Chapitre 4. Tableau périodique

Documents pareils
BTS BAT 1 Notions élémentaires de chimie 1

Molécules et Liaison chimique

EXERCICES SUPPLÉMENTAIRES

CHAPITRE 2 : Structure électronique des molécules

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

LES SUBSTITUTIONS NUCLÉOPHILES EN SÉRIE ALIPHATIQUE S N 1 ET S N 2

ACIDES BASES. Chap.5 SPIESS

Atelier : L énergie nucléaire en Astrophysique

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

LES ELEMENTS CHIMIQUES

Application à l astrophysique ACTIVITE

Chapitre 11: Réactions nucléaires, radioactivité et fission

Enseignement secondaire

Energie nucléaire. Quelques éléments de physique

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Plan du chapitre «Milieux diélectriques»

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

La physique nucléaire et ses applications

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

CHAPITRE VI : HYBRIDATION GEOMETRIE DES MOLECULES

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

Chapitre 6 : les groupements d'étoiles et l'espace interstellaire

1 ère Partie : Concepts de Base

PROGRAMME DE PHYSIQUE - CHIMIE EN CLASSE DE SECONDE GÉNÉRALE ET TECHNOLOGIQUE

DYNAMIQUE DE FORMATION DES ÉTOILES

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

La vie des étoiles. La vie des étoiles. Mardi 7 août

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Chapitre 5 : Noyaux, masse et énergie

Lycée français La Pérouse TS. L énergie nucléaire CH P6. Exos BAC

Effets électroniques-acidité/basicité

INTRODUCTION À L'ENZYMOLOGIE

L ÉNERGIE C EST QUOI?

Panorama de l astronomie

Chap 2 : Noyaux, masse, énergie.

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

La reconnaissance moléculaire: la base du design rationnel Modélisation moléculaire: Introduction Hiver 2006

Transformations nucléaires

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

Les rayons X. Olivier Ernst

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

1.2 Coordinence. Notion de liaison de coordinence : Cas de NH 3. et NH 4+ , 3 liaisons covalentes + 1 liaison de coordinence.

Professeur Eva PEBAY-PEYROULA

ANALYSE SPECTRALE. monochromateur

La Fusion Nucléaire (Tokamak) Nicolas Carrard Jonathan Carrier Guillomet 12 novembre 2009

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

C4: Réactions nucléaires, radioactivité et fission

TECHNIQUES: Principes de la chromatographie

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

INTRODUCTION À LA SPECTROSCOPIE

SESSION 2013 ÉPREUVE À OPTION. (durée : 4 heures coefficient : 6 note éliminatoire 4 sur 20) CHIMIE

8/10/10. Les réactions nucléaires

Électricité statique. Introduction. Quelques étapes historiques importantes

Electrification statique - Problèmes et solutions L application des sources ionisantes. Auteur: Dr Mark G Shilton, CChem, MRSC. (Copie du document

Fiche de révisions sur les acides et les bases

LABORATOIRES DE CHIMIE Techniques de dosage

Résonance Magnétique Nucléaire : RMN

Chapitre 02. La lumière des étoiles. Exercices :

FUSION PAR CONFINEMENT MAGNÉTIQUE

Transformations nucléaires

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Équivalence masse-énergie

Qu est-ce qui cause ces taches à la surface du Soleil?

Introduction à la physique nucléaire et aux réacteurs nucléaires

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

Comprendre l Univers grâce aux messages de la lumière

par Alain Bonnier, D.Sc.

L'ÉNERGIE ET LA MATIÈRE PETITE EXPLORATION DU MONDE DE LA PHYSIQUE

Chapitre I- Le champ électrostatique. I.1.1- Phénomènes électrostatiques : notion de charge électrique

TD 9 Problème à deux corps

CAPTEURS - CHAINES DE MESURES

DP 500/ DP 510 Appareils de mesure du point de rosée mobiles avec enregistreur

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

Interactions des rayonnements avec la matière

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

C3. Produire de l électricité

Principe de fonctionnement des batteries au lithium

Procédés plasmas à faisceau d ions. P.Y. Tessier

Les effets de température

Des molécules hydrophobes dans l eau

PHYSIQUE Discipline fondamentale

Figure 1 : Diagramme énergétique de la photo émission. E B = hν - E C

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

Module 3 : L électricité

Extinction. Choisissez votre système d extinction. Qu'est-ce qu'un système d extinction? Les principes du feu

Principe et fonctionnement des bombes atomiques

Rappels sur les couples oxydantsréducteurs

CODE CIVIL FRANÇAIS (ANTERIEUR A 1960)

NOTICE DOUBLE DIPLÔME

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

- I - Fonctionnement d'un détecteur γ de scintillation

La gravure. *lagravureparvoiehumide *lagravuresèche

Caractéristiques techniques

Semestre 2 Spécialité «Analyse in silico des complexes macromolécules biologiques-médicaments»

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

3 Charges électriques

Transcription:

Chapitre 4 Tableau périodique

1. Organisation du tableau périodique On a observé des correspondances entre les couches de valence des atomes et leur disposition dans le tableau périodique. Y a-t-il un lien? La construction du tableau périodique est le fruit du travail de Mendeleïev (1869). Il a rangé les 66 éléments connus à l'époque par masse atomique croissante dans un tableau de telle sorte que les éléments présentant des propriétés chimiques et physiques similaires se trouvaient dans la même colonne. Il a laissé des places vides afin de respecter les analogies en affirmant qu'elles seraient occupées dans le futur par des éléments inconnus à l'époque. Tous les éléments manquants ont été découverts depuis. http://culturesciences.chimie.ens.fr/content/la-classification-periodique-delavoisier-a-mendeleiev-1229 Une ligne est une période et une colonne une famille. Il y a 18 + 14 familles.

Lorsqu'on se déplace le long des périodes, on constate une évolution progressive et générale des propriétés qui conduit à définir 3 grandes familles d'éléments (H à part) : Les gaz rares : colonne 18, gaz chimiquement inertes ou très peu réactifs, monoatomiques, inodores, incolores. Les métaux : à gauche du tableau périodique, c'est la plus grande famille. A la température ambiante, ils s'assemblent, pour la plupart, sous forme de solides monoatomiques à éclat métallique, ils sont conducteurs. Les atomes donnent facilement des cations. Les non-métaux : entre les métaux et les gaz rares. Ils présentent des caractères opposés aux métaux. Ils s'assemblent sous forme moléculaire, ce sont des isolants et ils ont tendance à donner des anions. La limite entre les métaux et les non-métaux n'est pas nette. Le caractère métallique diminue lorsque l'on progresse dans une période.

Il existe une correspondance entre la disposition du tableau périodique et l'organisation de la couche de valence des atomes : une période est caractérisée par n, qui est le numéro de la dernière couche occupée par les électrons des atomes de la période, c est le de la couche de valence. une famille est constituée d'éléments dont les atomes ont la même configuration électronique externe (la même organisation de la couche de valence). Bloc s Colonne 1 Alcalins ns 1 Colonne 2 Alcalino-terreux ns 2 Bloc p Colonne 13 ns 2 np 1 Colonne 17 Halogènes ns 2 np 5 Colonne 18 Gaz rares ns 2 np 6 Bloc d Colonne 3 Métaux de ns 2 (n 1)d x Colonne 12 transition x=1,, 10

On en déduit que les propriétés chimiques d'un élément sont directement liées à la structure électronique (organisation) de la couche externe. La place occupée par un élément dans le tableau périodique permet de retrouver sa configuration électronique et vice-versa. Dans la suite, nous allons donc définir certaines propriétés caractéristiques des atomes et analyser leurs évolutions dans le tableau périodique.

2. Evolution des propriétés dans le tableau périodique Charge nucléaire effective Dans un atome, chaque électron est attiré par le noyau, mais il est repoussé par les électrons se trouvant entre lui et le noyau. L'attraction réellement perçue par un électron est donc inférieure à celle qu'il percevrait s'il était seul. On dit que les autres électrons font un écran entre lui et le noyau. Pour rendre compte de cet effet, Slater a développé un modèle permettant de calculer de façon empirique et approximative la charge positive effective Z*e perçue par l'électron que l'on étudie.

Soit i l électron que l on étudie dans l atome. On pose : Z i = Z σ i σ i est la constante d écran associée à l électron i. σ i = σ j i j i σ j i est la constante d écran de l électron j sur i. Les valeurs de σ j i sont fixées par des modèles. Le plus courant est le modèle de Slater. Remarque : Seuls les électrons associés à un n inférieur ou égal à celui de l'électron étudié écrantent, car ils se " trouvent " entre cet électron et le noyau. Les électrons s et p ne sont pas différenciés dans le modèle de Slater Exemple : Li : 1s 2 2s 1 σ 2s = 2σ 2s 1s = 2 0.85 d où Z 2s = 3 1.7 = 1.3

EVOLUTION DU NUMERO ATOMIQUE EFFECTIF Z* (d un électron de valence) le long d'une période : Z augmente, car Z croît plus vite que σ car on reste dans une même couche. le long d une famille : Z augmente, car le changement de couche provoque une brutale augmentation de σ (car on rajoute une couche d'électrons qui écrantent) qui compense l'augmentation de Z. On rajoute une couche d'électrons.

Les rayons atomiques Lorsqu'on parle de la taille des atomes, on admet implicitement qu'ils sont sphériques et que l'atome " s'arrête " rapidement après r max la distance correspondant à la probabilité de présence maximum des électrons les plus externes. Mais, le nuage électronique d'un atome n'a pas de limite nette (en toute rigueur, la probabilité de présence des électrons n'est nulle qu'à l'infini). La notion de rayon atomique n'a donc aucune signification pour un atome isolé. Ainsi pour parler de la " taille " d'un atome, on introduit des définitions qui font intervenir des partenaires.

Rayon covalent : r c On considère la molécule diatomique homonucléaire quelconque A 2 r c = d/2 où d est la distance entre les deux noyaux. Lorsque les deux atomes se lient pour former la molécule A 2, les nuages électroniques s'interpénètrent. Les gaz rares n'ont pas de rayon covalent car ils ne forment pas de molécule. Rayon de van der Waals : r vdw r vdw est la moitié de la distance minimale, d, à laquelle peuvent s'approcher deux noyaux associés à des atomes identiques mais appartenant à des molécules différentes (ils ne sont pas liés par une véritable liaison). De façon générale, r vdw > r c Ex : pour Cl, r c = 99 pm et r vdw = 180 pm.

EVOLUTION DU RAYON DE COVALENCE DES ELEMENTS le long d'une période : r c diminue, car l'augmentation de Z provoque une attraction électrostatique plus forte sur les électrons les plus externes et n valence = cste. le long d'une famille : r c augmente car n valence augmente et les électrons les plus externes ont plus de chance d'être loin du noyau. Cet effet n'est pas compensé par l'augmentation de Z qui est faible. r c diminue le long d'une période et augmente brusquement au début de la période suivante, car on passe de n valence à n valence + 1.

Rayon ionique : Lorsqu'un atome forme un ion, son rayon est différent de ce qu'il est dans l'atome neutre. cation : les électrons partis ne forment plus écran à Z et Z augmente. Il y a donc contraction du nuage électronique. r cation < r atome Ex : pour Na, r Na + = 0.098 nm et r Na = 0.150 nm. anion : les électrons supplémentaires augmentent les effets d'écran d'où Z diminue et le nuage électronique se dilate. r anion > r atome Ex : pour Cl, r Cl = 0.181 nm et r Cl = 0.099 nm.

Energies d ionisation Energie de première ionisation : E i1, c'est l'énergie qu'il faut fournir pour arracher l'électron qui est associé au niveau d'énergie occupé le plus élevé quand l'atome est dans son état fondamental à l'état gazeux : X (gaz) = X + (gaz) + e - (g) E i1 =E(X + )-E(X) X, X + et e - sont nécessairement à l'état gazeux et dans leurs états fondamentaux respectifs. Energie de deuxième ionisation : E i2, c'est l'énergie qu'il faut fournir pour arracher l'électron qui est associé au niveau d'énergie occupé le plus élevé quand le cation est dans son état fondamental à l'état gazeux : X + (gaz) = X 2+ (gaz) + e - (g) E i2 =E(X 2+ )-E(X + ) X +, X 2+ et e - sont nécessairement à l'état gazeux et dans leurs états fondamentaux respectifs. https://dept.astro.lsa.umich.edu/~cowley/ionen.htm

lgo(e) EVOLUTION des ENERGIES D IONISATION (d un électron de valence) 2 1,8 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 0 0 10 20 30 40 Z log(ei1) log(ei2)

L énergie de première ionisation a une variation inverse de celle du rayon dans le tableau périodique : elle augmente le long d une période et diminue le long d une famille. Les atomes les plus «gros» sont ionisés plus facilement. E i2 > E i1 : il est plus difficile d arracher le deuxième électron à l atome. Normal car il y a moins d écran, car moins d électrons dans le cation. Z* (cation)> Z*(neutre). On voit que les deux courbes ont les mêmes variations, mais avec un décalage. Normal car le nombre d électrons d un cation est égal au nombre d électrons de l atome neutre précédent dans la classification périodique. Ex : He + a le même nombre d électrons que H.

Affinité électronique (AE) C est l énergie libérée ou à apporter pour la réaction de capture d un électron par un atome pris à l état gazeux dans son état fondamental. X gaz + e - = X - gaz Cette énergie peut être positive ou négative

Electronégativité(c) C est la capacité d un atome à attirer à lui le doublet électronique de liaison qu il partage avec l atome (différent) auquel il est lié. Cette définition ne donne que des différences d'électronégativité, on a du fixer une référence et on a posé : c(f)=4 F étant l'élément le plus électronégatif du tableau périodique.