Urbanisation des SI-NFE107
|
|
|
- Romain Lefrançois
- il y a 10 ans
- Total affichages :
Transcription
1 OLAP Urbanisation des SI-NFE107 Fiche de lecture Karim SEKRI 20/01/2009 OLAP 1 Introduction PLAN OLAP Les différentes technologies OLAP Plate formes et Outils 20/01/2009 OLAP 2
2 Informatique décisionnelle BI, Business Intelligence Système interprétant des données complexes permettant aux dirigeants d'entreprise de prendre des décisions en connaissance de cause. Aide à la décision Connaître les clients, analyser les ventes et les marchés Mesurer la performance BD clients, historique des achats ; segmentation ; CRM Tableaux de bord, reporting 20/01/2009 OLAP 3 Entrepôts de données Datawarehouse Le concept d'entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon : "collection de données orientées pour un sujet, intégrées, non volatiles et historisées, organisées pour le support du processus d'aide à la décision". Est créé pour les besoins décisionnels Est spécialisé par type d analyse Marketing : BD client, historique des achats Gestion : Suivi coûts / performance des activités Est alimenté par les systèmes opérationnels A une modélisation dimensionnelle qui facilite l analyse selon des axes prédéfinis 20/01/2009 OLAP 4
3 Entrepôts de données Modèle dimensionnel : hypercube Axes d analyse (dimensions) Indicateurs (table des faits) Produits : activité, ligne produit, gamme, produit Réseau : Zone, Pays, Région, Département, Ville, Agence Client : secteur, groupe, client, adresse livraison Données (Indicateurs) Temps : année, trimestre, mois, semaine, jour budget, N /01/2009 OLAP 5 Produits Modèle dimensionnel Client Hyper -cube Réseau Temps Schéma BD en «étoile» ou en «flocon» Dimension Client Identifiant client Nom Secteur activité Zone géographique Etc. Table des Faits Dim. Produit Identifiant produit Nom Ligne de Produit Etc. Dimension Période Chiffre d affaires Taux de remise Quantités vendues Marge Etc. Dimension réseau Identifiant point vente Nom Jour Région Mois Pays An Etc. 20/01/2009 Etc. OLAP 6
4 Entrepôt métier Datamart ETL Outil d extraction Datamining Exploration des données 20/01/2009 OLAP 7 Les outils de restitution OLAP (On Line Analytical Processing) Outils d interrogation des hypercubes Axe Produit Sélection d une portion de l hypercube : - sous-ensemble de produits, - client spécifique, -réseau particulier de distribution Axe client Axe Réseau de vente 20/01/2009 OLAP 8
5 Architecture du SI décisionnel COMPTA Données externes Intranet Postes client PRODUCTION STOCK COMMERCIAL Module Interfaces (ETL) Entrepôt de données Outils Restitution GESTION DES ACTIVITES données opérationnelles 1. Source : SI opérationnel 2. Interfaces : ETL 3. Organisation et Stockage : Entrepôt 4. Restitution : OLAP 20/01/2009 OLAP 9 20/01/2009 OLAP 10
6 OLAP E.F. Codd définit 12 règles de base permettant de qualifier le concept global nommé OLAP : Transparence Accessibilité Manipulation des données Souplesse d'affichage Multidimensionalité Dimensionalité générique Client/serveur Multi-utilisateur Accès stable Gestion des matrices creuses Croisement des dimensions Nombre illimité de dimension et de niveaux d'agrégation 20/01/2009 OLAP 11 OLAP Approche multidimensionnelle : Basée sur des thèmes d analyse (dimensions) Plus intuitive Plusieurs niveaux d agrégation : Les données peuvent être groupées à différents niveaux de granularité (les regroupements sont pré-calculés, par exemple, le total des ventes pour le mois dernier calculé à partir de la somme de toutes les ventes du mois). Granularité : niveau de détail des données emmagasinées dans une base de données. 20/01/2009 OLAP 12
7 Vocabulaire OLAP Dimension : Une dimension peut être définie comme un thème, ou un axe (attributs), selon lequel les données seront analysées (en fonction de ) Ex. Temps, Découpage administratif, Produits Une dimension contient des membres organisés en hiérarchie, chacun des membres appartenant à un niveau hiérarchique (ou niveau de granularité) particulier Ex. Pour la dimension Temps, les années, les mois et les jours peuvent être des exemples de niveaux hiérarchiques est un exemple de membre du niveau Année 20/01/2009 OLAP 13 Vocabulaire OLAP Mesure : Une mesure est un élément de donnée sur lequel portent les analyses, en fonction des différentes dimensions Ex. coût des travaux, nombre d accidents, ventes, dépenses 20/01/2009 OLAP 14
8 Vocabulaire OLAP Fait : Un fait représente la valeur d une mesure, mesurée ou calculée, selon un membre de chacune des dimensions (ex. ce qui est recueilli par les systèmes transactionnels). Ex. «le coût des travaux en 1995 pour la région 02 est $» est un fait qui exprime la valeur de la mesure «coût des travaux» pour le membre «1995» du niveau «année» de la dimension «temps» et le membre «02» du niveau «région» de la dimension «découpage administratif». 20/01/2009 OLAP 15 Vocabulaire OLAP La table des faits: comme son nom l indique, contient les faits 20/01/2009 OLAP 16
9 Opération: NAVIGATION ou FORAGE Les outils OLAP utilisent des opérateurs particuliers afin de «naviguer» dans les cubes multidimensionnels : Pivoter (pivot, swap) : Permet d interchanger deux dimensions Forer (drill-down) : Permet de descendre dans la hiérarchie de la dimension. Ex. visualiser le nombre d accidents par mois au lieu de par année. Remonter (drill-up, roll-up) : Permet de remonter dans la hiérarchie de la dimension. Ex. visualiser le nombre d accidents par année au lieu de par mois. Forer latéralement (drill-across) : Permet de passer d une mesure à l autre. Ex. visualiser le coût des travaux au lieu du nombre d accidents Permet de passer d un membre de dimension à un autre. Ex. visualiser les données de Montréal au lieu de celles de Québec 20/01/2009 OLAP 17 Opération: agrégation Pour obtenir moins de détails Élimination d une dimension ou regroupement des éléments d une dimension Exemple: Ville < Etat < Province < Pays Au lieu de regrouper les données par ville, elles sont regroupées par pays 20/01/2009 OLAP 18
10 Les différentes technologies OLAP MOLAP (Multidimensionnel) ROLAP (Relationnel) HOALP (Hybride) SOLAP (Spatiale) 20/01/2009 OLAP 19 MOLAP B a s e d e d o n n é e s m u ltid im e n s io n n e lle (h yp e rc u b e ) S e rve u r M O L A P C lie n t O L A P ROLAP Base de données relationnelle (étoile ou flocon) Serveur ROLAP Vue multidimensionnelle Client OLAP 20/01/2009 OLAP 20
11 HOLAP 20/01/2009 OLAP 21 MOLAP vs ROLAP vs HOLAP Critère de comparaison Stockage des données de base (détaillées) ROLAP MOLAP HOLAP BD relationnelle BD multidimensionnelle BD relationnelle Stockage des agrégations BD relationnelle BD multidimensionnelle BD multidimensionnelle Performance des requêtes (habituellement) Le moins performant Le plus performant Performance moyenne 20/01/2009 OLAP 22
12 Plate formes et Outils Pentaho Kettle. ETL Mondrian, JPivot, Jrubik. OLAP Weka. BIRT, JfreeReport, JaspertReports, Pentaho Reporting. Enhydra Shark. Hibernate. IDE Eclipse. Java. Jboss. PHP et JSP. HSQLDB, MYSQL. Quartz. 20/01/2009 OLAP 23 Architecture du serveur PENTAHO Clients System Monitoring Web Service Client Web Browsers Inbox Alerter SNMP/JMX SOAP/WSDL HTTP RSS JMS J2EE Server Services / UDDI Single Sign On Java Server Pages, Servlets, Portlets Navigation Components Runtime/ Solution Repository Solution Engine Auditing Sched uler Workf low Inbox Repor ting Dashb oards KPIs Components Pivot Analyt Views ic Views App Integr ation Busin ess Rules Data Minin g Other s (see text) Audit Repor ts Audit Repository Scheduler Workflow Engine Reporting Engine OLAP Engine Rules Engines Data Mart Schedule Repository Data Sources Application Integration / ETL Data Mining Repository Workflow Repository Architecture: Server Application Data Legend Pentaho Technology Control Flow 3 rd Party Open Source Technology Data Flow Customer/3 rd Party Technology or Data
13 Bibliographie Cours informatique décisionnelle (NFE115) Cnam de basse-normandie Gilles LEBRUN et Christophe CHARRIER 20/01/2009 OLAP 25
et les Systèmes Multidimensionnels
Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées
Les Entrepôts de Données
Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations
Les entrepôts de données
Les entrepôts de données Lydie Soler Janvier 2008 U.F.R. d informatique Document diffusé sous licence Creative Commons by-nc-nd (http://creativecommons.org/licenses/by-nc-nd/2.0/fr/) 1 Plan Introduction
Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani
Datawarehouse: Cubes OLAP Marlyse Dieungang Khaoula Ghilani Table des matières 1 Data Warehouse 3 1.1 Introduction............................ 3 1.1.1 Définition......................... 3 1.1.2 Architecture........................
LES ENTREPOTS DE DONNEES
Module B4 : Projet des Systèmes d information Lille, le 25 mars 2002 LES ENTREPOTS DE DONNEES Problématique : Pour capitaliser ses informations, une entreprise doit-elle commencer par mettre en œuvre des
Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique
Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché
Petit Déjeuner Pépinière du Logiciel Libre. 25 juin 2008
Petit Déjeuner Pépinière du Logiciel Libre 25 juin 2008 1 / 37 Agenda Définition & Principes Les différents outils & composants Les Solutions intégrés Open-Source Vos Questions 2 / 37 Agenda Définition
BUSINESS INTELLIGENCE
BUSINESS SYSTÈME D INFORMATION DÉCISIONNEL CENTRE DE RESSOURCES INFORMATIQUES PÔLE INFORMATIQUE DE GESTION & SI DÉFINITION L INFORMATIQUE DÉCISIONNELLE DÉSIGNE L ENSEMBLE DES TECHNOLOGIES UTILISÉES DANS
Introduction à la B.I. Avec SQL Server 2008
Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide
Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation
Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation 2 Présentation Besoin: prise de décisions
Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016
Entrepôts de données NEGRE Elsa Université Paris-Dauphine 2015-2016 Contexte et problématique Le processus de prise de décision L entrepôt de données Définition Différence avec un SGBD Caractéristiques
Entrepôt de données 1. Introduction
Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de
Business Intelligence : Informatique Décisionnelle
Business Intelligence : Informatique Décisionnelle On appelle «aide à la décision», «décisionnel», ou encore «business intelligence», un ensemble de solutions informatiques permettant l analyse des données
Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement
Introduction Phases du projet Les principales phases du projet sont les suivantes : La mise à disposition des sources Des fichiers Excel sont utilisés pour récolter nos informations L extraction des données
BUSINESS INTELLIGENCE
BUSINESS SYSTÈME D INFORMATION DÉCISIONNEL GROUPE COCKTAIL INFOCENTRE-PILOTAGE Le décisionnel et le pilotage autour du SGI et de son référentiel CENTRE DE RESSOURCES INFORMATIQUES PÔLE INFORMATIQUE DE
Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données :
Page 1 of 6 Entrepôt de données Un article de Wikipédia, l'encyclopédie libre. L'entrepôt de données, ou datawarehouse, est un concept spécifique de l'informatique décisionnelle, issu du constat suivant
BI = Business Intelligence Master Data-ScienceCours 3 - Data
BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage
Didier MOUNIEN Samantha MOINEAUX
Didier MOUNIEN Samantha MOINEAUX 08/01/2008 1 Généralisation des ERP ERP génère une importante masse de données Comment mesurer l impact réel d une décision? Comment choisir entre plusieurs décisions?
La place de la Géomatique Décisionnelle dans le processus de décision
Géomatique décisionnelle La place de la Géomatique Décisionnelle dans le processus de décision - Arnaud Van De Casteele Mines ParisTech - CRC Arnaud {dot} van_de_casteele {at} mines-paristech.fr Les rencontres
BI Open Source Octobre 2012. Alioune Dia, Consultant BI [email protected]
BI Open Source Octobre 2012 Alioune Dia, Consultant BI [email protected] 1 Le groupe, en bref 2004 Date de création +7M * Chiffre d affaires 2012 +80 Collaborateurs au 06/2011 35% Croissance chiffre
FreeAnalysis. Schema Designer. Cubes
FreeAnalysis Schema Designer Cubes Charles Martin et Patrick Beaucamp BPM Conseil Contact : [email protected], [email protected] Janvier 2013 Document : BPM_Vanilla_FreeAnalysisSchemaDesigner_v4.2_FR.odt
Bases de données multidimensionnelles et mise en œuvre dans Oracle
Bases de données multidimensionnelles et mise en œuvre dans Oracle 1 Introduction et Description générale Les bases de données relationnelles sont très performantes pour les systèmes opérationnels (ou
La problématique. La philosophie ' ) * )
La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / 3 13 4,$ / 5 23, 2 * $3 3 63 3 #, 7 Datawarehouse Data warehouse
Le Géodécisionnel. P7 : Projet Bibliographique Dans le cadre du Mastère ASIG. Les SIG au service du géodécisionnel.
P7 : Projet Bibliographique Dans le cadre du Mastère ASIG Le Géodécisionnel Les SIG au service du géodécisionnel Thierry Lallemant 15 Mai 2008 Mastère ASIG / Projet Bibliographique 2008 1 TABLE DES MATIERES
Analyse comparative entre différents outils de BI (Business Intelligence) :
Analyse comparative entre différents outils de BI (Business Intelligence) : Réalisé par: NAMIR YASSINE RAGUI ACHRAF Encadré par: PR. L. LAMRINI Dans le domaine d économies des Big Data et Open Data, comment
Catalogue Formation «Vanilla»
Catalogue Formation «Vanilla» Date : octobre 2009 Table des matières Liste des Formations...2 Contenu des formations...3 Vanilla FastTrack...3 Vanilla Architecture...5 Enterprise Services...6 BIPortail...7
BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise
BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la
Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1
Workflow/DataWarehouse/DataMining 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 plan Workflow DataWarehouse Aide à la décision DataMinig Conclusion 14-09-98 LORIA
L information et la technologie de l informationl
L information et la technologie de l informationl CRM & informatique décisionnelled CRM CRM & informatique décisionnelle. d 1 2 3 Les Les fondements managériaux managériaux du du CRM. CRM. Les Les fondements
Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours
Information du cours Informatique décisionnelle et data mining www.lia.univ-avignon.fr/chercheurs/torres/cours/dm Juan-Manuel Torres [email protected] LIA/Université d Avignon Cours/TP
BI = Business Intelligence Master Data-Science
BI = Business Intelligence Master Data-Science UPMC 25 janvier 2015 Organisation Horaire Cours : Lundi de 13h30 à 15h30 TP : Vendredi de 13h30 à 17h45 Intervenants : Divers industriels (en cours de construction)
Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification
Séminaire national Alger 12 Mars 2008 «L Entreprise algérienne face au défi du numérique : État et perspectives» CRM et ERP Impact(s) sur l entreprise en tant qu outils de gestion Historique des ERP Le
SQL SERVER 2008, BUSINESS INTELLIGENCE
SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business
ETL Extract - Transform - Load
ETL Extract - Transform - Load Concept général d analyse en ligne (rappels) Rémy Choquet - Université Lyon 2 - Master 2 IIDEE - 2006-2007 Plan Définitions La place d OLAP dans une entreprise OLAP versus
Construction d un environnement destiné à l'aide au pilotage
Retour d expérience Construction d un environnement destiné à l'aide au pilotage 1 «Journée sur le décisionnel et pilotage autour du SI de son référentiel» Marseille 26 juin Construction d un environnement
Projet M1 Sujet 21 : Développement d'un logiciel simplifié de type Business Object
Florent Dubien Antoine Pelloux IUP GMI Avignon Projet M1 Sujet 21 : Développement d'un logiciel simplifié de type Business Object Professeur Tuteur : Thierry Spriet 1. Cadre du projet... 3 2. Logiciel
Les Entrepôts de Données. (Data Warehouses)
Les Entrepôts de Données (Data Warehouses) Pr. Omar Boussaid Département d'informatique et de Sta5s5que Université Lyon2 - France Les Entrepôts de Données 1. Généralités, sur le décisionnel 2. L'entreposage
Business & High Technology
UNIVERSITE DE TUNIS INSTITUT SUPERIEUR DE GESTION DE TUNIS Département : Informatique Business & High Technology Chapitre 8 : ID : Informatique Décisionnelle BI : Business Intelligence Sommaire Introduction...
Entrepôt de Données. Jean-François Desnos. [email protected] ED JFD 1
Entrepôt de Données Jean-François Desnos [email protected] ED JFD 1 Définition (Bill Inmon 1990) Un entrepôt de données (data warehouse) est une collection de données thématiques, intégrées,
SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles)
SGBDR Systèmes de Gestion de Bases de Données (Relationnelles) Plan Approches Les tâches du SGBD Les transactions Approche 1 Systèmes traditionnels basés sur des fichiers Application 1 Gestion clients
2 Serveurs OLAP et introduction au Data Mining
2-1 2 Serveurs OLAP et introduction au Data Mining 2-2 Création et consultation des cubes en mode client-serveur Serveur OLAP Clients OLAP Clients OLAP 2-3 Intérêt Systèmes serveurs et clients Fonctionnalité
Introduction au domaine du décisionnel et aux data warehouses
Data warehouse Introduction au domaine du décisionnel et aux data warehouses http://dwh.crzt.fr STÉPHANE CROZAT Paternité - Partage des Conditions Initiales à l'identique : http://creativecommons.org/licenses/by-sa/2.0/fr/
RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE. Ministère de l Enseignement Supérieur et de la Recherche Scientifique I.N.I THEME : Les outils OLAP
RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE Ministère de l Enseignement Supérieur et de la Recherche Scientifique I.N.I THEME : Les outils OLAP REALISE PAR : BENAKEZOUH Leïla & TIFOUS Amira Quatrième
Bases de Données Avancées
1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,
Domaines d intervention
MANAGEMENT INFORMATIQUE 1 PLACE DE L EGALITE 78280 GUYANCOURT TELEPHONE + 33 1 30 48 54 34 TELECOPIE + 33 1 30 48 54 34 INFOS mailto:[email protected] Société Présentation Société Notre
et les Systèmes Multidimensionnels
Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Data warehouse (DW) Le Data warehouse (entrepôt de données) est une collection de données orientées sujet, intégrées, non volatiles
Le Data Warehouse. Fait Vente. temps produit promotion. magasin. revenu ... Produit réf. libellé volume catégorie poids. Temps jour semaine date ...
Le Data Warehouse Temps jour semaine date magasin nom ville m 2 région manager... Fait Vente temps produit promotion magasin revenu... Produit réf. libellé volume catégorie poids... Promo nom budget média
Chapitre 9 : Informatique décisionnelle
Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle
SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)
Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence
Evry - M2 MIAGE Entrepôt de données
Evry - M2 MIAGE Entrepôt de données Introduction D. Ploix - M2 Miage - EDD - Introduction 1 Plan Positionnement du BI dans l entreprise Déclinaison fonctionnelle du décisionnel dans l entreprise Intégration
Mémoire de fin d études. Thème Conception et réalisation d un Data Warehouse pour la mise en place d un système décisionnel
Mémoire de fin d études Pour l obtention du diplôme d Ingénieur d Etat en Informatique Option : Systèmes d information Thème Conception et réalisation d un Data Warehouse pour la mise en place d un système
QU EST-CE QUE LE DECISIONNEL?
La plupart des entreprises disposent d une masse considérable d informations sur leurs clients, leurs produits, leurs ventes Toutefois ces données sont cloisonnées par les applications utilisées ou parce
25/05/2012. Business Intelligence. Plan de Présentation
Business Intelligence Prof. Mourad Oubrich Plan de Présentation Définition de la BI Chaine de la valeur de la BI Marché de la BI Métiers de la BI Architecture de la BI Technologie SAP BI Les priorités
Déroulement de la présentation
Veille technologique portant sur le mariage judicieux de l intelligence d affaires et l information géospatiale Colloque Géomatique 2009, Montréal Marie-Josée Proulx, M.Sc., Présidente-directrice générale
Systèmes d Information Décisionnels dans les établissements de santé : analyse de l offre éditeur au 31/07/2007
Systèmes d Information Décisionnels dans les établissements de santé : analyse de l offre éditeur au 31/07/2007 Version 1.0 GMSIH 44, rue de Cambronne 75015 Paris. Tel : 01 48 56 72 70. Fax : 01 48 56
Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise.
Solutions PME VIPDev Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Cette offre est basée sur la mise à disposition de l ensemble de nos compétences techniques et créatives au service
MyReport, une gamme complète. La Business Intelligence en toute simplicité : Concevez, partagez, actualisez! pour piloter votre activité au quotidien.
MyReportle reporting sous excel La Business Intelligence en toute simplicité : Concevez, partagez, actualisez! MyReport, une gamme complète pour piloter votre activité au quotidien. En rendant les données
CONSERVATOIRE NATIONAL DES ARTS ET METIERS CENTRE REGIONAL ASSOCIE DE BOURGOGNE MEMOIRE. présenté en vue d'obtenir le DIPLOME D'INGENIEUR C.N.A.M.
CONSERVATOIRE NATIONAL DES ARTS ET METIERS CENTRE REGIONAL ASSOCIE DE BOURGOGNE MEMOIRE présenté en vue d'obtenir le DIPLOME D'INGENIEUR C.N.A.M. SPECIALITE : INFORMATIQUE OPTION : SYSTEMES D INFORMATION
Base de données clients outil de base du CRM
Base de données clients outil de base du CRM Introduction Objectifs SOMMAIRE Constitution de la base de données clients Alimentation Datamart et DataWarehouse Contenu Dimensions Exploitation de la base
Business Intelligence avec Excel, Power BI et Office 365
Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10
Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé
ESNE Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé I.Cirillo 2010-2011 Introduction Le laboratoire de base de données de l ESNE a mis en place, il y a quelques années,
Pentaho : Comparatif fonctionnel entre la version Communautaire (gratuite) et la version Entreprise (payante) Table des matières
Pentaho : Comparatif fonctionnel entre la version Communautaire (gratuite) et la version Entreprise (payante) Table des matières 1 2 3 4 PRÉSENTATION DE PENTAHO...2 LISTING DES COMPOSANTS DE LA PLATE-FORME...4
Décisionnel. solutions open source. Livre blanc
Livre blanc Décisionnel solutions open source N. Richeton - Consultant Patrice Bertrand Directeur des Opérations Version 0.9 le 25 août 2006 Pour plus d information : Tél : 01 41 40 11 00 Mailto : [email protected]
BUSINESS INTELLIGENCE
GUIDE COMPARATIF BUSINESS INTELLIGENCE www.viseo.com Table des matières Business Intelligence :... 2 Contexte et objectifs... 2 Une architecture spécifique... 2 Les outils de Business intelligence... 3
RMLL Présentation Activité Pentaho
RMLL Présentation Activité Pentaho BPM Conseil «Best Pentaho partner for 2006» 11 Juillet 2007 Activités et Orientations BPM Conseil Société de conseil en informatique décisionnelle Partenaire la suite
Le petit glossaire du décisionnel
Le petit glossaire du décisionnel ABC/ABM Activity Based Costing Activity Based Management ABC/ABM : méthodes au cœur du pilotage stratégique de la performance, visant l optimisation des processus, via
AXIAD Conseil pour décider en toute intelligence
AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes
Le concept de Data Warehouse a été formalisé pour la première fois en 1990.
1 - LE DATA WAREHOUSE 1.1 - PRESENTATION Le concept de Data Warehouse a été formalisé pour la première fois en 1990. L idée de constituer une base de données orientée sujet, intégrée, contenant des informations
Chapitre IX. L intégration de données. Les entrepôts de données (Data Warehouses) Motivation. Le problème
Chapitre IX L intégration de données Le problème De façon très générale, le problème de l intégration de données (data integration) est de permettre un accès cohérent à des données d origine, de structuration
Les entrepôts de données et l analyse de données
LOG660 - Bases de données de haute performance Les entrepôts de données et l analyse de données Quelques définitions Entreposage de données (data warehousing): «La copie périodique et coordonnée de données
OFFRE MDB Service & Architecture Technique. MyDataBall Saas (Software as a Service) MyDataBall On Premise
OFFRE MDB Service & Architecture Technique MyDataBall Saas (Software as a Service) MyDataBall On Premise L offre Produit / Service 1 Implantation Rédaction collaborative du cahier des charges 2 3 de la
Intelligence Economique - Business Intelligence
Intelligence Economique - Business Intelligence Notion de Business Intelligence Dès qu'il y a une entreprise, il y a implicitement intelligence économique (tout comme il y a du marketing) : quelle produit
Suite Jedox La Business-Driven Intelligence avec Jedox
Suite La Business-Driven Intelligence avec Une solution intégrée pour la simulation, l analyse et le reporting vous offre la possibilité d analyser vos données et de gérer votre planification selon vos
INTRODUCTION A LA B.I AVEC PENTAHO BUSINESS ANALYTICS Formation animée par
Séminaire de formation INTRODUCTION A LA B.I AVEC PENTAHO BUSINESS ANALYTICS Formation animée par M. Dia Alioune Expert consultant BI OPEN SOURCE Directeur BADIA OA GROUP : OpenAfriki France Du 09 au 11
Méthodologie de conceptualisation BI
Méthodologie de conceptualisation BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information
Entrepôts de Données
République Tunisienne Ministère de l Enseignement Supérieur Institut Supérieur des Etudes Technologique de Kef Support de Cours Entrepôts de Données Mention : Technologies de l Informatique (TI) Parcours
Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel
Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 10 Introduction 1. Présentation du décisionnel 15 1.1 La notion de décideur 15 1.2 Les facteurs d'amélioration
Programme scientifique Majeure ARCHITECTURE DES SYSTEMES D INFORMATION. Mentions Ingénierie des Systèmes d Information Business Intelligence
É C O L E D I N G É N I E U R D E S T E C H N O L O G I E S D E L I N F O R M A T I O N E T D E L A C O M M U N I C A T I O N Programme scientifique Majeure ARCHITECTURE DES SYSTEMES D INFORMATION Mentions
HERMES SYSTEM et BEWISE souhaitent vous offrir les meilleures compétences.
Notre alliance, Votre atout. HERMES SYSTEM et BEWISE souhaitent vous offrir les meilleures compétences. C est de cette philosophie qu est née notre partenariat avec la société toulousaine (31) Bewise,
IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL
IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL Proposé par BUMA Feinance Master en management e projets informatiques Consultant en système écisionnel I. COMPREHENSION DU CONTEXTE «L informatique
Introduction à ORACLE WAREHOUSE BUILDER Cédric du Mouza
Introduction à ORACLE WAREHOUSE BUILDER Cédric du Mouza Avant de commencer à travailler avec le produit, il est nécessaire de comprendre, à un haut niveau, les problèmes en réponse desquels l outil a été
Votre Infrastructure est-elle? Business Intelligence. Améliorer la capacité d analyse et de décision de vos équipes
Votre Infrastructure est-elle? Business Intelligence Améliorer la capacité d analyse et de décision de vos équipes Sommaire Introduction : Les domaines d application de la Business Intelligence p. 4 Vue
ÉVALUATION DES PRODUITS COMMERCIAUX OFFRANT DES CAPACITÉS
pr ÉVALUATION DES PRODUITS COMMERCIAUX OFFRANT DES CAPACITÉS COMBINÉES D ANALYSE MULTIDIMENSIONNELLE ET DE CARTOGRAPHIE. Préparé par Marie-Josée Proulx, M.Sc. Sonia Rivest, M.Sc., chargées de recherche
Business Intelligence avec SQL Server 2014 Maîtrisez les concepts et réalisez un système décisionnel
Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 11 Introduction 1. Présentation du décisionnel 13 1.1 La notion de décideur 14 1.2 Les facteurs d'amélioration
TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3
TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation
La Business Intelligence en toute simplicité :
MyReportle reporting sous excel La Business Intelligence en toute simplicité : Concevez, partagez, actualisez! En rendant les données accessibles aux personnes habilitées dans l entreprise (comptabilité,
Solu%on de Business Intelligence leader pour la ges%on de la performance d entreprise. myssii www.myssii.fr - 2012 Jedox AG, www.jedox.
by Solu%on de Business Intelligence leader pour la ges%on de la performance d entreprise 2014 Jedox by myssii Pour toute entreprise, l informatique d aide à la décision est devenue une arme de compétitivité
Business Intelligence Reporting
Maître de stage : Claude Bordanave Sirinya ON-AT Année 2011 / 2012 Master1 Informatique Université Bordeaux 1 SOMMAIRE REMERCIEMENTS...4 INTRODUCTION...4 I) PRESENTATION DE L ENTREPRISE... 5 1) Raison
L informatique décisionnelle
L informatique décisionnelle Thèse Professionnelle. Ce document est une thèse professionnelle dont la problématique est : Quelles sont les bonnes pratiques dans la mise en place d une solution décisionnelle
SWISS ORACLE US ER GRO UP. www.soug.ch. Newsletter 5/2014 Sonderausgabe. OBIF DB licensing with VMware Delphix 12c: SQL Plan / Security Features
SWISS ORACLE US ER GRO UP www.soug.ch Newsletter 5/2014 Sonderausgabe OBIF DB licensing with VMware Delphix 12c: SQL Plan / Security Features 42 TIPS&TECHNIQUES Alexandre Tacchini, Benjamin Gaillard, Fabien
Introduction à Business Objects. J. Akoka I. Wattiau
Introduction à Business Objects J. Akoka I. Wattiau Introduction Un outil d'aide à la décision accès aux informations stockées dans les bases de données et les progiciels interrogation génération d'états
Business Intelligence
avec Excel, Power BI et Office 365 Téléchargement www.editions-eni.fr.fr Jean-Pierre GIRARDOT Table des matières 1 Avant-propos A. À qui s adresse ce livre?..................................................
Intégration de systèmes client - serveur Des approches client-serveur à l urbanisation Quelques transparents introductifs
Intégration de systèmes client - serveur Des approches client-serveur à l urbanisation Quelques transparents introductifs Jean-Pierre Meinadier Professeur du CNAM, [email protected] Révolution CS : l utilisateur
TP Conception de Datawarehouse Initiation à ORACLE WAREHOUSE BUILDER Cédric du Mouza
TP Conception de Datawarehouse Initiation à ORACLE WAREHOUSE BUILDER Cédric du Mouza Ce TP s appuie sur le tutorial de prise en main de Oracle Warehouse Builder, que vous pouvez trouver en anglais sur
MyReport, LE REPORTING SOUS EXCEL
MyReport, LE REPORTING SOUS EXCEL De la simplicité d Excel à l autonomie des utilisateurs Avec MyReport : De la manipulation en moins. De l analyse en plus! Tous les services de l entreprise utilisent
Easy to. report. Connexion. Transformation. Stockage. Construction. Exploitation. Diffusion
M y R e p o r t, L A S O L U T I O N R E P O R T I N G D E S U T I L I S AT E U R S E X C E L Connexion Transformation Stockage Construction Exploitation Diffusion OBJECTIF REPORTING : De la manipulation
République Algérienne Démocratique et Populaire
République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique Institut National de formation en Informatique Direction de la Post-Graduation et de
MyReport Le reporting sous excel. La solution de business intelligence pour la PME
La solution de business intelligence pour la PME Qu est que la business intelligence La Business intelligence, dénommée aussi par simplification "Informatique Décisionnelle", est vraisemblablement l'unique
Entrepôt de données et l Analyse en ligne. Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- [email protected] Flavien Bouillot
Entrepôt de données et l Analyse en ligne Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- [email protected] Flavien Bouillot Déroulement du cours 17 janvier : cours et TD 20 janvier : cours?
Business Intelligence avec SQL Server 2012
Editions ENI Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Collection Solutions Informatiques Table des matières Les éléments à télécharger sont disponibles
