1.) Générallités, caractéristiques principales ) Type de sortie ) famille TTL ( Transistor, Transistor, Logique ) 6

Documents pareils
Références pour la commande

Série D65/D75/D72 Afficheurs digitaux modulaires

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)

RELAIS STATIQUE. Tension commutée

Le multiplexage. Sommaire

Convertisseurs statiques d'énergie électrique

Université Mohammed Khidher Biskra A.U.: 2014/2015

Les transistors à effet de champ

Il se peut que le produit livré diffère de l illustration.

FONCTION COMPTAGE BINAIRE ET DIVISION DE FRÉQUENCE

Chapitre 4 : Le transistor Bipolaire

Relais statiques SOLITRON MIDI, Commutation analogique, Multi Fonctions RJ1P

Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B.

VOCALYS LITE.

L'intégration et le montage d'appareillages électriques doivent être réservés à des électriciens

Mesure. Multimètre écologique J2. Réf : Français p 1. Version : 0110

SINEAX V 604 Convertisseur de mesure universel programmable. SINEAX V 604 Convertisseur de mesure universel programmable

fullprotect inside EOLE SPEie RS E-SPEie V-0.6A-RS 1.0 revision Protection environnement Datasheet édition française

Alarme intrusion filaire AEI HA zones

Les liaisons SPI et I2C

MEMOIRES MAGNETIQUES A DISQUES RIGIDES

SENACO AS100. Manuel d Utilisation Octobre 2000 ENACO AS100

Guide abrégé ME401-2

Transmission de données. A) Principaux éléments intervenant dans la transmission

ELP 304 : Électronique Numérique. Cours 1 Introduction

DI-1. Mode d'emploi. Direct Box

Guide abrégé ME301-2

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension

La polarisation des transistors

Les transistors à effet de champ.

Circuits RL et RC. Chapitre Inductance

Semi-conducteurs. 1 Montage expérimental. Expérience n 29

Centrale d alarme DA996

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

Notice d'utilisation Afficheur multifonctions et système d'évaluation FX 360. Mode/Enter

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.

I- Définitions des signaux.

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.

Atelier C TIA Portal CTIA04 : Programmation des automates S7-300 Opérations numériques

Aiguilleurs de courant intégrés monolithiquement sur silicium et leurs associations pour des applications de conversion d'énergie

Neu. Technique d installation / de surveillance. VARIMETER RCM Contrôleur différentiel type B IP 5883

Cours 9. Régimes du transistor MOS

Relais d'arrêt d'urgence, protecteurs mobiles

T500 DUAlTACH. JAQUET T500 DualTach Instrument de mesure et de surveillance équipé de 2 entrées fréquence TACHYMETRE 2 CANAUX

Modules d entrées/sorties pour FX série XM07 et XM14

Fronius IG. Onduleurs centraux PV POWERING YOUR FUTURE

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

SINEAX V 611 Convertisseur de mesure température, programmable

DISPOSITIF DE CONTROLE MULTIFONCTIONNEL POUR APPAREILS A GAZ

HAM06WS SYSTÈME D ALARME SANS FIL

Transmission d informations sur le réseau électrique

Circuits intégrés micro-ondes

CHAPITRE IX : Les appareils de mesures électriques

Oscilloscope actif de précision CONCEPT 4000M

Relais d'arrêt d'urgence, protecteurs mobiles

Chapitre I La fonction transmission

2.1 Le point mémoire statique Le point mémoire statique est fondé sur le bistable, dessiné de manière différente en Figure 1.

P E T R O L I E R S. MASTER PARK - LOT N , Boulevard de la Pomme MARSEILLE. Tél Fax CARACTÉRISTIQUES

Etude de FP3 commande moteur et électroaimant. Déplacement carte et connexion

Présentation et installation PCE-LOG V4 1-5

TP Modulation Démodulation BPSK

TP - Alarme de voiture / Approche fonctionnelle

Guide de correction TD 6

Acquisition et conditionnement de l information Les capteurs

EMETTEUR ULB. Architectures & circuits. Ecole ULB GDRO ESISAR - Valence 23-27/10/2006. David MARCHALAND STMicroelectronics 26/10/2006

Alimentation portable mah

ABB i-bus KNX Capteur météo, MS WES/A 3.1, 2CDG120046R0011

1- Maintenance préventive systématique :

Kit émetteur/récepteur pour moto avec système mains libres pour téléphone portable ou branchement audio

EP A1 (19) (11) EP A1 (12) DEMANDE DE BREVET EUROPEEN. (43) Date de publication: Bulletin 2011/26

Colonnes de signalisation

Quartz et Oscillateurs

GENERALITES SUR LA MESURE DE TEMPERATURE

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

VT-VRPD 2 2X V

Transmetteur téléphonique vocal

Architecture des ordinateurs Introduction à l informatique

J TB/TW Limiteur de température, contrôleur de température avec afficheur LCD, montage sur rail oméga 35 mm

Module de mesure de courant pour relais statiques serie HD Module de mesure de courant HD D0340I

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

IFT1215 Introduction aux systèmes informatiques

Manuel d'utilisation de la maquette

CONTRÔLE DE BALISES TYPE TB-3 MANUEL D'INSTRUCTIONS. ( Cod ) (M H) ( M / 99G ) (c) CIRCUTOR S.A.

MACHINE A SOUDER MANUEL D UTILISATION

Guide de l utilisateur. Calibreur de Courant / Voltage Modèle A

Fronius IG. Onduleurs centraux PV POWERING YOUR FUTURE

Module Relais de temporisation DC V, programmable

Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique adapté

Driver de moteurs pas-à-pas DM432C

Relais statiques SOLITRON, 1 ou 2 pôles Avec dissipateur intégré

Bien commencer avec un LaunchPad MSP430G et un Breadboard

CONVERTISSEURS NA ET AN

Nest Learning Thermostat Guide d installation

GPA770 Microélectronique appliquée Exercices série A

Chapitre 13 Numérisation de l information

- Le Diagramme de Gantt. - Le Diagramme de Pert - La Méthode QQCQCCP - La Méthode MOSI - Cahier des charges fonctionnel

VEHICULES ELECTRIQUES La réglementation applicable aux IRVE (Infrastructure de Recharge pour Véhicules Electriques) CONSUEL - CAPEB 30 octobre 2012

Module ATW-C-INV pour commande des unités extérieures d'inverter Fujitsu Airconditioning

Transcription:

COURS technologie.doc T GEL TECHNOLOGIE DES CIRCUITS NUMERIQUES 25/06/01 BUT ET OBJECTIFS : Être capable de lire une fiche technique de circuit logique et en retirer les informations de tensions, courants et rapidité permettant l utilisation de ces circuits et d'étudier leurs compatibilités. Être capable de comparer les différentes familles de circuits logiques. PRE-REQUIS : Logique de base : Équation booléenne, Comptage etc. Codage binaire, hexadécimal, décimal. Transistor bipolaire en commutation. Transistor MOS en commutation. Durée approximative de l'étude : 1 heure 30 : chapitre 1 et 2 1 heure 30 : chapitre 3, 4 et 5 1 heure 30 : chapitre 6 et 7 AVERTISSEMENT : Du fait de l'évolution rapide de l'électronique numérique moderne - place de plus en plus importante de la logique programmée, circuit alimenté en basse tension ( 3 V voir moins ) - on s'attachera plus particulièrement à étudier plus attentivement les chapitres 1, 2 et 6 en s'attachant plus particulièrement au mode opératoire plus qu'aux valeurs numériques trouvées. Ceux-ci constituants le socle commun permettant l'étude de toutes les technologies présentes et futures. 1.) Générallités, caractéristiques principales. 2 1.1.) Convention, vocabulaire. 2 1.2.) Fonction de transfert ( porte inverseuse ) 2 1.3.) Marge de bruit ( appelée aussi : Immunité au bruit ). 3 1.4.) Famille, série marquage. 3 2.) Type de sortie. 4 2.1.) Sortie «Totem pole» 4 2.2.) Sortie trois états. ( ou hautes impédance ou tri states ). 4 2.3.) Sortie collecteur ( ou drain ) ouvert. 5 3.) famille TTL ( Transistor, Transistor, Logique ) 6 3.1.) généralités 6 3.2.) étude de fiches techniques, utilisation. 7 4.) famille CMOS ( Comlémentary Metal Oxyde Silicium ) 8 5.) famille HC MOS (Hight speed Metal Oxyde Silicium ) 8 6.) Comptabilité. 9 7.) synthèse, comparaison des diffférents familles. 10 8.) fiche technique 54LS00 11 9.) fiche technique 74HC00 12 10.) fiche technique CD4011 13 Technologie.doc Auteur : B HANNEQUIN Page 1 sur 14

1 ) GENERALLITES, CARACTERISTIQUES PRINCIPALES. 1.1.) CONVENTION, VOCABULAIRE. V OH : Tension de sortie garantie à l état haut ( si les contraintes de courant débité sont respectées ). V OL : Tension de sortie garantie à l état bas ( si les contraintes de courant débité sont respectées ). V IH : Tension d entrée minimale pour que l entrée soit garantie à l état haut. V IL : Tension d entrée maximale pour que l entrée soit garantie à l état bas. I OH : Courant de sortie maximal à l état haut. I OL : Courant de sortie maximal à l état bas. I IH : Courant d entrée maximal à l état haut. I IL : Courant d entrée maximal à l état bas. V CC ou V DD : Tension d alimentation positive. V SS : Masse ou 0 V. I CC ou I DD : Courant d alimentation ( débité par Vcc ) au repos. t PHL : Temps de propagation du niveau haut vers le niveau bas. t PLH : Temps de propagation du niveau bas vers le niveau haut. Entrée Sortie t PLH t PHL Par convention tous les courants entrant sont comptés positif. Un courant sortant est donc négatif. AVERTISSEMENT : Les valeurs numériques citées dans le cours ne sont à prendre que comme des ordres de grandeur. Celles-ci peuvent légèrement varier pour une même technologie suivant la fonction ou le fabriquant du circuit. 1.2.) FONCTION DE TRANSFERT ( PORTE INVERSEUSE ) V OUT V CC V IN 1 V OUT V OH V IN V IL V IH Vcc V IN Cette courbe n est bien évidemment valable que dans le cas d une utilisation normale, notamment vis à vis de I OL MAX et I OH MAX. Ce graphique est bien évidemment valable pour tous types d'entrées. Que se soit d'une porte simple (comme ici) ou l'entrée d'un circuit plus complexe. Il faudra seulement prendre garde si il s'agit d'une porte inverseuse ( comme ici ) ou non inverseuse. Technologie.doc Auteur : B HANNEQUIN Page 2 sur 14

Comment lire la courbe? : Le constructeur garantit que : Pour une tension d entrée inférieure à V IL le niveau de sortie sera au moins de V OH. Pour une tension d entrée supérieure à V IH le niveau de sortie sera au plus de V OL. Bien évidemment entre V IL et V IH rien n est garanti. Il s agit donc d une zone à éviter. 1.3.) MARGE DE BRUIT ( APPELEE AUSSI : IMMUNITE AU BRUIT ). C est l amplitude minimum du signal entrant qui provoque accidentellement un changement d état. C est en quelque sorte l amplitude de plus gros parasite admissible en entrée. Deux cas peuvent être envisagés : au niveau haut et au niveau bas. 1 1 Vcc V OH Marge haute V IH V OL 0V Marge basse V IL La tension ne peut évidemment être supérieure à l alimentation ou inférieure à la masse. La marge de bruit sera donc calculée par : V OH mini - V IH MAX Ou V IL mini V OL MAX La marge de bruit sera la plus petite valeur trouvée, exprimée en pourcentage par rapport à la tension d alimentation. 1.4.) FAMILLE, SERIE MARQUAGE. La famille repose sur la technologie utilisée, soit bipolaire, soit MOS. La série correspond à l appellation commerciale du circuit, notamment le brochage. Exemple de marquage : Code fabriquant ( ici Texas ) Série ( 74 pour la gamme de température Commerciale ou 54 pour la gamme de température étendue) Famille SN 74 LS XX N Type de boîtier ( ici DIP) Fonction ( ex : les protes NAND à 2 entrées seront codées 00 ) Technologie.doc Auteur : B HANNEQUIN Page 3 sur 14

Code fabriquant ( ici Motorola ) Série 4000 MC1 4 XX N Type de boîtier Fonction EX : Le HEF 4011 correspond à une quadruple porte NAND à 2 entrées. Nous allons définir et exploiter les différentes séries et familles dans la suite du cours aux chapitres 3 et 4. 2.) TYPE DE SORTIE. 2.1.) SORTIE «TOTEM POLE» C est la sortie classique représentée ci-contre. Les transistors peuvent être bipolaires ( comme ici ) ou de type MOS ( dans ce cas sans la diode ). + V CC On voit dans ce type de sortie que pour avoir un niveau T 2 bas il faut saturer T 2. Dans ce cas V S = V CE SAT T2 = V OL T 1 Sortie Pour avoir un niveau logique haut il faut saturer T 1. Dans ce cas V S = V CC V D - V CE SAT T1 = V OH Bien évidemment le niveau de sortie sera soit 1 ( V OH ) soit 0 ( V OL ). Il est par conséquent rigoureusement interdit de relier des sorties ensemble. 2.2.) SORTIE TROIS ETATS. ( OU HAUTES IMPEDANCE OU TRI STATES ). Symbole : C est la même que la précédente, sauf que T 1 et T 2 peuvent être bloqués en même temps. Il est pour cela prévu une entrée de validation ( EN = Enable = Validation ). L exemple ci-contre représente une porte OUI A EN ( Buffer ) avec une commande trois états. S B 1 Remarquez Le symbole qui indique que la sortie est en logique trois états, c est à dire V OL, V OH, ou non connectée ( 0, 1, ou haute impédance ) L entrée de commande EN ( Enable = validation ) V A V B V S HI HI HI Technologie.doc Auteur : B HANNEQUIN Page 4 sur 14

Note : Dans une table de vérité ou un chronogramme, l état haute impédance est noté H i (Hight impedance) ou Z. L état haute impédance correspondant à une sortie en l air, il est possible de relier plusieurs sorties ensemble à condition qu une seule soit active à un instant donné. A Select EN 1 B 1 EN 1 S Dans l exemple ci-dessus, les informations arrivant en A seront transmises en S si select est à 1. Ce sera celles arrivant en B si select est à 0. La sortie de la porte non utilisée sera bien sûr en haute impédance. 2.3.) SORTIE COLLECTEUR ( OU DRAIN ) OUVERT. Symbole : La sortie ne comporte qu un transistor. T 2 S Seul l état logique bas est assuré. L état logique haut devra être assuré extérieurement par une résistance de tirage au + V CC. Il est possible avec ce type de sortie de : Relier plusieurs sorties ensemble ( ne pas oublier de placer une résistance de tirage commune ) Commander une charge ayant une alimentation différente de celle du circuit (jusqu à 30 V) suivant la fiche technique du circuit utilisé. 15V R A B C 1 1 S Le circuit intégré est alimenté en 5 V. La sortie S sera ou à 0 ( V OL ) ou à 1 via la résistance de tirage R 1 Technologie.doc Auteur : B HANNEQUIN Page 5 sur 14

Remarquez le symbole près de la sortie indiquant le type collecteur ( ou drain ) ouvert. A 5V. B 5V. C S 15V. V OL On vient de réaliser la fonction logique OU. Cette structure s appelle OU câblé. Un ET câblé peut être réalisé en utilisant des portes inverseuses. Remarque : Il existe des variantes au collecteur ouvert. L émetteur ouvert ou seul le transistor supérieur existe. Seul le niveau haut est donc assuré. La résistance de tirage devant être à la masse ( ou à une tension négative ). Le collecteur ouvert avec résistance de tirage intégrée L émetteur ouvert avec résistance de tirage intégrée 3.) FAMILLE TTL ( TRANSISTOR, TRANSISTOR, LOGIQUE ) 3.1.) GENERALITES Constituée de transistors bipolaires elle à débuté vers 1965 par la série 74 XX, lente et grosse consommatrice d énergie. Bien qu elle ne soit plus utilisée depuis longtemps, elle sert toujours de référence pour comparer les autres. Actuellement il existe : 74LSXX Low power Schottky. Basse consommation rapide. C est la famille la plus utilisée actuellement. 74FXX Fast ( rapide ). Technologie.doc Auteur : B HANNEQUIN Page 6 sur 14

3.2.) ETUDE DE FICHES TECHNIQUES, UTILISATION. L étude portera pour la famille 74 LS, sachant que la même étude pourra être menée pour les autres familles. Nota : Pour une même famille, les caractéristiques peuvent légèrement varier suivant le fabriquant. L étude de la fiche technique montre Alimentation entre 4,5 et 5 V. Marge de bruit haute : V OH V IH = 2,7 2 = 0,7V Marge de bruit basse : V IL V OL = 0,8 0,4 = 0,4V La marge de bruit sera donc de 0.4 V. Soit une immunité de seulement 8 %. On remarque également le courant d entrée sortant à l état bas. Faisons le calcul des résistances de tirage maximum utilisable. + V CC La tension aux bornes de la résistance ne peut être supérieure à V IL sinon la porte peut considérer son entrée continuellement au niveau haut. I CC 1 R R < V I IL IL = 0.8 0.36. 10 3 = 2,2 KΩ Bien évidemment si n entrées sont connectées sur la résistance, le courant sera multiplié par n. La résistance maximum sera donc n fois plus petite. Il n est pas souhaitable de connecter trop ( plus de 3 ) entrées à la même résistance de tirage à la masse pour cette technologie, en effet dans ce cas la résistance maximum risque d être trop faible et entraîner une consommation de courant excessive lorsque l interrupteur est fermé. A l état haut : + V CC La tension aux bornes de la résistance I IH 1 ne peut être supérieure à V CC V IH sinon la porte peut considérer son entrée continuellement au niveau bas. VCC VIH 5 2 R < = = 150 KΩ 6 I IH 20.10 Même remarque que précédemment si n entrées sont connectées. Technologie.doc Auteur : B HANNEQUIN Page 7 sur 14

4.) FAMILLE CMOS ( COMLEMENTARY METAL OXYD SILICIUM ) Série 4XXX Cette famille est apparue dans les années 70 avec les transistors MOS. Elle tant de plus en plus à céder la place à d'autre technologie plus performantes ( HC MOS, AC etc...) L étude de la fiche technique montre avec une alimentation en 4,5 V. Alimentation 3 à 15 V. Marge de bruit haute : V OH - V IH = 4,4 3,15 = 1,25 V. Marge de bruit basse : V IL V OL = 1,35 0,1 = 1,25 V. Soit une marge de 1,25 V donc par rapport à l alimentation, une immunité au bruit de 28 %. Calcul des résistances de tirage. Le même calcul que pour la technologie précédente donne : R < V I IL IL 1.35 = 13,5 MΩ 0.1.10 = 6 Pour une résistance de tirage à l état bas VCC VIH 4.5 3.15 R < = = 13.5 MΩ 6 I IH 0.1.10 Pour une résistance de tirage à l état haut. De telles valeurs sont pour des problèmes d immunité aux parasites, à éviter. (un parasite de 1µA donnera 13.5 V!!! ) Dans la pratique on se limitera à 470 KΩ. 100 KΩ étant la valeur la plus utilisée en CMOS. 5.) FAMILLE HC MOS (HIGHT SPEED METAL OXYD SILICIUM ) Série HCXX Alimentation de 2V à 6 V. Avec une alimentation en 4,5 V, l étude de la fiche technique montre : Marge de bruit haute V OH V IH = 4,4 3,15 = 1,25 V. Marge de bruit basse V IL VOL = 1,35 0,1 = 1,25 V. Soit une immunité au bruit de 28 % par rapport à l alimentation. La calcul des résistances de tirage donnera en pratique sensiblement les mêmes valeurs que pour la technologie CMOS de la série 4 XXX. Nota : La sous famille HCT est en tout points comparable à la famille HC pour la consommation et la rapidité, mais pas pour les niveaux de tension qui sont compatibles TTL. Technologie.doc Auteur : B HANNEQUIN Page 8 sur 14

6.) COMPTABILITE. Le problème peut se poser dans le cas où on veut mélanger plusieurs technologies dans un même montage. 1 2 La question est de savoir si la porte N 1 peut commander la porte N 2. Pour cela nous devons avoir : V OH porte 1 > V IH Porte 2 V OL porte 1 < V IL Porte 2 CMOS, HC vers TTL. La zone hachurée correspond à une plage de fonctionnement non garantie. V CC V OHmini 4.9 V. V IH mini 2 V. V OL MAX V IL MAX 0.1 V. 0.8 V. 0V Dans ce cas il y a compatibilité pour peu que les alimentations soient de 5 V pour être acceptées par trous les circuits. TTL vers CMOS au HC. V CC V IH mini V OL mini 3,5 v. 2,7 v. V OL MAX 0,4 V. V IL MA 1,5 V. Technologie.doc Auteur : B HANNEQUIN Page 9 sur 14

La compatibilité n est pas assurée au niveau haut. V OL TTL < V IH MOS Pour pallier à ce problème, on peut utiliser : Une porte TTL à sortie collecteur ouvert ( ). Ne pas oublier dans ce cas la résistance de tirage ou +V CC. Un transistor en montage émetteur commun. + V CC TTL CMOS Le transistor peut également être du type MOS. Un circuit appartenant à la famille HCT. Les caractéristiques de cette famille ( 74 HCT XX ) sont en tous points identiques à son homologue HC sauf au niveau des tensions, qui ont été spécialement étudiées pour être compatibles TTL. 7.) SYNTHESE, COMPARAISON DES DIFFFERENTS FAMILLES. On peut résumer les principales caractéristiques des trois familles étudiées dans le tableau ci-dessous : CMOS (Série 4XXX ) HC MOS (74 HC XX ) TTL (74 LS XX ) Marge de bruit Rapidité Consommation Alimentation Grande Lente Extrêmement faible 3 à 15 V. (28%) (nw) Grande Rapide Très faible 2 à 6 V. (28%) (µw) Faible Rapide Importante 5 V. (8%) (mw) Les quatre familles étudiées ici ( 74 LSXX, 74 HCXX, 74HCTXX et 4XXX ) représentent environ 70 % du marché des composant discrets. Néanmoins, l essor de l électronique moderne a favorisé l apparition d autres familles. Citons par exemple parmi la technologie TTL : 74 ALSXX ( Advance Low power Schottky ) Deux fois plus rapide et trois fois moins gourmande en énergie que la série 74 LSXX. 74 FXX ( Fast ) Trois fois plus rapide que la famille LS mais deux fois plus gourmande. Les progrès les plus significatifs sont pour les circuits MOS. 74 ACXX ( Advance CMOS ) Deux fois plus rapide que le HC MOS. 74 ABTXX. L une des familles les plus rapide actuellement disponible et capable notamment de délivrer d importants courant de sortie. Citons également quelques familles très rapides fonctionnant en 3 V. ( Série 74 LVTXX ou 74 LVQXX ) voir 1,5 V. ( Série 74 HLLXX ou 74 ALVCXX ) Technologie.doc Auteur : B HANNEQUIN Page 10 sur 14

8.) FICHE TECHNIQUE 54LS00 Technologie.doc Auteur : B HANNEQUIN Page 11 sur 14

9.) FICHE TECHNIQUE 74HC00 Technologie.doc Auteur : B HANNEQUIN Page 12 sur 14

10.) FICHE TECHNIQUE CD4011 Technologie.doc Auteur : B HANNEQUIN Page 13 sur 14

Technologie.doc Auteur : B HANNEQUIN Page 14 sur 14