TD Architecture de la matière n o 1 La Classification Périodique Structure électronique des atomes et des ions monoatomiques

Documents pareils
THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

BTS BAT 1 Notions élémentaires de chimie 1

Chapitre 02. La lumière des étoiles. Exercices :

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

Professeur Eva PEBAY-PEYROULA

Chapitre 5 : Noyaux, masse et énergie

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION

EXERCICES SUPPLÉMENTAIRES

Chapitre 11: Réactions nucléaires, radioactivité et fission

P17- REACTIONS NUCLEAIRES

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

1 ère Partie : Concepts de Base

ANALYSE SPECTRALE. monochromateur

Application à l astrophysique ACTIVITE

Enseignement secondaire

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

Atelier : L énergie nucléaire en Astrophysique

Rappels sur les couples oxydantsréducteurs

Équivalence masse-énergie

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

SECTEUR 4 - Métiers de la santé et de l hygiène

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

LES ELEMENTS CHIMIQUES

C4: Réactions nucléaires, radioactivité et fission

Physique Chimie. Réaliser les tests de reconnaissance des ions Cl -,

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

TP : Suivi d'une réaction par spectrophotométrie

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

a. Fusion et énergie de liaison des noyaux b. La barrière Coulombienne c. Effet tunnel & pic de Gamov

PROGRAMME DE PHYSIQUE - CHIMIE EN CLASSE DE SECONDE GÉNÉRALE ET TECHNOLOGIQUE

Lycée français La Pérouse TS. L énergie nucléaire CH P6. Exos BAC

CHAPITRE 2 : Structure électronique des molécules

La physique nucléaire et ses applications

INTRODUCTION À LA SPECTROSCOPIE

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

Molécules et Liaison chimique

Transformations nucléaires

Principe de fonctionnement des batteries au lithium

Physique : Thermodynamique

Titre alcalimétrique et titre alcalimétrique complet

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

Fiche de révisions sur les acides et les bases

À propos d ITER. 1- Principe de la fusion thermonucléaire

CHAPITRE VI : HYBRIDATION GEOMETRIE DES MOLECULES

TP 03 B : Mesure d une vitesse par effet Doppler

ACIDES BASES. Chap.5 SPIESS

TD 9 Problème à deux corps

LABORATOIRES DE CHIMIE Techniques de dosage

ECO-PROFIL Production Stratifié HPL mince fabriqué par Polyrey

Comprendre l Univers grâce aux messages de la lumière

T4 Pourquoi éteindre les phares d une voiture quand le moteur est arrêté? Comment fabriquer une pile? un accumulateur?

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

Energie nucléaire. Quelques éléments de physique

Généralités. Chapitre 1

BACCALAURÉAT GÉNÉRAL PHYSIQUE-CHIMIE

C3. Produire de l électricité

8/10/10. Les réactions nucléaires

Transformations nucléaires

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

Partie 1. Addition nucléophile suivie d élimination (A N + E) 1.1. Réactivité électrophile des acides carboxyliques et groupes dérivés

De la physico-chimie à la radiobiologie: nouveaux acquis (I)

3 Charges électriques

Résonance Magnétique Nucléaire : RMN

10 en agronomie. Domaine. Les engrais minéraux. Livret d autoformation ~ corrigés. technologique et professionnel

Chapitre 4 - Spectroscopie rotationnelle

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

nucléaire 11 > L astrophysique w Science des étoiles et du cosmos

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome

Baccalauréat STI2D et STL spécialité SPCL Épreuve de physique chimie Corrigé Session de juin 2014 en Polynésie. 15/06/2014

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

Correction ex feuille Etoiles-Spectres.

Compléments - Chapitre 5 Spectroscopie

pka D UN INDICATEUR COLORE

Mise en pratique : Etude de spectres

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

Chapitre 11 Bilans thermiques

SP. 3. Concentration molaire exercices. Savoir son cours. Concentrations : Classement. Concentration encore. Dilution :

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

Décrets, arrêtés, circulaires

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

Stage : "Développer les compétences de la 5ème à la Terminale"

par Alain Bonnier, D.Sc.

Chap 2 : Noyaux, masse, énergie.

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

REACTIONS D OXYDATION ET DE REDUCTION

Exercices sur le thème II : Les savons

Notes. Schéma général PRODUCTION ÉLECTROLYTIQUE Composés inorganiques, nonmétaux

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

Séquence 4. Les liquides et la conduction électrique. 1 Qu est-ce qu une «solution aqueuse»? 2 Tous les liquides ne sont pas des solutions aqueuses.

5 >L énergie nucléaire: fusion et fission

Demande chimique en oxygène

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Effets électroniques-acidité/basicité

Transcription:

Lycée François Arago Perpignan M.P.S.I. 2012-2013 TD Architecture de la matière n o 1 La Classification Périodique Structure électronique des atomes et des ions monoatomiques Constitution de l atome Exercice 1 - Masse atomique Le kilogramme est une unité qui n est pas adaptée à l ordre de grandeur des masses des atomes. En physique atomique, on préfère utiliser l unité de masse atomique (u.m.a.) qui est égale à 1/12 e de la masse d un atome de l isotope 12 du carbone. 1. Calculer la valeur de l unité de masse atomique. 2. Exprimer la masse d un proton, d un neutron et d un électron en u.m.a. 3. En déduire qu un isotope Z A X a une masse molaire M A g mol 1. masse du proton : m p = 1, 6726 10 27 kg masse du neutron : m n = 1, 6749 10 27 kg masse de l électron : m e = 9, 109 10 31 kg constante d Avogadro : N a = 6, 022 10 23 mol 1 Exercice 2 - Modèle de la goutte liquide Soit l atome de carbone 12 6C. On admet que le noyau, supposé sphérique, a un rayon obéissant à la loi empirique : R = 2 A 1/3 (en fermis). Sa masse est m = 1, 992 10 26 kg. 1. Préciser son nombre d électrons, de protons, de neutrons. 2. Calculer son rayon R, sa masse volumique µ, sa densité d et sa charge volumique (ou densité volumique de charge) ρ. Spectroscopie Exercice 3 - Déplacement isotopique du spectre de l hydrogène. On a relevé les quatre longueurs d onde les plus courtes des séries de Balmer pour l hydrogène H ( 1 1H) et son isotope naturel le deutérium D ( 2 1 H). λ H (nm) 656,279 486,133 434,047 410,174 λ D (nm) 656,100 486,000 433,929 410,062 1. Rappeler la formule de Ritz-Rybderg. 2. On rappelle que la série de Balmer correspond à la désexcitation de l atome vers le niveau d énergie E 2 (n = 2). Déterminer avec cinq chiffres significatifs, la constante de Rydberg R D pour le deutérium. S. Bénet 1

3. L étude quantique de la structure de l atome conduit à exprimer la constante de Rydberg en fonction de constantes physiques universelles : R = µe4 8ε 2 0 h3 c avec µ la masse du noyau où e est la charge de l électron, h la constante de Planck, c la vitesse de la lumière dans le vide et ε 0 la permittivité diélectrique du vide. µ est la masse réduite du système et dépend donc de la nature du noyau. Calculer les constantes de Rydberg pour l hydrogène et le deutérium et comparer avec les résultats expérimentaux (on néglige le défaut de masse du noyau de deutérium, c est-à-dire que le fait que la masse de celui-ci est légèrement inféreiure à la somme des masses d un proton et d un neutron). charge élémentaire : e = 1, 602 177 10 19 C permittivité diélectrique du vide : ε 0 = 8, 854 187 82 10 12 F m 1 constante de Planck: h = 6, 626 18 10 34 J s masse de l électron m e = 9, 109 389 7 10 31 kg masse du proton m p = 1, 672 623 1 10 27 kg vitesse de la lumière dans le vide : c = 299 792 458 m s 1 Exercice 4 - Spectre de l atome d hydrogène Des atomes d hydrogène sont excités à partir de l état fondamental par un rayonnement de longueur d onde λ = 97, 5 nm. 1. À quel domaine du spectre électromagnétique appartient ce rayonnement? 2. Quel est le niveau n de l état obtenu après absorption du rayonnement? 3. Quelles sont toutes les orbitales atomiques (cases quantiques) correspondant à ce niveau n? Préciser la valeur de tous les nombres quantiques nécessaires à la description de chacune des cases quantiques. 4. Calculer les longueurs d onde des différentes radiations que peuvent émettre ces atomes lorsqu ils se désexcitent à partir du niveau n obtenu. 1 ev = 1, 60 10 19 J vitesse de la lumière dans le vide : c = 3, 00 10 8 m s 1 constante de Planck: h = 6, 63 10 34 J s Exercice 5 - Spectre de l ion hélium L ion hélium He + est un ion hydrogénoïde, il est constitué d un noyau autour duquel gravite un seul électron. Il présente un spectre d émission constitué de séries de raies correspondant à la transition entre deux niveaux d énergie E n=j et E n=i avec j > i. L énergie de l électron de nombre quantique principal n est alors donnée par la relation E n = E 1,He n 2. 1. Sachant que la désexcitation du niveau n = 2 au niveau n = 1 s accompagne pour cet ion de l émission d une radiation de longueur d onde λ 2 1 = 30, 378 nm, donner la valeur de E 1,He en J et en ev. 2. Comparer cette valeur à celle correspondant à l atome d hydrogène : E 1,H = 13, 6 ev. 1 ev = 1, 60 10 19 J S. Bénet 2/6

vitesse de la lumière dans le vide : c = 3, 00 10 8 m s 1 constante de Planck: h = 6, 63 10 34 J s Exercice 6 - Diagramme énergétique simplifié de l atome de lithium 1. Donner la configuation électronique de l atome de lithium Z = 3 dans son état fondamental. 2. Quelle transition électronique subit l électron célibataire de l atome de lithium lorsqu il y a ionisation de l atome? L énergie d ionisation vaut 5, 39 ev. On se propose de tracer le diagramme d énergie simplifé de l atome de lithium en utilisant les longueurs d onde des transitions émises : Transition 2p 2s 3s 2p 3p 2s 4s 2p 3d 2p 4p 2p λ (nm) 671 812 323 610 497 427 3. Trouver la relation entre les différences d énergie des différentes sous-couches exprimées en ev et la longueur d onde en nm. 4. Représenter le diagramme d énergie simplifié du lithium. 5. Quelle énergie supplémentaire doit-on fournir à l électron sur la sous-couche 3s pour l amener à l infini? Quelle est la longueur d onde du laser à utiliser? 1 ev = 1, 60 10 19 J vitesse de la lumière dans le vide : c = 3, 00 10 8 m s 1 constante de Planck: h = 6, 63 10 34 J s Configuration électronique des atomes polyélectroniques Exercice 7 - Nombres quantiques. Répondre aux questions suivantes en justifiant brièvement. 1. Combien de sous-couches contient la couche n = 3? 2. Combien d orbitales atomiques contient une sous-couche f? 3. Combien d orbitales atomiques dégénérées contient la couche n = 2? 4. Combien d électrons au maximum peut contenir une sous-couche 3p? 5. Combien d électrons au maximum peut contenir la couche n = 2? 6. Quels sont les quadruplets de nombres quantiques possibles pour un électron qui occupe la sous-couche 3p? 7. Combien d électrons sont caractérisés par les couples (n, m l ) suivants : (2, 0), (3, -1)? Exercice 8 - Configurations électroniques. 1. Écrire la configuration électronique des atomes et ions suivants dans l état fondamental : Li, F, Si, Si 4+, Al 3+, Rb +, Cl,Ca 2+, Al, Co et Ga. 2. Que dire des espèces F, Al 3+ et Si 4+? Cl et Ca 2+? Ces espèces chimiques sont dites isoélectroniques. Pourquoi? 3. Indiquer quelles espèces possèdent la même configuration électronique de cœur. 4. Indiquer quelles espèces possèdent la même configuration électronique de valence. S. Bénet 3/6

Données : Exercice 9 - Élément Li F Al Si Cl Ca Co Ga Rb Z 3 9 13 14 17 20 27 31 37 Le vanadium et ses ions. 1. Écrire la configuration électronique de l atome de vanadium (Z = 23) dans l état fondamental. Combien d électrons de valence possèdel atome de vanadium? 2. Quel est l ion le plus stable que l on peut envisager à partir du vanadium? Justifier. 3. Un atome ou un ion est diamagnétique si tous ses électrons sont appariés. Il est paramagnétique s il possède au moins un électron non apparié. L ion formé à partir du vanadium est-il diamagnétique ou paramagnétique? Exercice 10 - L argent (2) L argent naturel existe sous deux formes isotopiques : (48, 17 %) de masse m 2 = 108, 90 u.m.a.. 107 79 Ag (51, 83 %) de masse m 1 = 106, 90 u.m.a. et 109 79 Ag 1. Donner la structure du noyau de ces deux isotopes. 2. Calculer la masse molaire relative à l argent naturel. 3. Justifier la structure électronique de l argent Ag : [Xe] 4f 14 5d 10 6s 1. 4. L argent donne naissance à un ion Ag n+, quelle est sa structure? Exercice 11 - Cations des éléments de transition. Les éléments de transition jouent un rôle important dans la composition des roches lunaires. Ces dernières sont notamment constituées d ions ferreux Fe 2+ et ferriques Fe 3+. Un élément de transition est un élément dont l atome possède une sous-couche d en cours de remplissage ou qui conduit à un ion possédant une sous-couche d en cours de remplissage. 1. Écrire la configuration électronique de l atome de fer Z = 26) dans son état fondamental. Le fer est-il un élément de transition? Lors de l ionisation d un élément de transition, les électrons de la sous-couche ns sont arrachés avant les électrons de la sous-couche (n 1)d. 2. Écrire la configuration électronique des ions Fe 2+ et Fe 3+. 3. Lequel des ions Fe 2+ et Fe 3+ possède la configuration électronique la plus stable dans son état fondamental? Exercice 12 - Structure électronique du chrome. L isotope naturel le plus répandu du chrome a un noyau constitué de 24 protons et 28 neutrons. 1. Donner le symbole chimique du noyau. 2. Définir la notion d isotope. Donner un exemple. 3. Indiquer, d après le principe d exclusion de Pauli et les règles de Klechkowski et de Hund, la configuration électronique du chrome à l état atomique fondamental. 4. Le chrome fait exception à cette règle de remplissage des orbitales atomiques. Donner la configuration électronique réelle. 5. Donner les configurations électroniques des ions Cr 2+ et Cr 3+. Exercice 13 - Le mercure 1. Donner la structure électronique de 80 Hg, Hg + et Hg 2+ dans leur état fondamental. 2. En réalité l ion Hg + n existe pas mais l ion Hg 2+ 2 existe. Expliquer. S. Bénet 4/6

Évolution de certaines propriétés atomiques dans la Classification Périodique Exercice 14 - Électronégativité des halogènes Les énergies de première ionisation et d attachement électronique des atomes des trois premiers halogènes sont indiquées dans le tableau ci-dessous : 1. Calculer l électronégativité de Mulliken de ces trois atomes d halogènes. 2. Comparer les valeurs d électronégativité de ces halogènes et indiquer si l évolution observée est en accord avec le sens d évolution général dans la Classification Périodique. Données : Exercice 15 - Halogène Fluor Chlore Brome Z 9 17 35 E.I. 1 (kj mol 1 ) 1, 7 10 3 1, 2 10 3 1, 1 10 3 E att,1 (ev) -3,4-3,6-3,4 Oxydes basiques 1. Citer (noms et symboles) les représentants de la famille des alcalins. 2. Le sodium métallique Na(s) réagit sur l eau pour former l ion Na + selon la réaction d équation-bilan : Na(s) + H 2 O(l) = Na + (aq) + HO (aq) + 1 2 H 2 (q) Écrire l équation-bilan de la réaction du lithium métallique sur l eau. 3. Écrire l équation-bilan de la réaction du magnésium métallique Mg(s) sur l eau, sachant que le magnésium est l élément suivant le sodium dans la Classification Périodique. Comment s appelle la famille à laquelle appartient le magnésium? 4. Par calcination des solutions précédentes, on obtient les oxydes Li 2 O(s), Na 2 O(s) et MgO(s) qui, mis en contact avec de l eau, libèrent des cations métalliques et des ions HO. Inversement, les solutions aqueuses de trioxyde de soufre SO 3 sont acides (responsables de la formation de pluies acides). Indiquer comment évolue la différence d électronégativité entre chacun des atomes de la troisième période Na, Mg, S (colonne 16) et l atome d oxygène O (deuxième période, colonne 16). En déduire un classement des oxydes précédents depuis le plus fortement ionique à celui qui l est le moins. Lier ce caractère ionique à leur comportement acido-basique. Exercice 16 - Propriétés d un atome. Un atome X 1 possède la structure électronique 1s 2 2s 2 2p 6 3s 2 3p 2 dans l état fondamental. 1. Quelle est la position de l élément X 1 dans la Classification Périodique? 2. Donner la configuration électronique à l état atomique fondamental de l élément X 2 situé juste au-dessous de X 1 dans la Classification Périodique. 3. Comparer l énergie de première ionisation de X 1 et X 2, en justifiant. 4. Comparer l énergie de première ionisation de X 1 à celle de l élément X 3 qui le suit dans la Classification Périodique, en justifiant. Exercice 17 - Le cuivre et ses ions. Le cuivre est l élément de numéro atomique Z = 29. 1. Donner la configuration électronique attendue, d après le principe d exclusion de Pauli et les règles de Klechkowski et de Hund, de l atome de cuivre dans son état fondamental. 2. En fait, cet atome constitue une exception à la règle de Klechkowski : le niveau 4s n est peuplé que d un électron. Proposer une explication. S. Bénet 5/6

3. Prévoir la configuration électronique des ions Cu + et Cu 2+ dans leur état fondamental. 4. Les énergies de première et de seconde ionisation du cuivre sont respectivement égales à 7, 7 ev et 20, 2 ev. Commenter l écart entre ces valeurs. Le cuivre est-il un élément de transition? Justifier la réponse. Exercice 18 - Règle de Hund et énergie d ionisation. 1. Rappeler la configuration électronique des atomes associés aux éléments azote (Z = 7), oxygène (Z = 8), phosphore (Z = 15) et soufre (Z = 16) dans leur état fondamental. 2. Appliquer la règle de Hund pour préciser la répartition des électrons dans les orbitales p. 3. Rappeler l évolution générale de l énergie d ionisation constatée lors d un déplacement dans une période. 4. Comment expliquer que l énergie d ionisation de l azote est supérieure à celle de l oxygène, que l énergie d ionisation du phosphore est supérieur à celle du soufre. Élement chimique N O P S Énergie de première ionisation E.I. 1 (ev) 14,5 13,6 10,5 10,4 Exercice 19 - Configuration électronique et énergie de première ionisation. Le tableau ci-dessous rappelle l énergie de première ionisation des éléments bérylium, bore, magnésium et aluminium. Élement chimique Be B Mg Al Numéro atomique Z 4 5 12 13 Énergie de première ionisation E.I. 1 (ev) 9,3 8,3 7,6 6,0 1. Rappeler l évolution générale de l énergie de première ionisation lors d un déplacement dans une période. 2. Quelle est la configuration électronique des atomes correspondant aux éléments chimiques sus-cités dans leur état fondamental? 3. Comment expliquer simplement l évolution constatée entre le béryllium et le bore d une part, le magnésium et l aluminium d autre part? S. Bénet 6/6