Comprendre la cohésion et la transformation de la matière

Documents pareils
Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

La physique nucléaire et ses applications

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

P17- REACTIONS NUCLEAIRES

Introduction à la physique nucléaire et aux réacteurs nucléaires

8/10/10. Les réactions nucléaires

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

Chapitre 5 : Noyaux, masse et énergie

Professeur Eva PEBAY-PEYROULA

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

Chapitre 11: Réactions nucléaires, radioactivité et fission

Transformations nucléaires

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème /2015

Radioactivité et chimie nucléaire

Energie nucléaire. Quelques éléments de physique

NOYAU, MASSE ET ENERGIE

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

Stage : "Développer les compétences de la 5ème à la Terminale"

5 >L énergie nucléaire: fusion et fission

Lycée français La Pérouse TS. L énergie nucléaire CH P6. Exos BAC

BTS BAT 1 Notions élémentaires de chimie 1

Historique. Les radiations nucléaires 1

Chap 2 : Noyaux, masse, énergie.

Transformations nucléaires

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

Henri Becquerel : Découverte de la radioactivité

EXERCICES SUPPLÉMENTAIRES

Équivalence masse-énergie

Fluorescent ou phosphorescent?

C4: Réactions nucléaires, radioactivité et fission

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

EPREUVE COMMUNE DE TIPE 2009 partie D ANALYSES RADIOCHIMIQUES ET ISOTOPIQUES : LES TRACEURS RADIOACTIFS

Panorama de l astronomie

PHYSIQUE Discipline fondamentale

LE VIDE ABSOLU EXISTE-T-IL?

La vie des étoiles. La vie des étoiles. Mardi 7 août

Dossier «L énergie nucléaire»

Atelier : L énergie nucléaire en Astrophysique

Principe et fonctionnement des bombes atomiques

FICHE 1 Fiche à destination des enseignants 1S 16 Y a-t-il quelqu un pour sauver le principe de conservation de l énergie?

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Comprendre l Univers grâce aux messages de la lumière

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Enseignement secondaire

Chapitre I- Le champ électrostatique. I.1.1- Phénomènes électrostatiques : notion de charge électrique

Chapitre 6 : les groupements d'étoiles et l'espace interstellaire

La physique nucléaire

C3. Produire de l électricité

1. Qu est 2. La radioactivité

A) Les réactions de fusion nucléaire dans les étoiles comme le Soleil.

LE COSMODETECTEUR : UN EXEMPLE DE CHAÎNE DE MESURE

a. Fusion et énergie de liaison des noyaux b. La barrière Coulombienne c. Effet tunnel & pic de Gamov

PHYSIQUE QUANTIQUE ET STATISTIQUE PHYS-H-200

L'ÉNERGIE ET LA MATIÈRE PETITE EXPLORATION DU MONDE DE LA PHYSIQUE

TD 9 Problème à deux corps

L ÉNERGIE C EST QUOI?

Chapitre 02. La lumière des étoiles. Exercices :

NUAGES INTERSTELLAIRES ET NEBULEUSES

PHY113 : Cours de Radioactivité

DIFFRACTion des ondes

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

Théorie quantique et échelles macroscopiques

La Fusion Nucléaire (Tokamak) Nicolas Carrard Jonathan Carrier Guillomet 12 novembre 2009

La physique quantique couvre plus de 60 ordres de grandeur!

Photons, expériences de pensée et chat de Schrödinger: une promenade quantique

Unités, mesures et précision

Où est passée l antimatière?

Un miroir brisé qui fait le bonheur des physiciens

Chapitre 2 RÉACTIONS NUCLÉAIRES

Quelques liens entre. l'infiniment petit et l'infiniment grand

ANALYSE SPECTRALE. monochromateur

CHAPITRE VI : HYBRIDATION GEOMETRIE DES MOLECULES

La mesure du temps en géologie. Jacques Deferne

PROGRAMME DE PHYSIQUE - CHIMIE EN CLASSE DE SECONDE GÉNÉRALE ET TECHNOLOGIQUE

FUSION PAR CONFINEMENT MAGNÉTIQUE

L ÉLECTRICITÉ C EST QUOI?

Opérateur d analyseurs à fluorescence X portatifs. Livret de renseignements sur la certification et la préparation relatives aux évaluations

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

Électricité statique. Introduction. Quelques étapes historiques importantes

TP N 3 La composition chimique du vivant

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

L énergie sous toutes ses formes : définitions

PHYSIQUE CHIMIE. Notions de première indispensables. Table des matières. pour la Terminale S 1 LE PHOTON 2 LES SOLUTIONS COLORÉES

Électricité. 1 Interaction électrique et modèle de l atome

3 Charges électriques

par Alain Bonnier, D.Sc.

nucléaire 11 > L astrophysique w Science des étoiles et du cosmos

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Résonance Magnétique Nucléaire : RMN

Panorama de l astronomie. 7. Spectroscopie et applications astrophysiques

Complément: Sources naturelles de rayonnement

Molécules et Liaison chimique

Leçon n 1 : «Les grandes innovations scientifiques et technologiques»

Rayonnements dans l univers

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes).

Transcription:

Rappels Du noyau de l atome à l Univers 1. Constitution de la matière Toute matière est constituée eux-mêmes constitués de trois types de particules élémentaires :, et Les sont concentrés au centre de l'atome avec : ils forment le de l'atome. Les se situent autour du noyau. L atome possède autant de.. que 2. Les charges électriques Les trois particules élémentaires (protons, neutrons et électrons) possèdent une masse mais aussi une charge électrique (qui s appelle généralement q) et qui se mesure en coulomb (symbole C). Particule Masse (kg) Charge (C) Neutron 1,675.10-27 0 Proton 1,673.10-27 1,6.10-19 Electron 9,1.10-31 -1,6.10-19 La valeur 1,6.10-19 C s appelle la charge élémentaire, elle se note e (e =1,6.10-19 C) Exprimer la charge, notée q, portée par un proton en fonction de «e» Que peut-on dire des masses m p et m n d un proton et d un neutron? Donner l ordre de grandeur des masse des différentes particules. Combien de fois est plus lourd un proton vis à vis de l électron? Echelle des longueurs 1S Mme GARCIA - 1 -

1 iere partie: Comprendre les interactions fondamentales de la matière Pour décrire et comprendre les phénomènes de la nature, les physiciens ont toujours recherché des lois générales et reposant sur le plus petit nombre de principes possible. Cette démarche est particulièrement flagrante en physique des particules, où la quête d une théorie unificatrice est entamée depuis les années 1930 au moins. Quatre interactions fondamentales ont été identifiées dans la nature : la gravitation, la force électromagnétique, l interaction faible et l interaction forte DOC1 D après une «brève histoire du temps» de Stephen Hawking «.. Première catégorie : La force gravitationnelle. Cette force est universelle, c est à dire que chaque particule ressent la force de gravité en fonction de sa masse. La gravité est la plus faible des forces à distance : elle peut agir à très grande distance et est toujours attractive. La seconde catégorie est la force électromagnétique qui interagit avec les particules chargées électriquement. Elle est plus puissance que la force gravitationnelle. Entre deux électrons, la force électromagnétique est quelque un million de milliards de milliards de milliards (10 42 )de fois plus grande que la force gravitationnelle. Cependant il existe deux sortes de charges électriques : la positive et la négative. La force entre deux charges positives (ou négatives) sera répulsive. L attraction électromagnétique entre les électrons chargés négativement et les protons chargés positivement dans le noyau fait que les électrons tournent autour du noyau de l atome, comme l attraction gravitationnelle fait que la Terre tourne autour du Soleil. Dernière catégorie : l interaction nucléaire forte, qui retient les protons et les neutrons ensemble dans le noyau de l atome DOC2 Quatre particules élémentaires de la matière et quelques caractéristiques : Quark up Quark down Electron neutrino charge 2/3.e -1/3.e - e 0 masse Indéterminée car Indéterminée car jamais isolé jamais isolé 9,11.10-31 kg 0 ou très faible? Constituant de Protons et Protons et neutrons neutrons atome 1S Mme GARCIA - 2 -

DOC 3 gravitationnelle Electro magnétique particules concernées Toute particule massique Toute particule chargée Propriété Portée Exemple de Loi Attractive Attractive ou répulsive Infinie mais décroissante avec la distance Infinie mais décroissante avec la distance Ex : force électrostatique de coulomb Particule messagère Graviton? Masse nulle Photon Masse nulle Intensité relative à l échelle des particules élémentaires 10-38 10-2 Forte Faible Nucléons Quarks Quark Electron Neutrino Attractive Attractive ou répulsive 10-15 m Augmente avec la distance 10-18 m Gluon Masse nulle Boson Masse non nulle 1 10-7 QUESTIONS: 1. La physique contemporaine a défini quatre interactions fondamentales à l origine de tous les phénomènes physiques connus. Les citer. 2. Placer dans l arborescence suivante les quatre interactions fondamentales. électrofaible Modèle standard Théorie de tout????? 1S Mme GARCIA - 3 -

3. Pourquoi vouloir chercher une théorie de tout? 4. Qu attend-on d une théorie? (deux réponses obligatoires). 5. Sachant que le proton et le neutron sont des particules constituées chacune de 3 quarks et connaissant leurs caractéristiques, déterminer de quelle combinaison de quarks (u et d) ils sont formés. Schématiser la situation en plaçant les lettres u et d dans les espaces blancs ci-dessous. Proton Neutron 6. Les forces électromagnétique et gravitationnelle ont une portée illimitée contrairement aux interactions faible et forte. Préciser ce qui, dans les documents, permet de l affirmer. 7. Relier chaque interaction à son domaine d action. Echelle d un proton ou d un neutron Echelle du noyau de l atome Echelle atomique, moléculaire et humaine Echelle planétaire et astronomique 1S Mme GARCIA - 4 -

8. Dans chaque phénomène physique, on peut reconnaître l une des quatre interactions fondamentales, relier chaque phénomène à l interaction qui lui correspond. Chute des corps Transformations chimiques Lumière Mouvement des planètes Poussée d Archimède Codage et traitement des données informatiques Radioactivité α (fission de noyau) Eclairs d orage Radioactivité β (transformation d un proton en neutron ou l inverse) Ondes radio Boussole Marées Tension d un fil 1S Mme GARCIA - 5 -

2 ieme partie : comprendre la cohésion du noyau Une petite histoire de la radioactivité 1) Des rayons X à la radioactivité : Le 8 novembre 1895, le physicien allemand Wilhelm K. Röntgen découvre un rayonnement invisible, de nature inconnue et qui semble traverser la matière. En plaçant une main entre le tube émetteur de ce rayonnement et un écran fluorescent (ou une plaque photographique), il voit apparaître l'ombre des os, obtenant ainsi la première «radiographie» (du latin radius, «rayon») de l'histoire. Ces rayons lui semblent si mystérieux qu'il les appelle «X-strahlen»: les rayons X. De nombreux scientifiques se demandent alors s'il n'y a pas un lien entre les rayons X et la phosphorescence de certaines substances. C'est pour répondre à cette question que le physicien français Henri Becquerel tente, au début de l'année 1896, de vérifier si les substances phosphorescentes émettent des rayons X. Il travaille alors sur les sels d'uranium «qui jouissent de la propriété de présenter des effets de persistance d'impressions lumineuses, c'est-à-dire de phosphorescence, d'une grande vivacité». 2) La propriété étrange des sels d Uranium : H. Becquerel «La "découverte" de la radioactivité de l'uranium par Henri Becquerel peut être datée du 1er mars 1896. Becquerel fait une observation inattendue qui doit un peu "au hasard, à la chance, à l'occident" (selon les termes de Frederick Soddy), Le mercredi 26 et le jeudi 27 février, Becquerel prépare ses plaques photographiques et ses lamelles recouvertes de sels d'uranium. Le soleil nécessaire, pense-t-il, pour exciter les sels d'uranium phosphorescents étant absent, remet au lendemain ses expériences, rangeant dans des tiroirs voisins les préparations et les plaques photographiques bien enveloppées et protégées. Le vendredi et le samedi, le temps restant couvert, l'expérimentation est encore différée. Le dimanche 1er mars, Becquerel décide, avant de reprendre ses expériences, de développer les plaques photographiques. Pour quelle raison? sans doute, par souci de rigueur et de précaution. Il constate alors avec surprise, que les plaques, pourtant dûment protégées, sont impressionnées. Il s'empresse de renouveler l'expérience en vérifiant avec soin toutes les étapes du protocole opératoire, afin d'éliminer toute cause due à une éventuelle erreur de manipulation. Il ne peut que constater l'absence de causalité entre l'émission d'un rayonnement par les sels d'uranium (qu'il appela rayons "uraniques") et leur préalable insolation. Il venait de découvrir la radioactivité.» D'après Loïc Barbo, Pierre Curie, coll. «Un savant, une époque», Belin, 1999 1S Mme GARCIA - 6 -

3) De nouvelles contributions : Au début de 1898, Marie Curie commence un travail de thèse de doctorat sur les rayons de Becquerel. Elle examine systématiquement un grand nombre de composés chimiques et de minéraux et découvre que les minerais d'uranium, telle la pechblende, émettent plus de rayonnements que l'uranium lui-même. De ce fait remarquable, elle déduit que les substances contiennent, en très petite quantité, un élément beaucoup plus actif que l'uranium. Pierre Curie joint alors ses efforts à ceux de sa femme pour parvenir à isoler l'élément inconnu qu'ils qualifient de radioactif. En juillet 1898, ils découvrent le polonium et, en décembre de la même année, le radium. À cette occasion, Marie Curie invente le mot «radioactivité». L'analyse des rayonnements a très rapidement montré qu'ils étaient constitués de P et M Curie particules chargées positivement appelées rayons, de particules chargées négativement, les rayons -, et de rayons non chargés, de même nature que la lumière ou les rayons X, très énergétiques. 4) La radioactivité artificielle : En 1934, Frédéric et Irène Joliot-Curie synthétisèrent les premiers éléments radioactifs artificiels en bombardant le bore et l aluminium avec des particules, pour former des isotopes radioactifs de l azote et du phosphore. Ils s aperçurent que l on pouvait transformer un élément stable en un autre instable, plus lourd, en le bombardant de particules : il s agit de la radioactivité artificielle Quatre ans après la découverte de la radioactivité artificielle, en décembre 1938, Otto Hahn et Fritz Strassman comprennent que le noyau d uranium, bombardé de neutrons, se casse en deux en libérant deux neutrons et une énergie considérable : l énergie nucléaire I et F Joliot Curie Questions : 1) Pour quelle raison le physicien Wilhelm K. Röntgen appelle-t-il les rayons qu il découvre rayons X? 2) Que déduit M Curie du fait que le minerai d'uranium est plus actif que l'uranium lui-même? 3) A partir de quel élément chimique a été inventé le mot «radioactivité»? 4) En consultant une classification périodique, donner le numéro atomique de l Uranium. 5) Donner les caractéristiques des noyaux (nombre de protons et nombre de neutrons) des isotopes uranium 238 et uranium 235 6) Quelle est la différence entre la radioactivité naturelle et la radioactivité artificielle? 7) Donner un exemple d utilisation de ces deux types de radioactivité. 1S Mme GARCIA - 7 -

Conclusion 3ieme partie : cohésion des solides 1. cohésion des solides ioniques Le chlorure de sodium est un composé chimique de formule NaCl. Comme nous pouvons le constater avec le schéma il est composé d' atomes de chlore aux sommets, au centre de la maille, ainsi qu'au milieu de chaque face et chaque atome de chlore est entouré d'un atome de sodium. L'ion sodium étant positif et l'ion chlorure étant négatif, les forces se compensent et c'est pour cela qu'on peut avoir un cristal de chlorure de sodium fluorine CaF 2 Quelle est la force qui permet la cohésion d un solide ionique? 1S Mme GARCIA - 8 -

Conclusion : 2. cohésion des solides moléculaires : La cohésion entre molécules provient d interactions électrostatiques entre les nuages électroniques : interactions de Van der Waals Une liaison hydrogène : Compétences attendues : Connaître les ordres de grandeur des dimensions des différentes structures des édifices organisés. Connaître l ordre de grandeur des valeurs des masses d un nucléon et de l électron. Savoir que toute charge électrique peut s exprimer en fonction de la charge élémentaire e. Associer, à chaque édifice organisé, la ou les interactions fondamentales prédominantes. Utiliser la représentation symbolique A ZX ; définir l isotopie et reconnaître des isotopes. Recueillir et exploiter des informations sur la découverte de la radioactivité naturelle et de la radioactivité artificielle. Connaître la définition et des ordres de grandeur de l activité exprimée en becquerel. Interpréter la cohésion des solides ioniques et moléculaires 1S Mme GARCIA - 9 -