fiche professeur. Rôle de la polarité du solvant : Dissolution de tâches sur un tissu

Chapitre I- Le champ électrostatique. I.1.1- Phénomènes électrostatiques : notion de charge électrique

Réduction des consommations d hydrocarbures par pré-traitement physique

Energie nucléaire. Quelques éléments de physique

Étude et modélisation des étoiles

LABORATOIRES DE CHIMIE Techniques de dosage

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

Compléments - Chapitre 5 Spectroscopie

INTRODUCTION À LA SPECTROSCOPIE

MODELE DE PRESENTATION DU PROJET

ANALYSE SPECTRALE. monochromateur

Introduction à la physique nucléaire et aux réacteurs nucléaires

L ÉNERGIE C EST QUOI?

La gravure. *lagravureparvoiehumide *lagravuresèche

Transcription:

Chapitre 2 et TP 5 La classification périodique des éléments Plan du cours 1. Architecture et lecture de la classification périodique 1.1. Le tableau de Mendeleïev 1.2. Classification périodique actuelle et configuration électronique 1.3. Etats physiques des corps simples, caractère métallique 1.4. Similitude des propriétés chimiques dans une colonne 2. Electronégativité 2.1. Définition et évolution 2.2. Conséquences de l électronégativité sur les propriétés des éléments 2.3. Evolution du caractère oxydant dans la colonne des halogènes 3. Rayons 3.1. Rayon atomique 3.2. Rayon ionique Vocabulaire à connaître Période, famille, alcalin, alcalino-terreux, halogène, gaz noble, métal de transition, lanthanide, actinide, métal, électronégativité, rayon atomique, rayon ionique Programme officiel PCSI : TP 5 ENCPB-PGDG (2016/2017) 1

Chapitre 2 et TP 5 La classification périodique des éléments 1. Architecture et lecture de la classification périodique 1.1. Le tableau de Mendeleïev Source «la classification périodique des éléments» Paul Depovere PCSI : TP 5 ENCPB-PGDG (2016/2017) 2

Source : http://culturesciences.chimie.ens.fr 1.2. Classification périodique actuelle et configuration électronique Remarque : l'"ununtrium" (113), l'"ununpentium"(115), l'"ununseptium"(117) et l'"ununoctium"(118), ces éléments lourds qui occupent et complètent la septième ligne du tableau de Mendeleïv viennent d'être baptisés par l'union internationale de chimie pure et appliquée (UICPA). Leurs noms rappellent soit le lieu de leur découverte soit le nom des personnes qui y ont été associées. Ainsi, l'élément 113 qui a été découvert dans l'accélérateur de particules de l'institut de recherche RIKEN au Japon s'appellera dorénavant le Nihonium (Nh), terme qui signifie "la Terre du Soleil levant" en japonais. Le 115 sera le Moscovium (Mc) car il a été découvert à de l Institut unifié de recherches nucléaires en Russie, à côté de Moscou. L'élément 117 devient le Tennessine (Ts), pour rappeler le laboratoire d'oak Ridge dans le Tennessee, point de départ de sa fabrication. Enfin le 118, est devenu Oganesson (Og) en hommage à Yuri Oganessian, physicien russe pionnier dans la recherche des nouveaux éléments qualifiés de superlourds. Ces quatre noms ne sont pas encore définitif : une consultation publique est ouverte par l'uicpa jusqu'à la fin de l'année 2016 avant l'officialisation. www.sciencesetavenir.fr PCSI : TP 5 ENCPB-PGDG (2016/2017) 3

Wikipédia La structure de cette classification est liée au remplissage successif des différentes sous-couches selon l ordre donné par la règle de Klechkowsky. Chaque période débute par le remplissage d une sous-couche ns et s achève par celui de la sous-couche np (sauf pour n=1). n croît de une unité au changement de ligne. o Première période : elle correspond au remplissage de la 1s et présente donc deux éléments l hydrogène et l hélium. o Deuxième période : remplissage successif de la 2s puis de la 2p, donc au total 8 éléments. Comme l hélium, le néon a à sa périphérie une couche électronique complète ce qui lui confère une grande stabilité. o Troisième période : remplissage de la 3s puis de la 3p (remarque: la 3d conformément à la règle de Klechkowsky sera remplie après la 4s). Cette période comprend également 8 éléments. o Quatrième période : remplissage successif de la 4s, de la 3d puis de la 4p. Cette période comprend donc 18 éléments. Les 10 éléments correspondant au remplissage progressif de la 3d constituent la première série des métaux de transition. o Cinquième période : remplissage successif de la 5s, de la 4d puis de la 5p. Cette période comprend également 18 éléments. Les 10 éléments correspondant au remplissage progressif de la 4d constituent la deuxième série des métaux de transition. o Sixième période : remplissage successif de la 6s, de la 4f, de la 5d puis de la 6p. Cette période devrait donc comprendre donc 18+14 éléments. Pour plus de clarté, les éléments correspondant au remplissage de la 4f, appelés lanthanides sont mis à part. Les 10 éléments correspondant au remplissage progressif de la 5d constituent la troisième série des métaux de transition. o Septième période : remplissage successif de la 7s, de la 5f, de la 6d puis de la 7p. Cette période comprend 18 éléments, les 14 éléments correspondant au remplissage de la 5f, appelés actinides étant également présentés à part. A noter qu après le plutonium (Z=94) tous les éléments sont artificiels. PCSI : TP 5 ENCPB-PGDG (2016/2017) 4

Récapitulatif : Période Sous-couches remplies Nombre Nom des éléments d éléments 1 H - He 2 Li Be B C N O F - Ne 3 Na Mg Al Si P S - Cl- Ar 4 5 6 7 Il faut connaître les noms, symboles et numéros atomiques des éléments des trois premières périodes. Des phrases mnémotechniques permettent de les retrouver : 2 ème ligne : Lili Becta Bien Chez Notre Oncle Ferdinand Nestor. 3 ème ligne : Napoléon Mangea Allègrement Six PouletsSans Claquer d Argent. Par construction, les éléments d une même période ont donc le même nombre quantique n maximal et les éléments d une même colonne la même structure électronique externe donc en particulier le même nombre d électrons de valence. Les électrons de valence étant responsables des propriétés chimiques, celles-ci seront voisines pour des éléments de la même colonne : on dit qu ils constituent une famille. Quatre familles sont à connaître : Famille des alcalins Colonne 1 à l exception de l hydrogène Structure de valence de type ns 1 Famille des alcalino-terreux Colonne 2 Structure de valence de type ns 2 Famille des halogènes Colonne 17 Structure de valence de type ns 2 np 5 Famille des gaz nobles Colonne 18 Structure de valence de type ns 2 np 6 Les 4 premiers éléments de la famille des halogènes (F, Cl, Br, I) sont à connaître. Certaines colonnes sont parfois regroupées sous la dénomination de blocs classés selon le type de souscouches en cours de remplissage (bloc s pour les colonnes 1 et 2, bloc p pour les colonnes 13-18, bloc d pour les colonnes 3-12, bloc f à part). PCSI : TP 5 ENCPB-PGDG (2016/2017) 5

Application : vous devez pouvoir déduire la configuration électronique d un atome connaissant sa position dans la classification périodique et réciproquement. -Déterminer la position (période et colonne) des éléments suivants Mg(Z=12), Si(Z=14), Cs (Z=55), Ti (Z=22) et Sn(Z=50). -Déterminer le numéro atomique de l élément de la période 3 ayant les propriétés du Be (Z = 4) et de l élément de la période 4 ayant les propriétés du carbone (Z = 6). -Déterminer le numéro atomique de l élément situé dans la 10 ième colonne et 5 ième période. 1.3. Etats physiques des corps simples, caractère métallique Corps simples solides dans les conditions usuelles : Corps simples liquides dans les conditions usuelles : Corps simples gazeux dans les conditions usuelles : Métal ou non métal? Aspect macroscopique : citer 6 propriétés caractérisant les métaux - - - - - - Aspect microscopique : Un des modèles les plus simples pour décrire les métaux à l échelle microscopique est le modèle du gaz d électrons libres. Les atomes constituant le métal libèrent un ou plusieurs électrons délocalisés sous la forme d un nuage mobile ou gaz d électrons libres sur l ensemble du cristal. Les non-métaux sont en général mats et non conducteurs électriques ou thermiques. Les métalloïdes à la frontière entre les métaux et non-métaux ont des propriétés intermédiaires. PCSI : TP 5 ENCPB-PGDG (2016/2017) 6

Application : positionner les éléments suivants dans la classification puis par observation du corps simple associé, classer les dans la catégorie métallique ou non-métallique : C(Z=6), N(Z=7),O(Z=8), Na(Z=11), Mg(Z=12), Al(Z=13), P(Z=15), S(Z=16), Fe(Z=26), Cu (Z=29), Zn(Z=30), Br(Z=35), Ag(Z=47), Sn(Z=50), I(Z=53). 1.4. Similitude des propriétés chimiques dans une colonne Etude de la famille des alcalins Expérience Periodic videos PCSI : TP 5 ENCPB-PGDG (2016/2017) 7

Etude de la famille des halogènes Les corps simples X 2 F 2 Cl 2 Br 2 I 2 Etat physique dans les CNTP Expérience Periodic videos 2. Electronégativité 2.1. Définition et évolution L électronégativité, notée χ, est une grandeur qui traduit l aptitude d un atome B à attirer à lui le doublet d électrons qui l associe à un autre atome A. Si l atome B est plus électronégatif que l atome A, alors B attire plu s vers lui le doublet qu il partage avec A. La liaison covalente est alors polarisée. si χb>χa A ------- B Plusieurs échelles ont été définies pour pouvoir attribuer à chaque élément une valeur d électronégativité et ainsi comparer l électronégativité des différents éléments. L échelle de Mulliken s appuie sur des grandeurs traduisant la capacité des éléments à capter ou céder un électron. L échelle de Pauling s appuie sur les valeurs des énergies de liaisons covalentes mettant en jeu les éléments étudiés. Suivant les phénomènes étudiés, certaines échelles sont plus adaptées que d autres. En chimie, l échelle de Pauling est très utilisée. D une échelle à l autre, les valeurs d électronégativité peuvent varier mais les classements relatifs d électronégativité restent similaires. PCSI : TP 5 ENCPB-PGDG (2016/2017) 8

L électronégativité des éléments présente des variations remarquables lorsqu on se déplace dans la classification périodique. Source : Bréal PCSI A noter que l élément le plus électronégatif de la classification est le fluor. L hydrogène a lui une valeur d électronégativité particulière similaire à celle des éléments du la colonne 13 bien qu il soit dans la première colonne. A retenir : l électronégativité augmente sur une période de la gauche vers la droite ou sur une colonne du bas vers le haut. χ 2.2. Conséquences de l électronégativité sur les propriétés des éléments Les corps simples constitués d atomes ayant une forte électronégativité, en particulier les atomes des colonnes 16 et 17, ont une forte tendance à capter des électrons, ce sont des oxydants. Lors de la capture d électrons ces corps donnent des anions dont la structure électronique est identique à celles des gaz nobles qui les suivent dans la classification. Les corps simples constitués d atomes ayant une faible électronégativité, en particulier les atomes des colonnes 1 et2, ont une forte tendance à céder des électrons, ce sont des réducteurs. Lors de la cession d électrons ces corps donnent des cati ons dont la structure électronique est identique à celles des gaz nobles qui les précèdent dans la classification. Le caractère métallique ou non d un corps simple peut également être relié à l électronégativité. Les éléments de faible électronégat ivité laissent facilement leurs électrons se délocaliser, les autres tendent à les partager en formant des liaisons covalentes. PCSI : TP 5 ENCPB-PGDG (2016/2017) 9

2.3. Evolution du caractère oxydant dans la colonne des halogènes Les halogènes ont des propriétés chimiques très proches mais du fait de leurs électronégativités différentes, ils présentent des variations de leur pouvoir oxydant. On se propose ici de classer le pouvoir oxydant des halogènes. Proposer un protocole expérimental permettant de classer le pouvoir oxydant des dihalogènes. Les solutions suivantes sont à disposition : -eau de brome (à manipuler impérativement sous hotte) -eau iodée -solutions aqueuses de NaCl, NaBr, NaI -cyclohexane (solvant organique dans lequel les dihalogènes sont très solubles). Le protocole devra être validé par le professeur. Les résultats devront être présentés sous la forme d un tableau. Un traitement adéquat des solutions utilisées devra être proposé à la fin de la manipulation, pour éviter le rejet de dihalogènes. Remarque : en présence d un excès d ions iodure, le diiode, peu soluble dans l eau, forme avec l ion iodure, l ion triiodure I3 - très soluble. Prévision de la position du difluor dans le classement? PCSI : TP 5 ENCPB-PGDG (2016/2017) 10

3. Rayons 3.1. Rayon atomique Le rayon d un atome est défini comme la distance la plus probable des électrons de valence par rapport au noyau. Evolution du rayon atomique dans la classification périodique : Source «structure électronique des molécules» Yves Jean et François Volatron D une manière générale le rayon d un atome diminue lorsque l on se déplace de la gauche vers la droite sur la classification périodique. Cette évolution peut être comprise en s intéressant à la charge effective ressentie par les électrons de valence. Un électron de valence est en effet soumis à l attraction du noyau de nombre de charges Z mais cette attraction est fortement diminuée par la présence des électrons situés sur les couches inférieures. Tout se passe comme s il interagissait avec un noyau de charge inférieure notée Z* est appelée charge effective. H 1,0 He 1,70 Li 1,30 Be 1,95 B 2,60 C 3,25 N 3,90 O 4,55 F 5,20 Ne 5,85 Na 2,20 Mg 2,85 Al 3,50 Si 4,15 P 4,80 S 5,45 Cl 6,10 Ar 6,75 K 2,20 Ca 2,85 Ga 5,00 Ge 5,65 As 6,30 Se 6,95 Br 7,60 Kr 8,25 Rb 2,20 Sr 2,85 In 5,00 Sn 5,65 Sb 6,30 Te 6,95 I 7,60 Xe 8,25 Charges effective Z* ressentie par les électrons de valence pour les atomes des cinq première périodes Lorsque l on se déplace sur une ligne, le numéro atomique croît de une unité, il y a également un électron supplémentaire atténuant la charge ressentie mais étant sur la même couche il ne compense pas cette augmentation. Lorsque l on se déplace selon une colonne, le rayon atomique croît. Les électrons de valence se situent en effet sur des couches de plus en plus éloignées du noyau. PCSI : TP 5 ENCPB-PGDG (2016/2017) 11

3.2. Rayon ionique Le principe est le même pour les ions. Le rayon est défini par la distance la plus probable au noyau des électrons de valence. Les cations qui résultent de la perte d électrons externes d un atome sont plus petits : la charge du noyau n a pas changé mais il y a moins d électrons dans le cortège électronique, la charge effective augmente. Les anions qui résultent de l acquisition d électrons venant se loger sur la couche externe d un atome sont plus gros : la charge du noyau n a pas changé mais il y a plus d électrons dans le cortège électronique, la charge effective diminue. PCSI : TP 5 ENCPB-PGDG (2016/2017) 12

PCSI : TP 5 ENCPB-PGDG (2016/2017) 13

PCSI : TP 5 ENCPB-PGDG (2016/2017) 14