ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection

Dimension: px
Commencer à balayer dès la page:

Download "ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection"

Transcription

1 ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection Nicolas HEULOT (CEA LIST) Michaël AUPETIT (CEA LIST) Jean-Daniel FEKETE (INRIA Saclay) Journées Big Data & Visualization 24 Juin 2013

2 Plan Introduction Contexte Problématiques Cette projection représente-t-elle fidèlement les données? Background ProxiViz Design Modèle ProxiLens Discussion Conclusion

3 Introduction (1/2) CONTEXTE Comment visualiser des données en grandes dimensions? Matrice de scatterplots, Coordonnées parallèles, Heatmap? La projection de données est indépendante du nombre de dimensions Pipeline de visualisation d une projection: Données en grandes dimensions Matrice de similarités Projection 2D Analyse Variables Individus... Exemple: Caractéristiques de signaux EEG Exemple: Distance euclidienne Exemple: ACP, MDS

4 Introduction (2/2) PROBLÈMATIQUES Problèmes topologiques Interprétation locale des erreurs Surestimation du nombre de clusters Faux Voisinages Artefacts de Projection Déchirures Tâches d analyse exploratoire Extraire des clusters Détecter des points atypiques Valider des étiquettes de classe? Cluster? Artefacts ou Outliers?

5 Background PROXIVIZ AUPETIT M.: Visualizing distortions and recovering topology in continuous projection techniques. Neurocomputing 70, 7-9 (2007), Visualisation interactive des lignes d une matrice de similarité (basée sur une sélection au survol de la souris) Matrice de similarités Problèmes Représentation: Tailles des cellules de Voronoi aléatoires Interaction: Clignotements dues aux faux voisinages Analyse: Difficile d extraire des clusters

6 Design (1/2) Espace des données Espace 2D MODÈLE rayon HD rayon 2D référence Déchirures Faux voisinages Espace 2D Comment explorer l espace des données de manière continue? On doit éviter de sélectionner des faux voisins Proposition: Les faux voisins sont déplacés vers les bords de la zone de voisinage 2D 1 2 3

7 Design (1/2) Espace des données Espace 2D MODÈLE rayon HD rayon 2D Espace 2D référence Déchirures Faux voisinages Comment aider à extraire des clusters? L utilisateur doit pouvoir facilement associer à un même cluster courant toutes les données voisines de la référence (points verts) Proposition: l utilisateur paramètre les rayons de voisinage dans l espace des données et l espace 2D rayon HD: définie le voisinage dans l espace des données rayon 2D: définie le voisinage dans l espace 2D (comme la zone d intérêt d une lentille) cluster1

8 Design (2/2) PROXILENS Représentation Interpolation de Shepard Cercle 2D représentant la lentille Interaction Paramétrage des rayons HD et 2D (avec le scroll) Amorçage la sélection de la référence en fonction de la distance dans l espace des données Exemple avec des problèmes de faux voisinages Extraction de clusters On associe à un même cluster courant tous les points qui sont à la fois dans le voisinage de la référence dans l espace des données et dans l espace 2D Exemple avec des problèmes de déchirures DEMO (d3.js - webgl)

9 Discussion PARAMÈTRES Problèmes avec des configurations extrêmes Rayon de voisinage trop petit dans l espace des données Rayon de voisinage trop grand dans l espace 2D (perte du contexte) Meilleur paramétage La qualité de l analyse visuelle est directement dépendante de la métrique de similarité

10 Conclusion PROXILENS: EXPLORATION INTERACTIVE DE DONNÉES Conclusion Amélioration de la représentation par rapport à ProxiViz (coloration et distorsion spatiale) Interaction permettant une exploration de manière continue des données (par rapport à la topologie) Analyse et extraction de clusters intuitive Perspectives Evaluation de Proxilens avec des experts en data-mining Aider à paramétrer automatiquement les rayons de voisinage Aider à extraire les clusters de manière semi-automatique

11 Merci pour votre attention Questions?

Extraction d informations stratégiques par Analyse en Composantes Principales

Extraction d informations stratégiques par Analyse en Composantes Principales Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 [email protected] 1 Introduction

Plus en détail

La carte, le territoire et l'explorateur où est la visualisation? Jean-Daniel Fekete Equipe-projet AVIZ INRIA [email protected] www.aviz.

La carte, le territoire et l'explorateur où est la visualisation? Jean-Daniel Fekete Equipe-projet AVIZ INRIA Jean-Daniel.Fekete@inria.fr www.aviz. La carte, le territoire et l'explorateur où est la visualisation? Jean-Daniel Fekete Equipe-projet AVIZ INRIA [email protected] www.aviz.fr Quelques exemples 1 La campagne de Russie de Napoléon

Plus en détail

BIG DATA et DONNéES SEO

BIG DATA et DONNéES SEO BIG DATA et DONNéES SEO Vincent Heuschling [email protected] @vhe74 2012 Affini-Tech - Diffusion restreinte 1 Agenda Affini-Tech SEO? Application Généralisation 2013 Affini-Tech - Diffusion restreinte

Plus en détail

Le Futur de la Visualisation d Information. Jean-Daniel Fekete Projet in situ INRIA Futurs

Le Futur de la Visualisation d Information. Jean-Daniel Fekete Projet in situ INRIA Futurs Le Futur de la Visualisation d Information Jean-Daniel Fekete Projet in situ INRIA Futurs La visualisation d information 1.Présentation 2.Bilan 3.Perspectives Visualisation : 3 domaines Visualisation scientifique

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

DATA ANALYTICS Des données aux connaissances et à la création de valeur

DATA ANALYTICS Des données aux connaissances et à la création de valeur DATA ANALYTICS Des données aux connaissances et à la création de valeur Sommaire Rencontres Inria Industrie p 3 Vos contacts au centre Inria Saclay - île-de-france p 4 Technologies Bertifier Sparklificator

Plus en détail

Historique. Architecture. Contribution. Conclusion. Définitions et buts La veille stratégique Le multidimensionnel Les classifications

Historique. Architecture. Contribution. Conclusion. Définitions et buts La veille stratégique Le multidimensionnel Les classifications L intelligence économique outil stratégique pour l entreprise Professeur Bernard DOUSSET [email protected] http://atlas.irit.fr Institut de Recherche en Informatique de Toulouse (IRIT) Equipe Systèmes d

Plus en détail

La structure de la base de données et l utilisation de PAST. Musée Royal de l Afrique Centrale (MRAC Tervuren)

La structure de la base de données et l utilisation de PAST. Musée Royal de l Afrique Centrale (MRAC Tervuren) La structure de la base de données et l utilisation de PAST La structure de la base de données données originales SPÉCIMENS Code des spécimens: Identification des spécimens individuels. Dépend du but de

Plus en détail

Business Intelligence avec Excel, Power BI et Office 365

Business Intelligence avec Excel, Power BI et Office 365 Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10

Plus en détail

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1 Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

Optimisation de la compression fractale D images basée sur les réseaux de neurones

Optimisation de la compression fractale D images basée sur les réseaux de neurones Optimisation de la compression fractale D images basée sur les réseaux de neurones D r BOUKELIF Aoued Communication Networks,Architectures and Mutimedia laboratory University of S.B.A [email protected]

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Des données à la connaissance client. A la découverte de la plateforme de connaissance client knowlbox

Des données à la connaissance client. A la découverte de la plateforme de connaissance client knowlbox Des données à la connaissance client A la découverte de la plateforme de connaissance client knowlbox Livre blanc mai 2013 A l heure du Big Data, les entreprises s interrogent davantage sur leurs données.

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Pentaho Business Analytics Intégrer > Explorer > Prévoir

Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux

Plus en détail

5. Excel 2010, le tableur collaboratif. a. Concevez des tableaux lisibles

5. Excel 2010, le tableur collaboratif. a. Concevez des tableaux lisibles 5. Excel 2010, le tableur collaboratif Avec Excel 2010, modéliser sa pensée avec des chiffres et prendre les décisions qui s imposent devient plus simple quel que soit le nombre de données que vous manipulez

Plus en détail

Atelier Visualisation d informations, interactions et fouille de données (VIF)

Atelier Visualisation d informations, interactions et fouille de données (VIF) Atelier Visualisation d informations, interactions et fouille de données (VIF) Organisateurs : Hanene Azzag (LIPN, Université de Paris 13) Fatma Bouali (LI, Université François-Rabelais Tours et Université

Plus en détail

SOMMAIRE. Accéder à votre espace client. Les Fichiers communs. Visualiser les documents. Accéder à votre espace client. Changer de Workspace

SOMMAIRE. Accéder à votre espace client. Les Fichiers communs. Visualiser les documents. Accéder à votre espace client. Changer de Workspace SOMMAIRE Accéder à votre espace client Les Fichiers communs Visualiser les documents Accéder à votre espace client Changer de Workspace Visualiser VOS documents Vous déconnecter ou revenir au tableau de

Plus en détail

Agenda de la présentation

Agenda de la présentation Le Data Mining Techniques pour exploiter l information Dan Noël 1 Agenda de la présentation Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un projet de Data Mining Place du Data Mining

Plus en détail

Enjeux mathématiques et Statistiques du Big Data

Enjeux mathématiques et Statistiques du Big Data Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, [email protected] Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris

Plus en détail

VISUALISATION DES DISTANCES ENTRE LES CLASSES DE LA CARTE DE KOHONEN POUR LE DEVELOPPEMENT D'UN OUTIL D'ANALYSE ET DE REPRESENTATION DES DONNEES

VISUALISATION DES DISTANCES ENTRE LES CLASSES DE LA CARTE DE KOHONEN POUR LE DEVELOPPEMENT D'UN OUTIL D'ANALYSE ET DE REPRESENTATION DES DONNEES VISUALISATION DES DISTANCES ENTRE LES CLASSES DE LA CARTE DE KOHONEN POUR LE DEVELOPPEMENT D'UN OUTIL D'ANALYSE ET DE REPRESENTATION DES DONNEES Patrick Rousset 1,2 et Christiane Guinot 3 1 CEREQ, Service

Plus en détail

MatrixExplorer: Un système pour l analyse exploratoire de réseaux sociaux

MatrixExplorer: Un système pour l analyse exploratoire de réseaux sociaux MatrixExplorer: Un système pour l analyse exploratoire de réseaux sociaux Nathalie Henry INRIA Futurs/LRI/University of Sydney Bât 490, Université Paris-Sud 91405 Orsay Cedex [email protected] Jean-Daniel

Plus en détail

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

Algorithme des fourmis appliqué à la détection et au suivi de contours dans une image

Algorithme des fourmis appliqué à la détection et au suivi de contours dans une image IN52-IN54 A2008 Algorithme des fourmis appliqué à la détection et au suivi de contours dans une image Etudiants : Nicolas MONNERET Alexandre HAFFNER Sébastien DE MELO Responsable : Franck GECHTER Sommaire

Plus en détail

Analyses croisées de sites Web pour détecter les sites de contrefaçon. Prof. Dr. Olivier Biberstein

Analyses croisées de sites Web pour détecter les sites de contrefaçon. Prof. Dr. Olivier Biberstein Analyses croisées de sites Web pour détecter les sites de contrefaçon Prof. Dr. Olivier Biberstein Division of Computer Science 14 Novembre 2013 Plan 1. Présentation générale 2. Projet 3. Travaux futurs

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Modélisation multi-agents - Agents réactifs

Modélisation multi-agents - Agents réactifs Modélisation multi-agents - Agents réactifs Syma cursus CSI / SCIA Julien Saunier - [email protected] Sources www-lih.univlehavre.fr/~olivier/enseignement/masterrecherche/cours/ support/algofourmis.pdf

Plus en détail

TRAVAUX DE RECHERCHE DANS LE

TRAVAUX DE RECHERCHE DANS LE TRAVAUX DE RECHERCHE DANS LE DOMAINE DE L'EXPLOITATION DES DONNÉES ET DES DOCUMENTS 1 Journée technologique " Solutions de maintenance prévisionnelle adaptées à la production Josiane Mothe, FREMIT, IRIT

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Title Text. Outil intégré de collecte, d'analyse et de visualisation de données de mobilité

Title Text. Outil intégré de collecte, d'analyse et de visualisation de données de mobilité Title Text Outil intégré de collecte, d'analyse et de visualisation de données de mobilité Contenu de la présentation Schéma général et avancement Suivi et administration Validation des entrevues Enrichissement

Plus en détail

Franck VAUTIER, Jean-Pierre TOUMAZET, Erwan ROUSSEL, Marlène FAURE, Mohamed ABADI, Marta FLOREZ, Bertrand DOUSTEYSSIER

Franck VAUTIER, Jean-Pierre TOUMAZET, Erwan ROUSSEL, Marlène FAURE, Mohamed ABADI, Marta FLOREZ, Bertrand DOUSTEYSSIER Utilisation d images dérivées d un jeu de données LIDAR pour la détection automatisée de vestiges archéologiques (programme de recherche méthodologique LiDARCHEO) Franck VAUTIER, Jean-Pierre TOUMAZET,

Plus en détail

Utilisation du CMS (Content Management System) Wordpress

Utilisation du CMS (Content Management System) Wordpress Multimédia SRC1 Utilisation du CMS (Content Management System) Wordpress Les systèmes de gestion de contenu ou SGC (de l'anglais Content Management System ou CMS) sont une famille de logiciels de conception

Plus en détail

Visualisation d information interactive

Visualisation d information interactive Visualisation d information interactive Jean-Daniel Fekete & Frédéric Vernier INRIA Futurs/LRI & LIMSI [email protected] & [email protected] Visualisation The eye the window of the soul,

Plus en détail

BLANC LIVRE. Data Discovery L alternative à la BI?

BLANC LIVRE. Data Discovery L alternative à la BI? ata Discovery L alternative à la BI? Data Discovey L alternative à la BI? Data Discovery L alternative la BI? Data Discovery L alternative à la BI? Data iscovery L alternative à la BI? Data Discovery L

Plus en détail

Plateforme «Inscription en ligne»

Plateforme «Inscription en ligne» Plateforme «Inscription en ligne» Modules Formations d intégration Formations Inter collectivités Réunion de présentation collectivités 2013 Déroulé de la présentation Accéder à la plateforme Accéder à

Plus en détail

La visualisation de données relationnelles au service de la recherche d informations

La visualisation de données relationnelles au service de la recherche d informations La visualisation de données relationnelles au service de la recherche d informations Eloïse Loubier Wahiba Bahsoun Institut de Recherche en Informatique de Toulouse IRIT-SIG, Université Paul Sabatier,

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1 La Geo-Business Intelligence selon GALIGEO avec ESRI 2005 session «Décisionnel» 26/10/2005 1 La Business Intelligence : Une Définition La Business intelligence permet l utilisation des données opérationnelles

Plus en détail

La Data Visualisation dans les organisations. Par Claude-Henri Meledo [email protected]

La Data Visualisation dans les organisations. Par Claude-Henri Meledo cmeledo@aldecis.com La Data Visualisation dans les organisations Par Claude-Henri Meledo [email protected] Claude-Henri Meledo Data visualisation Systèmes d information Mesure de la Performance Claude-Henri Meledo Data

Plus en détail

Réception des réponses et suivi de vos déclarations.

Réception des réponses et suivi de vos déclarations. Réception des réponses et suivi de vos déclarations. Sommaire. 1. Que se passe-t-il après la transmission des déclarations?... 2 2. Tableau de suivi des déclarations... 2 3. Signaler la réception d un

Plus en détail

La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM

La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM La segmentation à l aide de EG-SAS A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM Définition de la segmentation - Au lieu de considérer une population dans son ensemble,

Plus en détail

SharePoint (Toute la Gamme)... 1 Office 2010 (Toute la Gamme)... 2 OLAP (Toute la Gamme)... 2 STATISTICA Connecteur PI (Produit Complémentaire)...

SharePoint (Toute la Gamme)... 1 Office 2010 (Toute la Gamme)... 2 OLAP (Toute la Gamme)... 2 STATISTICA Connecteur PI (Produit Complémentaire)... SharePoint (Toute la Gamme)... 1 Office 2010 (Toute la Gamme)... 2 OLAP (Toute la Gamme)... 2 STATISTICA Connecteur PI (Produit Complémentaire)... 3 Introduction... 3 Échelle Interactive... 4 Navigation

Plus en détail

Journées PERF-RV 14-15 Octobre 2004. B. Arnaldi http://www.perfrv.org

Journées PERF-RV 14-15 Octobre 2004. B. Arnaldi http://www.perfrv.org 1 Journées PERF-RV 14-15 Octobre 2004 B. Arnaldi http://www.perfrv.org Objectifs de PERF-RV Plate-forme exploratoire Début des travaux : février 2001 Fin des travaux : août 2004 La réalité virtuelle, contexte

Plus en détail

SYNERGYTEK. Logiciel de gestion de la production sur mesure

SYNERGYTEK. Logiciel de gestion de la production sur mesure SYNERGYTEK Logiciel de gestion de la production sur mesure Sommaire SYNERGYTEK Pourquoi :: Est-ce que ce logiciel est fait pour vous? Quoi :: Qu est-ce que ça fait exactement? Comment :: Une implantation

Plus en détail

Communications immersives : Enjeux et perspectives

Communications immersives : Enjeux et perspectives Journée Futur et Ruptures Communications immersives : Enjeux et perspectives Béatrice Pesquet-Popescu Télécom ParisTech, Département TSI 5 mars 2015 Institut Mines-Télécom Tendances actuelles Plus, plus,

Plus en détail

1. Visualiser la «carte» de mon réseau social

1. Visualiser la «carte» de mon réseau social 1. Visualiser la «carte» de mon réseau social Chaque point représente un ami Les traits sont tracés entre deux amis de votre réseau qui sont aussi amis entre eux Vous n êtes pas sur la carte, puisque vous

Plus en détail

QU EST-CE QUE LE DECISIONNEL?

QU EST-CE QUE LE DECISIONNEL? La plupart des entreprises disposent d une masse considérable d informations sur leurs clients, leurs produits, leurs ventes Toutefois ces données sont cloisonnées par les applications utilisées ou parce

Plus en détail

LA DIVULGATION INTELLIGENTE DES DONNEES A L'HEURE DES BIG DATA

LA DIVULGATION INTELLIGENTE DES DONNEES A L'HEURE DES BIG DATA LA DIVULGATION INTELLIGENTE DES DONNEES A L'HEURE DES BIG DATA Une approche politiques publiques Données personnelles / traitement pénal des infractions CNIL 1 Journée AFDIT 22.2.2013 BIG DATA L'un des

Plus en détail

Mesure agnostique de la qualité des images.

Mesure agnostique de la qualité des images. Mesure agnostique de la qualité des images. Application en biométrie Christophe Charrier Université de Caen Basse-Normandie GREYC, UMR CNRS 6072 Caen, France 8 avril, 2013 C. Charrier NR-IQA 1 / 34 Sommaire

Plus en détail

sont appliquées à des fonds documentaires, sont destinées à fournir des informations pertinentes sur la structure globale plutôt que sur le contenu.

sont appliquées à des fonds documentaires, sont destinées à fournir des informations pertinentes sur la structure globale plutôt que sur le contenu. Introduction Les techniques informatiques permettent de stocker et d accéder à des quantités sans cesse croissantes de données, disponibles en ligne ou via des centres documentaires fermés. Cette profusion

Plus en détail

En route vers le succès avec une solution de BI intuitive destinée aux entreprises de taille moyenne

En route vers le succès avec une solution de BI intuitive destinée aux entreprises de taille moyenne Présentation du produit SAP s SAP pour les PME SAP BusinessObjects Business Intelligence, édition Edge Objectifs En route vers le succès avec une solution de BI intuitive destinée aux entreprises de taille

Plus en détail

pythonocc: une plateforme de développement agile d applications CAO.

pythonocc: une plateforme de développement agile d applications CAO. pythonocc: une plateforme de développement agile d applications CAO. PyConFR 2009 Cité des Sciences et de l Industrie, Paris Thomas Paviot*, Jelle Feringa* *pythonocc project: [email protected]; [email protected]

Plus en détail

Business Intelligence

Business Intelligence avec Excel, Power BI et Office 365 Téléchargement www.editions-eni.fr.fr Jean-Pierre GIRARDOT Table des matières 1 Avant-propos A. À qui s adresse ce livre?..................................................

Plus en détail

Analyse de grandes bases de données en santé

Analyse de grandes bases de données en santé .. Analyse de grandes bases de données en santé Alain Duhamel Michaël Genin Mohamed Lemdani EA 2694 / CERIM Master 2 Recherche Biologie et Santé Journée Thématique Fouille de Données Plan. 1 Problématique.

Plus en détail

Extraction et reconstruction de bâtiments en 3D à partir de relevés lidar aéroportés

Extraction et reconstruction de bâtiments en 3D à partir de relevés lidar aéroportés Thèse présentée pour obtenir le grade de Docteur de l Université Louis Pasteur Strasbourg I Discipline : Sciences pour l Ingénieur Spécialité : Topographie-Géomatique Par : Fayez TARSHA KURDI Extraction

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I [email protected] www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

De la modélisation linguistique aux applications logicielles: le rôle des Entités Nommées en Traitement Automatique des Langues

De la modélisation linguistique aux applications logicielles: le rôle des Entités Nommées en Traitement Automatique des Langues De la modélisation linguistique aux applications logicielles: le rôle des Entités Nommées en Traitement Automatique des Langues Maud Ehrmann Joint Research Centre Ispra, Italie. Guillaume Jacquet Xerox

Plus en détail

Hypervision et pilotage temps réel des réseaux IP/MPLS

Hypervision et pilotage temps réel des réseaux IP/MPLS Hypervision et pilotage temps réel des réseaux IP/MPLS J.M. Garcia, O. Brun, A. Rachdi, A. Al Sheikh Workshop autonomique 16 octobre 2014 Exemple d un réseau opérateur national 8 technologies : 2G / 3G

Plus en détail

Gestion de la Sécurité, Fore!

Gestion de la Sécurité, Fore! Gestion de la Sécurité, Fore! 2 Une interface unique Contrôle d accès 16 lecteurs Vidéoprotection Caméras IP NVR/DVR 3 Jusqu'à 1000 détenteurs de carte 5 utilisateurs système en simultané Interphonie 9

Plus en détail

Entrepôt de données 1. Introduction

Entrepôt de données 1. Introduction Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

Traitement bas-niveau

Traitement bas-niveau Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.

Plus en détail

OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE

OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE «Journée Open Data» 5 Novembre 2013 Présenté par : Imen Megdiche Directeur de thèse : Pr. Olivier Teste (SIG-IRIT) Co-directeur de thèse : Mr. Alain

Plus en détail

SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL

SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL AGENDA 14:15-14:30 Bienvenue & Introduction Jérôme Berthier et Manuel Fucinos 14:30-14:45 Le concept de la Data Viz et

Plus en détail

Support de TD ArcGIS 10.1. Introduction à l automatisation et au développement avec ArcGIS 10.1 JEAN-MARC GILLIOT 2014-2015. 3 e année ingénieur

Support de TD ArcGIS 10.1. Introduction à l automatisation et au développement avec ArcGIS 10.1 JEAN-MARC GILLIOT 2014-2015. 3 e année ingénieur JEAN-MARC GILLIOT 2014-2015 Durée 1,5 heures Introduction à l automatisation et au développement avec ArcGIS 10.1 3 e année ingénieur Support de TD ArcGIS 10.1 Grande école européenne d'ingénieurs et de

Plus en détail

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux [email protected] www.pressesagro.be

Plus en détail

WILOG ERP Terroir. Gestion commerciale. Solution Cloud Solution Réseau Solution Monoposte. 136 boulevard de Finlande - 54340 Pompey - France

WILOG ERP Terroir. Gestion commerciale. Solution Cloud Solution Réseau Solution Monoposte. 136 boulevard de Finlande - 54340 Pompey - France Wilog ERP Terroir v1.2 25 Février 2014 WILOG ERP Terroir Gestion commerciale Solution Cloud Solution Réseau Solution Monoposte 136 boulevard de Finlande - 54340 Pompey - France Téléphone : +33 (0)3 83

Plus en détail

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP Master IMA - UMPC Paris 6 RDMM - Année 2009-200 Fiche de TP Préliminaires. Récupérez l archive du logiciel de TP à partir du lien suivant : http://www.ensta.fr/~manzaner/cours/ima/tp2009.tar 2. Développez

Plus en détail

COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES

COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES EPF 4/ 5 ème année - Option Ingénierie d Affaires et de Projets - Finance Bertrand LIAUDET 4 : Modélisation non-supervisée

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

CegidBusinessPlaceMode. Back Office. www.cegid.fr/mode. Le progiciel de gestion intégré pour piloter votre réseau de distribution

CegidBusinessPlaceMode. Back Office. www.cegid.fr/mode. Le progiciel de gestion intégré pour piloter votre réseau de distribution CegidBusinessPlaceMode Cegid Business Place Mode Back Office Le progiciel de gestion intégré pour piloter votre réseau de distribution Cegid Back Office est un véritable outil de pilotage adapté à votre

Plus en détail

TD Introduction aux SIG avec ArcGis 9

TD Introduction aux SIG avec ArcGis 9 3 année ingénieur Agroparistech DA 2009/10 TD Introduction aux SIG avec ArcGis 9 TD n 6 : Initiation à l analyse en mode RASTER ave c Spatial Analyst Jean-marc Gilliot 2009-2010 [email protected]

Plus en détail

Recherche d'images par le contenu Application au monitoring Télévisuel à l'institut national de l'audiovisuel

Recherche d'images par le contenu Application au monitoring Télévisuel à l'institut national de l'audiovisuel Recherche d'images par le contenu Application au monitoring Télévisuel à l'institut national de l'audiovisuel Alexis Joly [email protected] INRIA - IMEDIA Alexis Joly cours monitoring p. 1 Plan de l'exposé

Plus en détail

INTRODUCTION A LA B.I AVEC PENTAHO BUSINESS ANALYTICS Formation animée par

INTRODUCTION A LA B.I AVEC PENTAHO BUSINESS ANALYTICS Formation animée par Séminaire de formation INTRODUCTION A LA B.I AVEC PENTAHO BUSINESS ANALYTICS Formation animée par M. Dia Alioune Expert consultant BI OPEN SOURCE Directeur BADIA OA GROUP : OpenAfriki France Du 09 au 11

Plus en détail

Manuel d utilisation de l outil collaboratif

Manuel d utilisation de l outil collaboratif Manuel d utilisation de l outil collaboratif Réf OCPD-V2 Page 1 / 24 a mis en œuvre un outil collaboratif qui permet de partager des informations entre collaborateurs. Il permet à des utilisateurs travaillant

Plus en détail

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données et le Data Mining Nous suivons le plan suivant : Fonctionnement de Spad Catalogue des méthodes (statistiques

Plus en détail

Thibault Denizet. Introduction à SSIS

Thibault Denizet. Introduction à SSIS Thibault Denizet Introduction à SSIS 2 SSIS - Introduction Sommaire 1 Introduction à SQL Server 2008 Integration services... 3 2 Rappel sur la Business Intelligence... 4 2.1 ETL (Extract, Transform, Load)...

Plus en détail

Urbanisation des SI-NFE107

Urbanisation des SI-NFE107 OLAP Urbanisation des SI-NFE107 Fiche de lecture Karim SEKRI 20/01/2009 OLAP 1 Introduction PLAN OLAP Les différentes technologies OLAP Plate formes et Outils 20/01/2009 OLAP 2 Informatique décisionnelle

Plus en détail

BIRT (Business Intelligence and Reporting Tools)

BIRT (Business Intelligence and Reporting Tools) BIRT (Business Intelligence and Reporting Tools) Introduction Cette publication a pour objectif de présenter l outil de reporting BIRT, dans le cadre de l unité de valeur «Data Warehouse et Outils Décisionnels»

Plus en détail

SIG CELLULE DE CRISE. LIEU FORUM ESRI VERSAILLES NOM DE L INTERVENANT Olivier BOURGUIGNON - Arkema / DISIT DATE 3 OCT 2012

SIG CELLULE DE CRISE. LIEU FORUM ESRI VERSAILLES NOM DE L INTERVENANT Olivier BOURGUIGNON - Arkema / DISIT DATE 3 OCT 2012 SIG CELLULE DE CRISE LIEU FORUM ESRI VERSAILLES NOM DE L INTERVENANT Olivier BOURGUIGNON - Arkema / DISIT DATE 3 OCT 2012 Un chimiste de spécialités Une chimie d innovations Arkema en bref Acteur mondial

Plus en détail

MABioVis. Bio-informatique et la

MABioVis. Bio-informatique et la MABioVis Modèles et Algorithmes pour la Bio-informatique et la Visualisation Visite ENS Cachan 5 janvier 2011 MABioVis G GUY MELANÇON (PR UFR Maths Info / EPI GRAVITE) (là, maintenant) - MABioVis DAVID

Plus en détail

Business Intelligence avec SQL Server 2012

Business Intelligence avec SQL Server 2012 Editions ENI Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Collection Solutions Informatiques Table des matières Les éléments à télécharger sont disponibles

Plus en détail

LOGICIEL POUR BOUTIQUE DE SPORT

LOGICIEL POUR BOUTIQUE DE SPORT LOGICIEL POUR BOUTIQUE DE SPORT avec gestion de la location Des progiciels de la gamme A partir de 850 HT (monoposte) Informations au 04 99 61 06 94 Pour qui? Magasins de sport, Location de skis, snowboard

Plus en détail

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Jean-David Benassouli Managing Director, Responsable France de la practice Digital Data management +33 6 79 45 11 51

Plus en détail

DOCUMENTATION POINT FACTURE

DOCUMENTATION POINT FACTURE DOCUMENTATION POINT FACTURE Documentation Point Facture Page 1 sur 30 Introduction Description des fonctionnalités Prise en charge de périphérique de saisie & imprimante Configuration matérielle minimum

Plus en détail

Big Data & objets connectés

Big Data & objets connectés Big Data & objets connectés IDEAS laboratory a accueilli le dernier Think Tank destiné à animer la filière de la robotique et des objets connectés. Celui- ci a abordé le sujet de l utilisation des données

Plus en détail

DU RÉSEAU AU BIG DATA UNE OFFRE GLOBALE DE GESTION DE LA DONNÉE. Bruno Fleisch - Responsable Produits Tarik Hakkou Responsable du pôle «Data»

DU RÉSEAU AU BIG DATA UNE OFFRE GLOBALE DE GESTION DE LA DONNÉE. Bruno Fleisch - Responsable Produits Tarik Hakkou Responsable du pôle «Data» DU RÉSEAU AU BIG DATA UNE OFFRE GLOBALE DE GESTION DE LA DONNÉE Bruno Fleisch - Responsable Produits Tarik Hakkou Responsable du pôle «Data» BT, UN LEADER MONDIAL BT est l une des premières entreprises

Plus en détail

Big Data et Marketing : les competences attendues

Big Data et Marketing : les competences attendues Big Data et Marketing : les competences attendues Laurence Fiévet Responsable Marketing Corporate Oney Banque Accord LA DYNAMIQUE DU MARKETING Selon la définition de Kotler et Dubois, «Le marketing est

Plus en détail

PRODIGE V3. Manuel utilisateurs. Consultation des métadonnées

PRODIGE V3. Manuel utilisateurs. Consultation des métadonnées PRODIGE V3 Manuel utilisateurs Consultation des métadonnées Pour plus d'information sur le dispositif : à remplir par chaque site éventuellement 2 PRODIGE V3 : Consultation des métadonnées SOMMAIRE 1.

Plus en détail

BASE DE DONNÉES D'ASSISTANCE AU DÉVELOPPEMENT POUR LA MAURITANIE (DAD MAURITANIE)

BASE DE DONNÉES D'ASSISTANCE AU DÉVELOPPEMENT POUR LA MAURITANIE (DAD MAURITANIE) DAD MAURITANIE MANUEL D UTILISATEUR DE L APPLICATION 1 BASE DE DONNÉES D'ASSISTANCE AU DÉVELOPPEMENT POUR LA MAURITANIE (DAD MAURITANIE) MANUEL D UTILISATEUR DE L APPLICATION Version 1.4 COPYRIGHT 2001-2012

Plus en détail