APPAREIL VENTILO-RESPIRATOIRE

Documents pareils
La fonction respiratoire

Chapitre 2 : Respiration, santé et environnement.

Le Test d effort. A partir d un certain âge il est conseillé de faire un test tous les 3 ou quatre ans.

Séquence : La circulation sanguine

Fonctions non ventilatoires

THEME 2 : CORPS HUMAIN ET SANTE : L EXERCICE PHYSIQUE

Transport des gaz dans le sang

Transport des gaz dans le sang

Chapitre 7: Dynamique des fluides

Consignes de sécurité Manipulation du dioxyde de carbone CO 2

Activité 38 : Découvrir comment certains déchets issus de fonctionnement des organes sont éliminés de l organisme

Le cliché thoracique

Les fiches repères d INTEGRANS sont réalisées par ARIS Franche-Comté dans le cadre du programme INTEGRANS. Plus d infos sur

TUTORAT UE Anatomie Correction Séance n 6 Semaine du 11/03/2013

Fonctionnement de l organisme et besoin en énergie

Contenu de la formation PSE1et PSE2 (Horaires à titre indicatif)

1. LES ENTRAINEMENTS SPORTIFS

Chapitre 1 : Qu est ce que l air qui nous entoure?

L univers vivant De la cellule à l être humain

Notions physiques Niveau 2

L AUTOGREFFE QUELQUES EXPLICATIONS

APRES VOTRE CHIRURGIE THORACIQUE OU VOTRE PNEUMOTHORAX

1. Les barotraumatismes

L'oxygène. Rappel. plus d informations au : ou par mail à : gaz-medicaux@spengler.fr

PARTIE II : RISQUE INFECTIEUX ET PROTECTION DE L ORGANISME. Chapitre 1 : L Homme confronté aux microbes de son environnement

TEPZZ 8758_8A_T EP A1 (19) (11) EP A1 (12) DEMANDE DE BREVET EUROPEEN. (51) Int Cl.: A61K 33/00 ( ) A61P 25/06 (2006.

Calcaire ou eau agressive en AEP : comment y remédier?

Guide. du trachéotomisé. P i o n n i e r e t spécialiste. CREA GUIDE ANTADIR 3 Paulo.indd 1 11/09/08 15:46:10

Qu est ce qu un gaz comprimé?

LA A RESPIRATION CELLULAIRE

AMAMI Anaïs 3 C LORDEL Maryne. Les dons de cellules & de tissus.

La Greffe de Cellules Souches Hématopoïétiques

de l Université Laval Orientations et exigences générales et techniques de construction

Ventilateur pulmonaire pour soins intensifs, réanimation et premier secours. 360 x 245 x 300 mm (sans moniteur) Cycle à temps et volume constant

Référentiel CPAM Liste des codes les plus fréquents pour la spécialité :

Page : 1 de 6 MAJ: _Chaudieresbuches_serie VX_FR_ odt. Gamme de chaudières VX avec régulation GEFIcontrol :

NAVA pourquoi pas. Stéphane Delisle RRT, PhD, FCCM Mohamed Ait Si M Hamed, inh. BSc.

L eau dans le corps. Fig. 6 L eau dans le corps. Cerveau 85 % Dents 10 % Cœur 77 % Poumons 80 % Foie 73 % Reins 80 % Peau 71 % Muscles 73 %

Chapitre II La régulation de la glycémie

BPCO * La maladie respiratoire qui tue à petit feu. En France, 3,5 millions de personnes touchées dont 2/3 l ignorent morts chaque année...

Capteur optique à dioxygène

Extraits et adaptations

A. ANDRO 1, C. MESTON 2, N. MORVAN 3

Ventilation mécanique à domicile

I. EXERCICES POUR LA CERVICALGIE CHRONIQUE. Exercice 1 : Posture

Choisir et utiliser un détecteur de gaz pour le travail en espace clos.

Unité fonctionnelle de référence, à laquelle sont rapportés les impacts environnementaux du Chapitre 2

Questions avant intervention pour dépannage Enomatic

QUI PEUT CONTRACTER LA FA?

La filtration glomérulaire et sa régulation

GUIDE INFO-ASTHME.

Variantes du cycle à compression de vapeur

Analyse & Medical. Electrovannes miniatures

LISTE DES PRODUITS ET DES PRESTATIONS REMBOURSABLES (LPPR) POUR LE TRAITEMENT DE L INSUFFISANCE RESPIRATOIRE

Transfusions sanguines, greffes et transplantations

Mesurer la consommation d air comprimé ; économiser sur les coûts d énergie

Les solutions en Kiné Respiratoire par Portex. Améliorer la qualité de vie THÉRAPIE RESPIRATOIRE

Vfoyers centraux chauffent

Un environnement sans fumée pour vos enfants. Comment y parvenir?

HUMI-BLOCK - TOUPRET

La prévention des intoxications dans les silos à fourrage

Manuel d'utilisation du détecteur de fumée

Manuel d utilisation pour la Presse à Transfert Grand Format Pneumatique Double Poste

GUIDE DE BONNES PRATIQUES POUR LA COLLECTE DE PILES ET ACCUMULATEURS AU LUXEMBOURG

ERGONOMIE au bureau lutter contre les TMS

LE SPORT POUR CHACUN! Docteur CASCUA Stéphane Médecin du sport

ADMINISTRATION D OXYGENE PAR L INTESTIN EXPERIENCES AVEC DES LAPINS

La prise en charge de votre insuffisance cardiaque

UNE PRISE DE DÉCISION INFORMÉE PAR DES RÉSULTATS

ACIDES BASES. Chap.5 SPIESS

Respirer l air dont vous avez besoin : Guide pratique de maîtrise et de gestion de l essoufflement

Physiologie du nouveau-né

cuisinespyrosafe FTE C Janvier 2011

Projet d auto-construction d un chauffe-eau solaire au pays des Cigales

Elisée 150 Manuel patient Français

Séquence maladie: insuffisance cardiaque. Mieux connaître l insuffisance cardiaque Vivre avec un DAI

Le stress oxydant provoqué par l'exercice : une fatalité?

La fibrose pulmonaire idiopathique

sur la valve mitrale À propos de l insuffisance mitrale et du traitement par implantation de clip

Le Don de Moelle Ça fait pas d mal!

SYSTEMES D INHALATION

Traitement de l eau par flux dynamique

La sécurité physique et environnementale

Manuel utilisateur. Français


Chapitre 1. - Dispositifs médicaux, matériels et produits pour le traitement de pathologies spécifiques.

COMPRESSEURS DENTAIRES

La pompe cardiaque, le débit cardiaque et son contrôle

LA MESURE DE PRESSION PRINCIPE DE BASE

Dr E. CHEVRET UE Aperçu général sur l architecture et les fonctions cellulaires

biocer - système d implant dentaire

Chapitre 4 : cohabiter avec les micro-organismes. Contrat-élève 3 ème

FICHE DE DONNEES DE SECURITE

RÉCUPÉRATEUR DE CHALEUR

CONCEPT H 2 ZERO ENERGY ZERO EMISSION

APS 2. Système de poudrage Automatique

Leucémies de l enfant et de l adolescent

Les différentes maladies du coeur

La Broncho-Pneumopathie chronique obstructive (BPCO)

Cours théorique Plongée Niveau 1

Transcription:

APPAREIL VENTILO-RESPIRATOIRE I - INTRODUCTION II - RÔLE DE LA RESPIRATION III - ANATOMIE DE L'APPAREIL RESPIRATOIRE 3..- LES ORGANES DE TRANSPORT DES GAZ 3.1.1.- LES VOIES AERIENNES SUPERIEURES 3.1.2.- LES VOIES AERIENNES INFERIEURES 3.2.- LES ORGANES D ECHANGES 3.3.- L ECHANGE GAZEUX IV - PRINCIPES DE FONCTIONNEMENT DE LA RESPIRATION 4.1..- LA MECANIQUE VENTILATOIRE (L INSPIRATION ET L EXPIRATION) V - LES VOLUMES PULMONAIRES ET NOTION D ESPACE MORT VI - LES CENTRES NERVEUX QUI ASSURENT LA REGULATION DE LA RESPIRATION 6.1- LES CHEMORECEPTEURS LES MECANORECEPTEURS VII- ADAPTATION DE LA RESPIRATION EN PLONGEE AVEC BOUTEILLE 7.1.- AUGMENTATION DU TRAVAIL RESPIRATOIRE 7.1.1.- EN PLONGEE, LA PRESSION PROVOQUE 7.1.2.- MODIFICATION DU CYCLE RESPIRATOIRE Page 1 sur 6

Appareil ventilo-respiratoire APPAREIL VENTILO-RESPIRATOIRE I - INTRODUCTION La respiration permet l'apport de l'oxygène aux cellules et l'élimination du gaz carbonique produit par les métabolismes de celle-ci. La ventilation permet le transport des gaz extérieurs jusqu'au lieu d'échange (la membrane alvéolaire) et l'évacuation vers l'extérieur des gaz éliminés. II - RÔLE DE LA RESPIRATION Faire passer dans le sang les gaz de l'air contenus dans les poumons (inspiration) Rejeter le CO2, produit par l'activité cellulaire (résultat de la combustion de l'o2), le N2 ainsi qu'une partie de l O2 qui ne sont pas consommés par l'organisme, vers l'extérieur du corps (expiration). L'échange gazeux entre les alvéoles pulmonaires et le sang s'appelle l'hématose. La respiration est non volontaire, c'est la teneur en CO2 qui est responsable du déclenchement de la respiration, lorsque cette information arrive au bulbe rachidien, celui-ci commande les muscles du diaphragme. Lorsque les muscles sont contractés, le diaphragme comprime les poumons, c'est l'expiration. Quand ils se relâchent c'est l'inspiration, l'air arrive dans les poumons par dépression. III - ANATOMIE DE L'APPAREIL RESPIRATOIRE 3.1- LES ORGANES DE TRANSPORT DES GAZ 3.1.1.- LES VOIES AERIENNES SUPERIEURES Les fosses nasales qui ont un rôle de transport, un rôle de réchauffement et de désinfection de l'air. La bouche sert d'assistance des fosses nasales en cas d'obstruction ou de saturation de celles-ci. Le larynx, carrefour entre les voies aériennes et les voies digestives. La trachée est le tuyau élastique qui permet, lors de l inspiration, d'amener l'air dans les bronches. Elle naît dans le cou et fait suite au larynx. Elle se prolonge ensuite dans le thorax (dans le médiastin), et se divise au niveau de la cinquième vertèbre thoracique en deux bronches souches gauche et droite. Permet de faire sortir l'air riche en CO2 lors de l expiration. 3.1.2.- LES VOIES AERIENNES INFERIEURES Les bronches sont des tubes creux qui se ramifient et qui permettent de distribuer l'air aux deux poumons. Cet air rentre dans l'organisme lors de l'inspiration par le nez ou la bouche, passe par le larynx puis par la trachée qui descend à l'intérieur du thorax. La trachée se divise en deux bronches principales, une pour chaque poumon. Les bronches se divisent ensuite environ 25 fois pour amener l'air jusqu'aux alvéoles pulmonaires. Les bronchioles, (1 mm de diamètre), sont le prolongement de la bronche et permettent l'accès de l'air aux alvéoles. Page 2 sur 6

3.2.- LES ORGANES D ECHANGES Les alvéoles, au nombre de 700 millions, elles représentent une surface de 100 à 150 m 2. Elles ont la forme d'une cavité sphérique de 0,1 à 0,3 mm de diamètre et sont entourées d'un filet dense de capillaires (artériels et veineux). La paroi de chacune des alvéoles est formée d épithélium plat de 0,4 micromètre d épaisseur. Leur paroi interne est recouverte d'une fine couche de surfactant. Le surfactant : Son rôle principal est de réduire la tension superficielle air/liquide créée par la fine couche de liquide se trouvant à la surface des alvéoles pulmonaires. La réduction facilite l'expansion des alvéoles à l'inspiration et les maintient ouvertes pendant l expiration. Le surfactant joue un rôle dans la perméabilité alvéolaire (effet anti-œdémateux) et dans les mécanismes de défenses contre les micro-organismes. 3.3.- L ECHANGE GAZEUX Étape pulmonaire : L air inspiré (21% O 2, 79%N 2, 0,03% CO 2 ) arrive dans les alvéoles pulmonaires. L'air expiré contient 16 % d'o 2, 79 % de N 2 et 4 % de CO 2. Les échanges se réalisent au niveau des alvéoles. L'O 2 est à une Pp plus importante dans les alvéoles que dans le sang, il diffuse des alvéoles au sang en se dissolvant successivement dans le surfactant, la barrière alvéolaire, le plasma et les globules rouges. Le CO 2 du sang a une tension > à la Pp de CO 2 dans les alvéoles vers le sang ; il va se dissoudre successivement dans la barrière alvéolaire et le surfactant. Le N2 est transporté dans le corps de manière passive. Étape sanguine : L'hémoglobine qui a une affinité très importante pour l'oxygène va le fixer rapidement. Il va se saturer à 97 % pour les Pp normales d'oxygène. Le CO 2 est transporté dans le sang essentiellement de manière dissoute. Étape tissulaire :Le sang oxygéné et débarrassé du CO 2 va rejoindre la circulation générale, via le cœur, et arriver au niveau des capillaires. De nouveaux échanges gazeux vont se produire, d'abord entre le sang et le milieu interstitiels, puis entre le milieu interstitiel et les cellules. Ces échanges se font dans le sens du compartiment où la Pp est la plus élevée vers celui où elle est plus faible. Les cellules vont s'enrichir en O 2 et libérer du CO 2 Le sang va s'appauvrir en O 2, alors que sa concentration en CO 2 va augmenter. Au niveau des cellules, l O 2 va intervenir dans des réactions biochimiques du métabolisme (respiration cellulaire). La "respiration cellulaire" va participer à la synthèse de molécules " réservoirs énergétiques" comme les molécules d'a.t.p. Elles seront accompagnées d'une production de CO 2, qui suivra le chemin inverse : Cellules => milieu interstitiel => sang => poumons d'où il sera évacué lors des expirations. Mode de transport du CO2 87% sous forme de bicarbonate par le plasma 8% combinés à l hémoglobine 5% dissous dans le plasma Page 3 sur 6

IV - PRINCIPES DE FONCTIONNEMENT DE LA RESPIRATION 4.1..- LA MECANIQUE VENTILATOIRE (L INSPIRATION ET L EXPIRATION) L'inspiration, les muscles respiratoires augmentent le volume de la cage thoracique et créent une dépression dans la cage thoracique. L'air extérieur, aspiré par la dépression s engouffre dans les voies respiratoires. L'expiration : assurée par l'élasticité de la cage thoracique la ramène à son volume initial. À la fin de l'expiration, il existe une pause de repos respiratoire. Ce cycle respiratoire simple est valable au repos, la ventilation n'utilise pratiquement que le diaphragme et mobilise un volume faible (0,5 l). L'utilisation volontaire des muscles expiratoires permet une recompression de la cage thoracique, allant au-delà de sa position de neutralité élastique, c'est la mobilisation du VRE (1,5 l). Les mécanismes ventilatoires sont commandés de manière semi-volontaire par le bulbe rachidien. Ils sont dépendants des taux sanguins de gaz carbonique et d'oxygène et du ph sanguin. V - LES VOLUMES PULMONAIRES ET NOTION D ESPACE MORT Au repos, un adulte inspire et expire environ 0,5 l d air, appelé Volume courant (VC). La fréquence du cycle ventilatoire est d environ 15 à 20 mouvements par min., soit un débit de 7,5 à 10 l/min. En adoptant une ventilation forcée, nous pouvons mobiliser 2 litres de volume de réserve inspiratoire (VRI) et 1,5 litre de volume de réserve expiratoire (VRE). La somme de ces deux volumes détermine la capacité vitale (VC), 3,5 l pour la femme et 4,5 l pour l homme). À l effort, le débit peut dépasser les 100 l/min. Nous ne pouvons vider totalement nos poumons. C est le volume résiduel (VR), environ 1,2 litre. Ces volumes de réserve inspiratoire et expiratoire sont très sollicités en plongée. Ils permettent de maîtriser et d adapter notre ventilation. L espace mort anatomique représente le volume d air qui ne participe pas aux échanges gazeux, car situés en dehors des alvéoles (nez, bouche, pharynx, trachée, bronches, bronchioles). Cela représente un volume de 150 ml (0,150 l). Lors d une inspiration de 500 m l d air (0,5 l), seulement 0,350 ml (0,350 l) participent aux échanges alvéolaires. Ce sont les 150 ml de l espace mort qui parviennent d abord aux alvéoles, avant d être complétés par de l air frais, ce qui limite l efficacité du renouvellement d air. L espace mort Les volumes pulmonaires Page 4 sur 6

VI - LES CENTRES NERVEUX QUI ASSURENT LA REGULATION DE LA RESPIRATION 6.1- LES CHEMORECEPTEURS LES MECANORECEPTEURS Lors d une augmentation du taux de CO 2 dans le sang artériel, des récepteurs, sensibles à la modification du PH sanguin, réagissent aussitôt et provoquent alors un mécanisme de régulation, en augmentant la fréquence et l amplitude ventilatoires, et ce, jusqu à ce que le PH du sang revienne à la normale. Ce sont Les chémorécepteurs centraux (chémorécepteurs du bulbe rachidien). Les chémorécepteurs périphériques (chémorécepteurs de l aorte et des carotides) Les mécanorécepteurs des poumons et des muscles respiratoires qui,sollicités par les chémorécepteurs, vont augmenter l amplitude de la ventilation. CHEMORECEPTEURS ET MECANORECEPTEUR Chémorécepteurs po 2, pco 2 et ph Page 5 sur 6

VII- ADAPTATION DE LA RESPIRATION EN PLONGEE AVEC BOUTEILLE 7.1.- AUGMENTATION DU TRAVAIL RESPIRATOIRE 7.1.1.- EN PLONGEE, LA PRESSION PROVOQUE - Une augmentation de la densité de l'air et ainsi une augmentation de la viscosité du gaz. = Majoration des résistances à l'écoulement et un accroissement du travail respiratoire nécessaire. - Une diminution de l'élasticité de la cage thoracique,= Demande une augmentation du travail respiratoire. Le détendeur provoque un espace mort supplémentaire et augmente la quantité d'air mobilisé "pour rien". Ces phénomènes aboutissent à une augmentation du travail respiratoire, et donc à une diminution importante du rendement respiratoire. Il y a un risque majoré d'essoufflement, pouvant aller dans certaines circonstances jusqu'à l'essoufflement malin où le seul travail respiratoire dégage plus de gaz carbonique qu'il ne peut en éliminer. 7.1.2.- MODIFICATION DU CYCLE RESPIRATOIRE À l' inspiration, après un bref effort nécessaire pour ouvrir les clapets, le détendeur délivre un air à une pression légèrement supérieure à la pression ambiante. Le gradient de pression entre la bouche et les alvéoles va donc être diminué ou inversé et l'inspiration va devenir passive. En cas d'essoufflement, la mobilisation des muscles inspirateurs accessoires ne va pas permettre une augmentation très importante du débit, et va donc être un travail rapidement inutile. À l'expiration, il faudra fournir un effort pour lutter contre la pression ambiante et la valve d'évacuation du détendeur. La seule élasticité pulmonaire ne suffit pas, l'expiration va donc devenir active. La pause respiratoire de fin de cycle est naturellement réalisée à la fin de la période passive, elle se fera ici en inspiration. Il existe donc en plongée une inversion du cycle respiratoire que le plongeur doit bien connaître afin de bien gérer sa respiration, et d'éviter ainsi l'apparition d'un essoufflement. En cas d'essoufflement débutant, il faudra lutter contre les réflexes "terrestres", en limitant le déplacement du cycle respiratoire vers le VRE. Il devra forcer sur l'expiration et limiter l'inspiration contrairement au réflexe inné. ============================= Page 6 sur 6