Physique-Chimie EXAMEN BLANC N 1

Documents pareils
LABORATOIRES DE CHIMIE Techniques de dosage

(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.»

DÉTERMINATION DU POURCENTAGE EN ACIDE D UN VINAIGRE. Sommaire

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

FICHE 1 Fiche à destination des enseignants

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

pka D UN INDICATEUR COLORE

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

Chapitre 7 Les solutions colorées

TP : Suivi d'une réaction par spectrophotométrie

Rappels sur les couples oxydantsréducteurs

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

TP 3 diffusion à travers une membrane

Comment suivre l évolution d une transformation chimique? + S 2 O 8 = I SO 4

Meine Flüssigkeit ist gefärbt*, comme disaient August Beer ( ) et Johann Heinrich Lambert ( )

TS 31 ATTAQUE DE FOURMIS!

C2 - DOSAGE ACIDE FAIBLE - BASE FORTE

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Titre alcalimétrique et titre alcalimétrique complet

Les solutions. Chapitre 2 - Modèle. 1 Définitions sur les solutions. 2 Concentration massique d une solution. 3 Dilution d une solution

DETERMINATION DE LA CONCENTRATION D UNE SOLUTION COLOREE

Exemple de cahier de laboratoire : cas du sujet 2014

SP. 3. Concentration molaire exercices. Savoir son cours. Concentrations : Classement. Concentration encore. Dilution :

Chapitre 02. La lumière des étoiles. Exercices :

A chaque couleur dans l'air correspond une longueur d'onde.

Vitesse d une réaction chimique

La spectrophotométrie

259 VOLUMETRIE ET TITRATION DOSAGE DU NaOH DANS LE DESTOP

Mesures calorimétriques

Site : mail : mennier@isnab.fr SUJET ES - session 2003 Page 1 68-(7(6VHVVLRQ

Mesures et incertitudes

TP n 1: Initiation au laboratoire

Suivi d une réaction lente par chromatographie

ANALYSE SPECTRALE. monochromateur

Synthèse et propriétés des savons.

Sujet. calculatrice: autorisée durée: 4 heures

EXERCİCE N 1 : «Synthèse de l éthanamide» (7 pts)

TRAVAUX PRATIQUESDE BIOCHIMIE L1

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

TPG 12 - Spectrophotométrie

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

Classe : 1 ère STL Enseignement : Mesure et Instrumentation. d une mesure. Titre : mesure de concentration par spectrophotométrie

Session 2011 PHYSIQUE-CHIMIE. Série S. Enseignement de Spécialité. Durée de l'épreuve: 3 heures 30 - Coefficient: 8

Matériel de laboratoire

PRISE EN MAIN DU SPECTROPHOTOMETRE UV-VISIBLE SHIMADZU U.V. 240

Séquence 5 Réaction chimique par échange de protons et contrôle de la qualité par dosage

Baccalauréat STI2D et STL spécialité SPCL Épreuve de physique chimie Corrigé Session de juin 2014 en Polynésie. 15/06/2014

4. Conditionnement et conservation de l échantillon

Indicateur d'unité Voyant Marche/Arrêt

Une nouvelle technique d'analyse : La spectrophotométrie

Bleu comme un Schtroumpf Démarche d investigation

CODEX ŒNOLOGIQUE INTERNATIONAL. SUCRE DE RAISIN (MOUTS DE RAISIN CONCENTRES RECTIFIES) (Oeno 47/2000, Oeno 419A-2011, Oeno 419B-2012)

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

AGREGATION DE BIOCHIMIE GENIE BIOLOGIQUE

Exemples d utilisation de G2D à l oral de Centrale

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

Mesure du volume d'un gaz, à pression atmosphérique, en fonction de la température. Détermination expérimentale du zéro absolu.

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

ChimGéné 1.3. Guide d utilisation. Auteur : Alain DEMOLLIENS Lycée Carnot - Dijon avec la collaboration de B. DIAWARA Ecole de Chimie de Paris

CONCOURS COMMUN 2010 PHYSIQUE

BREVET DE TECHNICIEN SUPÉRIEUR QUALITÉ DANS LES INDUSTRIES ALIMENTAIRES ET LES BIO-INDUSTRIES

β-galactosidase A.2.1) à 37 C, en tampon phosphate de sodium 0,1 mol/l ph 7 plus 2-mercaptoéthanol 1 mmol/l et MgCl 2 1 mmol/l (tampon P)

33-Dosage des composés phénoliques

document proposé sur le site «Sciences Physiques en BTS» : BTS AVA 2015

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

ACIDES BASES. Chap.5 SPIESS

TP N 3 La composition chimique du vivant

DYNAMIQUE DE FORMATION DES ÉTOILES

Détermination des métaux : méthode par spectrométrie de masse à source ionisante au plasma d argon

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

Application à l astrophysique ACTIVITE

CHROMATOGRAPHIE SUR COUCHE MINCE

AGRÉGATION DE SCIENCES DE LA VIE - SCIENCES DE LA TERRE ET DE L UNIVERS

Chapitre 2 : Caractéristiques du mouvement d un solide

À propos d ITER. 1- Principe de la fusion thermonucléaire

Comprendre l Univers grâce aux messages de la lumière

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

Fiche 19 La couleur des haricots verts et cuisson

SESSION 2013 ÉPREUVE À OPTION. (durée : 4 heures coefficient : 6 note éliminatoire 4 sur 20) CHIMIE

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

Table des matières. Acides et bases en solution aqueuse Oxydo Réduction... 26

TECHNIQUES: Principes de la chromatographie

SVE 222 & PCL-442. Fascicule de Travaux Pratiques

Résonance Magnétique Nucléaire : RMN

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

SCIENCES PHYSIQUES. Durée : 3 heures. L usage d une calculatrice est interdit pour cette épreuve. CHIMIE

A B C Eau Eau savonneuse Eau + détergent

BACCALAURÉAT GÉNÉRAL PHYSIQUE-CHIMIE

SECTEUR 4 - Métiers de la santé et de l hygiène

BREVET D ÉTUDES PROFESSIONNELLES AGRICOLES SUJET

PHYSIQUE Discipline fondamentale

Exercices sur le thème II : Les savons

Décrets, arrêtés, circulaires

Exercice 1. Exercice n 1 : Déséquilibre mécanique

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

Transcription:

CLASSE DE TERMINALE S Physique-Chimie Décembre 2001 Durée : 3 h 30 EXAMEN BLANC N 1 TOUT DOCUMENT INTERDIT. L usage de calculatrices scientifiques à mémoire est autorisé. Les résultats numériques doivent être précédés d un calcul littéral. La présentation et la rédaction font partie du sujet et interviennent dans la notation. I ) CHIMIE : sur 5 points. Exercice destiné aux candidats n ayant pas choisi l enseignement de spécialité. DÉCOMPOSITION D UNE EAU OXYGÉNÉE L eau oxygénée, ou solution aqueuse de peroxyde d'hydrogène H 2 O 2, est une espèce oxydante utilisée au laboratoire. II s'agit aussi d'une espèce chimique utilisée dans la vie courante : décoloration des cheveux, désinfection des plaies. Sa décomposition, qui produit un dégagement de dioxygène, est accélérée par certains facteurs comme l'exposition à la lumière, l'ion fer (II), l'ion fer (III), le platine, On se propose d'étudier la cinétique de la réaction de décomposition du peroxyde d'hydrogène réalisée en présence de l'ion fer (II). L équation-bilan de cette réaction est : 2H 2 O 2 O 2(g) + 2 H 2 O (réaction 1). On réalise le protocole expérimental suivant : on prépare huit béchers contenant chacun V 0 = 10,0 ml d'une solution aqueuse de peroxyde d'hydrogène de concentration : [ H 2 O 2 ] 0 = 5,8.10-2 mol L -1. on les place dans une enceinte thermostatée qui maintient la température à la valeur : θ = 20 C. à la date t 0 = 0 s, on ajoute dans chaque bécher quelques gouttes d'une solution contenant des ions fer (II). Il se produit alors la réaction (1). à la date t, on prend un des huit béchers. On ajoute une grande quantité d'eau glacée dans celui-ci. On acidifie le contenu de ce bécher en ajoutant quelques gouttes d'acide sulfurique concentré. à l'aide d'une solution aqueuse de permanganate de potassium fraîchement préparée, de concentration : C KMnO4 = 1,0.10-2 mol L -1, on dose le peroxyde d'hydrogène restant dans le bécher. On note V le volume de solution aqueuse de permanganate de potassium versé pour obtenir l'équivalence du dosage. L'équation-bilan de la réaction du dosage d oxydo-réduction est : 2 MnO 4 + 5 H 2 O 2 + 6 H 3 O + 2 Mn 2+ + 5 O 2 (g) + 14 H 2 O réaction (2). 1 ) À propos du protocole. a) Quel est le rôle des ions fer (II)? Quel est le rôle de l'ajout d'eau glacée? b) Quelle verrerie utilise-t-on pour prélever 10,0 ml de solution de peroxyde d'hydrogène? Justifier le choix et dessiner la verrerie choisie. c) Préparation préalable de la solution de permanganate de potassium. Un élève doit préparer 200 ml de solution aqueuse de permanganate de potassium de concentration : C KMnO4 = 1,0.10-2 mol L -1 à partir d'une solution (notée S) de permanganate de potassium de concentration : C s = 1,0.10-1 mol L -1. Pour réaliser cette opération, il prélève 10,0 ml de solution S contenue dans un verre à pied ; à l'aide d'une pipette jaugée, il verse le prélèvement dans un bécher et complète avec de l'eau distillée jusqu'à la graduation 200 ml. Cet élève a commis deux erreurs. Lesquelles? 2 ) Étude de la réaction de décomposition de l'eau oxygénée à la température : θ 1 = 20 C. Sur le graphe page 2, on a représenté la concentration en peroxyde d'hydrogène restant en fonction du temps (courbe 1). On mesure la vitesse instantanée volumique aux instants de dates : t 1 = 12 min et : t 2 = 20 min. On trouve : V H2O2 = 1,1 mmol.l -1.min -1 et : V H2O2 = 1,6 mmol.l -1.min -1. a) Définir la vitesse instantanée volumique de disparition du peroxyde d'hydrogène à une date t. Comment peuton la déterminer graphiquement? b) Attribuer à chaque date la vitesse instantanée volumique qui lui correspond. Justifier les choix. c) Définir et déterminer graphiquement le temps de demi-réaction τ 1. 3 ) Étude de la réaction de décomposition de l'eau oxygénée à la température : θ 2 = 40 C. On recommence les mêmes expériences que précédemment mais l'enceinte thermostatée est maintenue à la température : θ 2 = 40 C. On obtient la courbe 2 (voir le graphe page 2). Interpréter l allure de cette deuxième courbe, en comparaison de la courbe 1.... /...

4 ) Expression de la concentration [ H 2 O 2 ] restante en fonction du temps. Pour tracer les courbes 1 et 2, on a dû calculer la concentration [ H 2 O 2 ] en peroxyde d'hydrogène restant à chaque instant de date t. Établir l'expression de la concentration [ H 2 O 2 ] en peroxyde d'hydrogène restant à une date t en fonction de C KMnO4, V et V 0. I ) CHIMIE : sur 5 points. Exercice destiné aux candidats ayant choisi l enseignement de spécialité. DOSAGES SUR UN VIN Le vin est une boisson vivante, en évolution continuelle, mélange très complexe où l on a pu identifier plus de 800 substances différentes. La plupart d entre elles, présentes en quantités infimes (inférieures au µg.l -1 ) nécessitent des méthodes d analyse très élaborées. D autres, en quantités plus abondantes, peuvent donner lieu à des dosages classiques. On se propose de réaliser deux dosages de substances présentes dans un vin rouge. A ] Dosage spectrophotométrique de l élément fer. 1 ) Préparation de l échantillon de vin rouge. Dans un erlenmeyer, on introduit environ 30 ml de vin rouge et le contenu de deux spatules de noir de carbone. On agite énergiquement le mélange. On laisse décanter, puis on filtre le mélange décanté sur deux épaisseurs de papier filtre. Pour quelle raison doit-on décolorer le vin au noir de carbone? 2 ) Préparation d une échelle de teinte. a) On pèse : m = 1,75 g de sel de Mohr, solide ionique hexahydraté de formule globale (NH 4) 2Fe(SO 4) 2, 6 H 2O et de masse molaire : M sel = 392,1 g.mol -1. La pesée est introduite dans une fiole jaugée de 500 ml. On ajoute au contenu de la fiole 50 ml d acide sulfurique à 2,0 mol.l -1. On agite pour faciliter la dissolution du cristal et on complète le contenu de la fiole avec de l eau distillée jusqu au trait de jauge. La solution-mère S 0 obtenue est enfin homogénéisée. Déterminer la concentration massique volumique en ions Fe 2+ de la solution S 0, soit γ 0 (Fe 2+ ). b) On effectue une dilution au 1/10 e de la solution-mère S 0. Proposer, sous forme de schémas légendés, un mode opératoire pour fabriquer la solution diluée notée S 0. On précisera, en particulier, le nom et la contenance de la verrerie utilisée. On prépare ensuite 7 tubes à essais, numérotés de 1 à 7, contenant chacun 1,50 ml d acide sulfurique à 2,0 mol.l -1 et 1,00 ml d une solution de thiocyanate de potassium, KSCN, à 2,0 mol.l -1. Dans le tube N 1, on ajoute 0,500 ml de la solution S 0, et on complète avec de l eau distillée de manière à avoir un volume total de 10,0 ml. Dans les tubes 2 à 6, on ajoute respectivement 1,00 ; 1,50 ; 2,00 ; 2,50 ; 3,00 ml de solution S 0 et on complète avec de l eau distillée de manière à avoir un volume total de 10,0 ml. On rajoute enfin, au contenu de chaque tube 1 à 6, 2,00 ml d eau oxygénée à 20 volumes. On obtient ainsi une échelle de teinte dont la concentration massique en élément fer, γ i (Fe), est donnée dans le tableau suivant. Tube N 1 2 3 4 5 6 γ i (Fe) ( mg.l -1 ) 2,50 5,00 7,50 10,0 12,5 15,0 3 ) Détermination de la concentration massique en élément fer du vin testé. Dans le tube N 7, on rajoute 5,00 ml du filtrat obtenu dans le 1 ) et on complète avec de l eau distillée de manière à avoir un volume total de 10,0 ml. Puis on ajoute les 2,00 ml d eau oxygénée à 20 volumes. On utilise alors un spectrophotomètre qui permet la mesure de l absorbance A des tubes 1 à 7 pour une certaine longueur d onde. Les résultats sont donnés dans le tableau suivant. Tube N 1 2 3 4 5 6 7 A 0,197 0,388 0,590 0,775 0,980 1,17 0,420.../ p. 3

Terminale S Examen blanc N 1 Page 3 a) Construire la courbe : A = f (γ i (Fe) ) pour les tubes 1 à 6. b) En déduire la concentration massique volumique en élément fer, γ 7 (Fe), de la solution contenue dans le tube N 7, puis celle, γ vin (Fe), de l échantillon de vin testé. B ] Dosage gravimétrique des ions sulfate. Le principe de ce dosage est de transformer tous les ions SO 2 4 présents dans l échantillon de vin testé en un précipité de sulfate de baryum que l on pèse. 1 ) Écrire l équation-bilan de la réaction de formation du sulfate de baryum. Protocole On prélève 200 ml du vin à tester (solution S 1). On dispose d une solution acidifiée S 2 de chlorure de baryum à 0,10 mol.l -1. On chauffe les deux solutions, puis l on verse 60,0 ml de la solution S 2 dans la solution S 1. Après une agitation énergique, on refroidit le mélange, on filtre, puis on lave le précipité obtenu à l eau. Après passage du précipité à l étuve à 100 C, on le pèse. On mesure : m = 0,800 g. 2 ) Déduire de la masse de précipité le nombre de moles d ions sulfate contenus dans les 200 ml de vin testé. 3 ) Le taux de sulfate d un vin est la masse de sulfate, exprimée en sulfate de potassium, contenue dans un litre de vin. Déterminer le taux de sulfate du vin testé. Données : Masses molaires atomiques : Fer : 56,0 ; Oxygène : 16,0 ; Soufre : 32,1 ; Potassium : 39,1 ; Baryum : 137,3 g.mol -1. II ) CHIMIE : sur 4 points. V É R I F I C A T I O N D U N E É T I Q U E T T E On se propose de vérifier au laboratoire les indications portées sur l'étiquette d'une bouteille de triméthanamine (CH 3 ) 3 N : «triméthanamine à 45% (pourcentage en masse) ; densité par rapport à l'eau : d = 0,86 ; M = 59 g.mol -1». La triméthanamine appartient au couple acide / base : ion triméthanammonium / triméthanamine. Le laboratoire dispose du matériel suivant : un ph-mètre, verres à pied, béchers (100 ml, 250 ml, 500 ml, 1 000 ml), pipettes jaugées (5,00 ml, 10,0 ml, 20,0 ml), fioles jaugées (250 ml, 500 ml, 1 000 ml), éprouvettes graduées de 25,0 ml, 50,0 ml et 100 ml, une burette de 25,0 ml. Pour accéder à la concentration molaire volumique C de la solution contenue dans la bouteille, on prépare une C solution S 1 de concentration molaire volumique : C 1 =. 100 1 ) On dose la solution S 1 : on en prélève un volume : V 1 = 10,0 ml ; on utilise un ph-mètre et une solution d'acide chlorhydrique de concentration : C a = 0,0500 mol.l -1. a) Faire le schéma légendé du montage ayant permis de réaliser le dosage. b) Écrire l'équation-bilan de la réaction chimique responsable de la variation du ph. c) En utilisant les résultats figurés sur la courbe ci-dessous, déterminer les coordonnées du point équivalent. d) En déduire la concentration de S 1. e) Calculer la concentration C de la solution dans la bouteille. Ce résultat est-il en accord avec les indications portées sur l'étiquette? On déterminera un pourcentage d écart. 2 ) En l'absence du ph-mètre, on aurait pu effectuer ce dosage en utilisant un indicateur coloré. Parmi les quatre indicateurs suivants, lequel choisiriez-vous? Justifier le choix. Indicateur coloré Zone de virage Hélianthine 3,1 4,4 Rouge de méthyle 4,2 6,2 Bleu de bromothymol 6,0 7,6 Phénolphtaléine 8,2 10,0 3 ) Le poisson contient souvent de la triméthanamine, produit d odeur désagréable. Lorsqu on fait cuire un poisson au courtbouillon, on ajoute souvent du vinaigre (acide éthanoïque) dans l eau de cuisson. Expliquer l intérêt d une telle addition.... /...

III ) PHYSIQUE : sur 5 points. SOLIDE SUR UNE PISTE Dans cet exercice, les résultats numériques seront donnés avec 3,00 chiffres significatifs. Dans toutes les questions de l'exercice, on néglige les frottements et la résistance de l'air. 1 ) Plan incliné (figure 1). Un plan incliné est placé au-dessus du plan horizontal (P) ; il forme avec lui l'angle α, comme l'indique la figure 1. Le point A est équidistant de B (en haut du plan incliné) et de C (sur le plan (P)). On donne : AB = AC = 0,500 m ; α = 45,0 ; g = 9,81 m.s -2. On dispose d'un solide (M), de masse m, considéré comme ponctuel. (M) se trouvant au point A, on le lance, le long du plan incliné, vers le haut, avec la vitesse V A. a) Énoncer le théorème de l énergie cinétique. b) Pour quelle valeur de V A, le solide (M) arrive-t-il au point B avec une vitesse V B nulle? 2 ) Plan incliné et circonférence (figure 2). Le solide (M) peut maintenant se déplacer sans frottements le long de la glissière (BACD). Cette glissière comporte : le plan incliné précédent ; un arc de circonférence CD, de centre O et de rayon : r = 2,00 m. L angle d'ouverture de cet arc est : α = 45,0. Le solide (M) quitte le point A sans vitesse initiale. a) Quelle est la vitesse V 1 de (M) quand il arrive au point C? b) Comparez la valeur de V 1 à celle de V A obtenue à la question 1 ). Interpréter le résultat. c) Au point C, où sa vitesse est V 1, le solide (M) aborde la partie circulaire de la glissière. On repère sa position en chaque point P de la circonférence par l'angle : θ = (OD, OP). Établir l expression qui donne la vitesse V P du mobile (M) au point P, en fonction des données et de l angle θ. d) Quelle est, au point P, l expression, en fonction des données et de l angle θ, de l intensité R de la force d action de la glissière sur le solide (M)? e) Montrez que (M) quitte la piste circulaire en un point P 1 caractérisé par l'angle : θ 1 = (OD, OP 1 ) que l on calculera. IV ) PHYSIQUE : sur 6 points. L E C Y C L O T R O N On admettra dans tout l exercice que le poids des particules est négligeable devant les autres forces qu elles subissent. Document extrait d un livre de Physique de Terminale S. Les cyclotrons sont les premiers accélérateurs de particules imaginés en 1931 par Lawrence. Leur modèle simplifié est représenté par le schéma ci-dessous. Ce schéma est une vue de dessus. Deux boîtes conductrices cylindriques, appelées «dees», baignent dans un champ magnétique uniforme B. Une source d'ions, positifs dans le cas de la figure, est placée dans la région centrale O. L ensemble est maintenu dans un vide poussé. Entre les «dees», une tension alternative : u (t) = U max cos 2πFt (où F est la fréquence de la tension et U max sa valeur maximale) est appliquée aux plaques parallèles limitant les deux «dees». L'effet de cette tension est d'accélérer rectilignement pendant une très courte durée les ions quand ils se trouvent entre les deux «dees». Ils entrent ensuite dans un «dee» où règne uniquement le champ magnétique B qui incurve leur trajectoire selon un demi-cercle. Quand le rayon de courbure de la trajectoire est devenu pratiquement égal au rayon R max des «dees», les particules atteignent une région où le champ magnétique est localement nul (point S)..../ p. 5

1 ) Que se passe-t-il dans un «dee»? Terminale S Examen blanc N 1 Page 5 a) À quelle force est soumise la particule dans un «dee»? b) Préciser le sens de B, supposé perpendiculaire au plan de la figure. Justifier la réponse. c) Exprimer le vecteur accélération a de la particule. En déduire la direction et le sens de cette accélération. d) On suppose le mouvement des particules plan. Montrer que le mouvement d'une particule de masse m est uniforme lors de son trajet dans un «dee». e) Montrer que la trajectoire d'une particule est circulaire, de rayon R, lors de son trajet dans un «dee». f ) Établir l'expression de l'énergie cinétique E Cmax d'une particule, quand elle sort de l'accélérateur, en fonction de q, B, R max (rayon d un «dee») et m. Calculer cette énergie cinétique en ev. 2 ) Que se passe-t-il entre deux «dees»? a) D'après le texte, quelle est la nature du mouvement d'une particule entre deux «dees»? b) Faire le bilan des forces appliquées à la particule entre les deux «dees» et expliquer pourquoi il faut changer le signe de la tension u (t) à chaque demi-tour. 3 ) Quand la particule quitte-t-elle le cyclotron? a) Exprimer, puis calculer, le gain d'énergie cinétique de la particule lors de la traversée de l'espace entre les «dees», lorsque la tension appliquée est U max. b) En supposant qu'initialement l'énergie cinétique de la particule est nulle, calculer le nombre de tours qu'elle aura effectué avant de sortir. Données : U max = 10,0 kv ; R max = 0,800 m ; m = 1,67.10-27 kg ; q = + 1,60.10-19 C ; B = 1,00 T ; 1 ev = 1,60.10-19 J.