Logique et Preuves. Logique et Preuves. Pierre Castéran September 5, 2016
|
|
|
- Géraldine Rancourt
- il y a 9 ans
- Total affichages :
Transcription
1 Logique et Preuves Pierre Castéran September 5, 2016
2 Introduction Qu est-ce que la logique? La logique est une science dont l objet est l étude du raisonnement, abstraction faite du domaine auquel ce raisonnement s applique: philosophie linguistique mathématiques sûreté et sécurité des logiciels et matériels informatiques...
3 Introduction Historique Cette discipline est très ancienne, les premiers ouvrages sur la logique ayant été écrits par Aristote ( ). Renouveau fin XIX-éme début XX-ème siécle : crise du fondement des mathématiques Devient une part importante du géniel logicie : certification du matériel et du logiciel Recherches mathématiques utilisant des assistants de preuve.
4 Introduction Contexte de ce cours Changement de programme de Licence :année transitoire. Publics Licence d informatique (L3) : postérieur à une U.E. d informatique théorique: (math discrètes pour l informatique, notions éléméntaires de logique). Les étudiants en L2 l an dernier ne verront pas programmation fonctionnelle. Licence Math-Info (L3), en parallèle avec l U.E. de programmation fonctionnelle
5 Introduction Problèmes constatés (licence, master (GL, VL)) difficultés avec le langage logique Confusion entre et Erreurs dans la spécification des programmes Modes de raisonnement : Confusion entre axiomes et hypothèses Difficultés avec le raisonnement par l absurde etc.
6 Introduction Contenu Fondements de la logique Introduction tranquille des notions importantes. On s appuie sur votre familiarité avec la notion de langage de programmation (syntaxe, sémantique, etc.) On part du minimum (juste l implication), et on procède par ajoûts successifs : contradiction et négation, connecteurs, calculs des prédicats Premiers pas avec un assistant de preuve Exemples informatiques simples Spécification de fonctions simples preuves de correction de fonctions récursives
7 Organisation Organisation Séances 3 cours en amphi : généralités 15 Séances de cours intégrés (souvent par 2) 6 Séances de TD sur machine (groupées par 2) Contrôle des connaissances Contrôle continu : 6 tests (papier ou machine) d un 1/4 h : On prend la moyenne des 5 meilleures notes Examen final d 1h30 Moyenne arithmétique des deux notes
8 Organisation Documentation Site casteran/l-et-p poly (en cours de rédaction) nombreux liens
9 Le vocabulaire de la logique Le vocabulaire de la logique Propositions Séquents Vérité et preuves
10 Le vocabulaire de la logique Propositions Propositions Une proposition est un énoncé (mathématique, informatique, mais pas que) susceptible d être démontré ou réfuté, pour lequel il fait sens de parler de vérité. Voir référence sur le poly. Exemples (1) Mon mot de passe est password 42 est un nombre premier 41 et 43 sont des nombres premiers jumeaux Le langage C comporte plusieurs failles de sécurité Quicksort est un algorithme correct de tri de tableaux
11 Le vocabulaire de la logique Propositions Exemples (2) La fonction ci-dessous (de recherche binaire) est buggée int binary_search(long t[], int n, long v) { int low = 0, high = n - 1; while (low <= high) { int middle = (low + high) / 2; if (t[middle] < v) low = middle + 1; else if (t[middle] > v) high = middle -1; else return middle; } return -1; }
12 Le vocabulaire de la logique Propositions Exemples (3) La suite de Syracuse finit toujours par le cycle (1, 2, 4) quel que soit l élément initial initialisation On considère un nombre entier strictement positif. calcul de l élément suivant Soit n un élément de la suite: Par construction, il est strictement positif Si n est pair, l élément suivant est n/2 Sinon, l élément suivant est 3n + 1 Par exemple, si l on démarre de 23, on obtient la suite suivante: 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1...
13 Le vocabulaire de la logique Propositions Non-propositions 42 b 2 4ac L algorithme du quicksort L ensemble des entiers naturels
14 Le vocabulaire de la logique Propositions Quelques logiques Il n y a pas une logique, mais plusieurs, caractériséees par la syntaxe de leur proposition et leur domaine d application. Logique minimale: Formules atomiques et implication comme seul connecteur: (P Q R) (Q P R) Application : Étude du raisonnement hypothétique
15 Le vocabulaire de la logique Propositions Quelques logiques (2) Logiques propositionnelles: On ajoute à la logique minimale la contradiction, la négation, et les connecteurs,, (P ) P (P Q R) P Q R
16 Le vocabulaire de la logique Propositions Quelques logiques (3) Calcul des prédicats: Notions de prédicats, de relations, quentificateurs existentiel et universel ( x, y, x y) ( x y, x = y) ( h, humain(h) mortel(h)) humain(socrate) mortel(socrate) n p r, p 0 n mod p = b q, n = a q + r 0 r < b
17 Le vocabulaire de la logique Propositions Quelques logiques (4) Logique temporelle: F (panne reparable) G (panne reparable F( panne)) Logique épistémique: p sait que tous les processeurs du réseau ont terminé leur tâche
18 Le vocabulaire de la logique Séquents Séquents Certaines propositions (par exemple: x = 2) ne peuvent être tenues pour vraies ou fausses en absolu (indépendemment d un contexte formé d hypothèses). Définition Un séquent est une structure composée: d un contexte formé d un ensemble Γ de propositions appelées prémisses ou hypothèses, d une proposition A appelée conclusion du séquent Notations usuelles : H 1, H 2,..., H n A Γ A A
19 Le vocabulaire de la logique Séquents Intuitivement, un séquent est valide si, chaque fois que toutes ses hypothèses sont simultanément vraies, alors sa conclusion est vraie. Quels sont les séquents valides? x R, (x 2)(x 1/2) = 0 x = 2 (1) x R, (x 2)(x 1/2) = 0 x = 2 x = 1/2 (2) x Z, (x 2)(x 1/2) = 0 x = 2 (3) x = 62, x = 3 x = 2 (4) x R, x 2 + x + 1 = 0 x = 2 (5) x C, x 2 + x + 1 = 0 x = 2 (6)
20 Le vocabulaire de la logique Vérité et Preuves Vérité et Preuves Comment [se] convaincre de la validité d un séquent Γ A? Deux approches Sémantique: Définir la valeur de vérité de toute proposition, puis vérifier que chaque fois que toutes les hypothèses dans Γ sont vraies, alors A est vraie. Exemple : tables de vérité en logique propositionnelle. Syntaxique: Définir ce qu est une preuve de Γ A. On définit un langage pour les preuves, avec ses règles de correction, comme les langages de programmation. Une preuve devient un objet informatique, comme un programme.
21 Le vocabulaire de la logique Vérité et Preuves Sémantique + Vérification automatisable pour certaines logiques Les calculs cachent le contenu intuitif Grande complexité (par exemple tables de vérité) Syntaxique souvent incomplète + permet de mieux comprendre le rôle des connecteurs et quantificateurs + existence d assistants de preuves (preuve interactive et vérification automatique) + familiarité avec la programmation (isomorphisme de Curry-Howard)
22 Quelques notions importantes Quelques notions importantes Les notions suivantes sont souvent mal comprises, et par conséquent mal utilisées: Axiomes et hypothèses L implication Le faux et la négation
23 Quelques notions importantes Schéma d un raisonnement 1. Contexte global (définitions, axiomes, hypothèses) 2. Raisonnement 3. Conclusion Les points 2 et 3 peuvent être vérifiés par machine, et donc ne posent pas de problèmes particuliers.
24 Quelques notions importantes Les écueils à éviter Les écueils à éviter Axiomes: Les axiomes peuvent être dangereux : s ils sont incohérents ou décrivent mal la réalité, ils peuvent faire accepter n importe quel programme faux comme correct. Par exemple, si un logiciel de preuve de programmes C utilise l axiome : i : int, i < i + 1, alors tout programme (même buggé) peut être prouvé correct. Définitions: Exemple : mauvaises définitions d un tableau trié : i j, 0 i j < n t[i] < t[j] i j, 0 i j < n t[i] < t[j] i j, 0 i < j < n t[i] < t[j]
25 Quelques notions importantes Les écueils à éviter Axiomes contre Hypothèses Un axiome est une proposition A que l on admet comme vraie (sans preuve!), et qui peut être utilisée dans une preuve de B. Exemple : i : int, i < i + 1 Une hypothèse est une proposition H que l on admet seulement dans une partie d une preuve (la portée de cette hypothèse). Si, dans cette portée, on montre la proposition B, on obtient, non une preuve de B, mais une preuve de H B. { Supposons H... B /* utilise l hypothese H */ } H B [ i ]
26 Quelques notions importantes Les écueils à éviter Conclusion: En cas de preuve assistée par ordinateur, l utilisateur doit se méfier de sa modélisation. La machine ne vérifie que la démonstration et non son contexte. On essaiera de remplacer le maximum d axiomes par des définitions, des théorèmes, ou des hypothèses.
27 Quelques notions importantes Les écueils à éviter Les difficultés Nature de l implication Oubliez la définition de A B comme A B. Cette définition ne rend pas compte du sens de A B: Si on peut prouver A, alors on peut aussi prouver B Toutes les logiques n admettent pas l équivalence entre A B et A B
28 Quelques notions importantes Les écueils à éviter Nature de la contradiction Une logique sert à caractériser les propositions qui sont vraies (ou, si l on veut, les séquents démontrables). Un contexte dans lequel toutes les propositions seraient démontrables rendrait toute démonstration inutile. On propose de définir la contradiction, notée, comme tout est vrai (y compris 2 = 3, 2 3, Socrate est immortel ). Cette définition rend compte du principe d explosion : si on peut prouver Γ alors on peut prouver n importe quel séquent Γ A. La négation peut alors être comme une simple abréviation: A est une abréviation de A.
29 Quelques notions importantes Les écueils à éviter Confusions à éviter (erreurs graves) Notations et L implication et la conjonction donc La proposition et le booléen false, encore moins avec l entier 0! Les connecteurs et
Éléments d informatique Cours 3 La programmation structurée en langage C L instruction de contrôle if
Éléments d informatique Cours 3 La programmation structurée en langage C L instruction de contrôle if Pierre Boudes 28 septembre 2011 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
Calculabilité Cours 3 : Problèmes non-calculables. http://www.irisa.fr/lande/pichardie/l3/log/
Calculabilité Cours 3 : Problèmes non-calculables http://www.irisa.fr/lande/pichardie/l3/log/ Problèmes et classes de décidabilité Problèmes et classes de décidabilité Nous nous intéressons aux problèmes
Recherche dans un tableau
Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6
IN 102 - Cours 1. 1 Informatique, calculateurs. 2 Un premier programme en C
IN 102 - Cours 1 Qu on le veuille ou non, les systèmes informatisés sont désormais omniprésents. Même si ne vous destinez pas à l informatique, vous avez de très grandes chances d y être confrontés en
Logique. Plan du chapitre
Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels
1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)
1/4 Objectif de ce cours /4 Objectifs de ce cours Introduction au langage C - Cours Girardot/Roelens Septembre 013 Du problème au programme I passer d un problème exprimé en français à la réalisation d
Cours 1 : Introduction Ordinateurs - Langages de haut niveau - Application
Université de Provence Licence Math-Info Première Année V. Phan Luong Algorithmique et Programmation en Python Cours 1 : Introduction Ordinateurs - Langages de haut niveau - Application 1 Ordinateur Un
Chapitre 2. Eléments pour comprendre un énoncé
Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données
Représentation d un entier en base b
Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir
UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.
UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases
Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2
éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........
Cours d algorithmique pour la classe de 2nde
Cours d algorithmique pour la classe de 2nde F.Gaudon 10 août 2009 Table des matières 1 Avant la programmation 2 1.1 Qu est ce qu un algorithme?................................. 2 1.2 Qu est ce qu un langage
Cours 1 : La compilation
/38 Interprétation des programmes Cours 1 : La compilation Yann Régis-Gianas [email protected] PPS - Université Denis Diderot Paris 7 2/38 Qu est-ce que la compilation? Vous avez tous déjà
Utilisation des tableaux sémantiques dans les logiques de description
Utilisation des tableaux sémantiques dans les logiques de description IFT6281 Web Sémantique Jacques Bergeron Département d informatique et de recherche opérationnelle Université de Montréal [email protected]
Programmation C++ (débutant)/instructions for, while et do...while
Programmation C++ (débutant)/instructions for, while et do...while 1 Programmation C++ (débutant)/instructions for, while et do...while Le cours du chapitre 4 : le for, while et do...while La notion de
Initiation à la programmation en Python
I-Conventions Initiation à la programmation en Python Nom : Prénom : Une commande Python sera écrite en caractère gras. Exemples : print 'Bonjour' max=input("nombre maximum autorisé :") Le résultat de
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
INITIATION AU LANGAGE C SUR PIC DE MICROSHIP
COURS PROGRAMMATION INITIATION AU LANGAGE C SUR MICROCONTROLEUR PIC page 1 / 7 INITIATION AU LANGAGE C SUR PIC DE MICROSHIP I. Historique du langage C 1972 : naissance du C dans les laboratoires BELL par
Licence Sciences et Technologies Examen janvier 2010
Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Logique : ENSIIE 1A - contrôle final
1 Logique : ENSIIE 1A - contrôle final - CORRIGÉ Mardi 11 mai 2010 - Sans documents - Sans calculatrice ni ordinateur Durée : 1h30 Les exercices sont indépendants. Exercice 1 (Logique du premier ordre
Licence ST Université Claude Bernard Lyon I LIF1 : Algorithmique et Programmation C Bases du langage C 1 Conclusion de la dernière fois Introduction de l algorithmique générale pour permettre de traiter
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Grandes lignes ASTRÉE. Logiciels critiques. Outils de certification classiques. Inspection manuelle. Definition. Test
Grandes lignes Analyseur Statique de logiciels Temps RÉel Embarqués École Polytechnique École Normale Supérieure Mercredi 18 juillet 2005 1 Présentation d 2 Cadre théorique de l interprétation abstraite
1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert
1 de 46 Algorithmique Trouver et Trier Florent Hivert Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert 2 de 46 Algorithmes et structures de données La plupart des bons algorithmes
Réalisabilité et extraction de programmes
Mercredi 9 mars 2005 Extraction de programme: qu'est-ce que c'est? Extraire à partir d'une preuve un entier x N tel que A(x). π x N A(x) (un témoin) (En fait, on n'extrait pas un entier, mais un programme
INTRODUCTION AUX SYSTEMES D EXPLOITATION. TD2 Exclusion mutuelle / Sémaphores
INTRODUCTION AUX SYSTEMES D EXPLOITATION TD2 Exclusion mutuelle / Sémaphores Exclusion mutuelle / Sémaphores - 0.1 - S O M M A I R E 1. GENERALITES SUR LES SEMAPHORES... 1 1.1. PRESENTATION... 1 1.2. UN
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voies : Mathématiques, physique et sciences de l'ingénieur (MPSI) Physique, chimie et sciences de l ingénieur (PCSI) Physique,
Algorithmique I. [email protected] [email protected] [email protected]. Algorithmique I 20-09-06 p.1/??
Algorithmique I [email protected] [email protected] [email protected] Télécom 2006/07 Algorithmique I 20-09-06 p.1/?? Organisation en Algorithmique 2 séances par semaine pendant 8 semaines. Enseignement
STAGE IREM 0- Premiers pas en Python
Université de Bordeaux 16-18 Février 2014/2015 STAGE IREM 0- Premiers pas en Python IREM de Bordeaux Affectation et expressions Le langage python permet tout d abord de faire des calculs. On peut évaluer
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Représentation des Nombres
Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...
Synthèse «Le Plus Grand Produit»
Introduction et Objectifs Synthèse «Le Plus Grand Produit» Le document suivant est extrait d un ensemble de ressources plus vastes construites par un groupe de recherche INRP-IREM-IUFM-LEPS. La problématique
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.
La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of
TP 1. Prise en main du langage Python
TP. Prise en main du langage Python Cette année nous travaillerons avec le langage Python version 3. ; nous utiliserons l environnement de développement IDLE. Étape 0. Dans votre espace personnel, créer
Info0101 Intro. à l'algorithmique et à la programmation. Cours 3. Le langage Java
Info0101 Intro. à l'algorithmique et à la programmation Cours 3 Le langage Java Pierre Delisle, Cyril Rabat et Christophe Jaillet Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique
Cours d introduction à l informatique. Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions
Cours d introduction à l informatique Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions Qu est-ce qu un Une recette de cuisine algorithme? Protocole expérimental
Cours 1 : Qu est-ce que la programmation?
1/65 Introduction à la programmation Cours 1 : Qu est-ce que la programmation? Yann Régis-Gianas [email protected] Université Paris Diderot Paris 7 2/65 1. Sortez un appareil qui peut se rendre
Algorithmique et Programmation, IMA
Algorithmique et Programmation, IMA Cours 2 : C Premier Niveau / Algorithmique Université Lille 1 - Polytech Lille Notations, identificateurs Variables et Types de base Expressions Constantes Instructions
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
UE Programmation Impérative Licence 2ème Année 2014 2015
UE Programmation Impérative Licence 2 ème Année 2014 2015 Informations pratiques Équipe Pédagogique Florence Cloppet Neilze Dorta Nicolas Loménie [email protected] 2 Programmation Impérative
Logiciel Libre Cours 3 Fondements: Génie Logiciel
Logiciel Libre Cours 3 Fondements: Génie Logiciel Stefano Zacchiroli [email protected] Laboratoire PPS, Université Paris Diderot 2013 2014 URL http://upsilon.cc/zack/teaching/1314/freesoftware/
Exclusion Mutuelle. Arnaud Labourel Courriel : [email protected]. Université de Provence. 9 février 2011
Arnaud Labourel Courriel : [email protected] Université de Provence 9 février 2011 Arnaud Labourel (Université de Provence) Exclusion Mutuelle 9 février 2011 1 / 53 Contexte Epistémologique
Corrigé des TD 1 à 5
Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
Les arbres binaires de recherche
Institut Galilée Année 2010-2011 Algorithmique et arbres L2 TD 6 Les arbres binaires de recherche Type en C des arbres binaires (également utilisé pour les ABR) : typedef struct noeud_s { struct noeud_s
Feuille TD n 1 Exercices d algorithmique éléments de correction
Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Feuille TD n 1 Exercices d algorithmique éléments
TRIGONOMETRIE Algorithme : mesure principale
TRIGONOMETRIE Algorithme : mesure principale Déterminer la mesure principale d un angle orienté de mesure! 115" Problèmatique : Appelons θ la mesure principale, θ et! 115" sont deux mesures du même angle,
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
MIS 102 Initiation à l Informatique
MIS 102 Initiation à l Informatique Responsables et cours : Cyril Gavoille Catherine Pannier Matthias Robine Marc Zeitoun Planning : 6 séances de cours 5 séances de TD (2h40) 4 séances de TP (2h40) + environ
1 Définition et Appel d une fonction. V. Phan Luong. Cours 4 : Fonctions
Université de Provence Licence Math-Info Première Année V. Phan Luong Algorithmique et Programmation en Python Cours 4 : Fonctions La construction de fonctions dans un langage de programmation permet aux
Les structures de données. Rajae El Ouazzani
Les structures de données Rajae El Ouazzani Les arbres 2 1- Définition de l arborescence Une arborescence est une collection de nœuds reliés entre eux par des arcs. La collection peut être vide, cad l
1 Définition et premières propriétés des congruences
Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
Compression Compression par dictionnaires
Compression Compression par dictionnaires E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CompressionCompression par dictionnaires 1/25 Compression par dictionnaire Principe : Avoir une
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Date : 18.11.2013 Tangram en carré page
Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches
Intelligence Artificielle Planification
Intelligence Artificielle Planification Bruno Bouzy http://web.mi.parisdescartes.fr/~bouzy [email protected] Licence 3 Informatique UFR Mathématiques et Informatique Université Paris Descartes
Java Licence Professionnelle CISII, 2009-10
Java Licence Professionnelle CISII, 2009-10 Cours 4 : Programmation structurée (c) http://www.loria.fr/~tabbone/cours.html 1 Principe - Les méthodes sont structurées en blocs par les structures de la programmation
Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :
MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE
Licence Bio Informatique Année 2004-2005. Premiers pas. Exercice 1 Hello World parce qu il faut bien commencer par quelque chose...
Université Paris 7 Programmation Objet Licence Bio Informatique Année 2004-2005 TD n 1 - Correction Premiers pas Exercice 1 Hello World parce qu il faut bien commencer par quelque chose... 1. Enregistrez
Plan du cours. Historique du langage http://www.oracle.com/technetwork/java/index.html. Nouveautés de Java 7
Université Lumière Lyon 2 Faculté de Sciences Economiques et Gestion KHARKIV National University of Economic Introduction au Langage Java Master Informatique 1 ère année Julien Velcin http://mediamining.univ-lyon2.fr/velcin
La persistance des nombres
regards logique & calcul La persistance des nombres Quand on multiplie les chiffres d un nombre entier, on trouve un autre nombre entier, et l on peut recommencer. Combien de fois? Onze fois au plus...
Rappel. Analyse de Données Structurées - Cours 12. Un langage avec des déclaration locales. Exemple d'un programme
Rappel Ralf Treinen Université Paris Diderot UFR Informatique Laboratoire Preuves, Programmes et Systèmes [email protected] 6 mai 2015 Jusqu'à maintenant : un petit langage de programmation
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
Rappels sur les suites - Algorithme
DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................
TD3: tableaux avancées, première classe et chaînes
TD3: tableaux avancées, première classe et chaînes de caractères 1 Lestableaux 1.1 Élémentsthéoriques Déclaration des tableaux Pour la déclaration des tableaux, deux notations sont possibles. La première
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Cours de Systèmes d Exploitation
Licence d informatique Synchronisation et Communication inter-processus Hafid Bourzoufi Université de Valenciennes - ISTV Introduction Les processus concurrents s exécutant dans le système d exploitation
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
as Architecture des Systèmes d Information
Plan Plan Programmation - Introduction - Nicolas Malandain March 14, 2005 Introduction à Java 1 Introduction Présentation Caractéristiques Le langage Java 2 Types et Variables Types simples Types complexes
Consolidation de fondamentaux
Consolidation de fondamentaux Introduction aux Sciences de l Information et de la Communication Consolidation - Stéphanie MARTY - 2009/2010 1 Consolidation de fondamentaux Démarche en sciences humaines
= constante et cette constante est a.
Le problème Lorsqu on sait que f(x 1 ) = y 1 et que f(x 2 ) = y 2, comment trouver l expression de f(x 1 )? On sait qu une fonction affine a une expression de la forme f(x) = ax + b, le problème est donc
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Bureau N301 (Nautile) [email protected]
Pre-MBA Statistics Seances #1 à #5 : Benjamin Leroy-Beaulieu Bureau N301 (Nautile) [email protected] Mise à niveau statistique Seance #1 : 11 octobre Dénombrement et calculs de sommes 2 QUESTIONS
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Chapitre 10. Les interfaces Comparable et Comparator 1
Chapitre 10: Les interfaces Comparable et Comparator 1/5 Chapitre 10 Les interfaces Comparable et Comparator 1 1 Ce chapitre a été extrait du document "Objets, Algorithmes, Patterns" de [René Lalement],
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
Initiation à l algorithmique
Informatique S1 Initiation à l algorithmique procédures et fonctions 2. Appel d une fonction Jacques TISSEAU Ecole Nationale d Ingénieurs de Brest Technopôle Brest-Iroise CS 73862-29238 Brest cedex 3 -
Exceptions. 1 Entrées/sorties. Objectif. Manipuler les exceptions ;
CNAM NFP121 TP 10 19/11/2013 (Séance 5) Objectif Manipuler les exceptions ; 1 Entrées/sorties Exercice 1 : Lire un entier à partir du clavier Ajouter une méthode readint(string message) dans la classe
FICHE UE Licence/Master Sciences, Technologies, Santé Mention Informatique
NOM DE L'UE : Algorithmique et programmation C++ LICENCE INFORMATIQUE Non Alt Alt S1 S2 S3 S4 S5 S6 Parcours : IL (Ingénierie Logicielle) SRI (Systèmes et Réseaux Informatiques) MASTER INFORMATIQUE Non
INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies
INF 232: Langages et Automates Travaux Dirigés Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies Année Académique 2013-2014 Année Académique 2013-2014 UNIVERSITÉ JOSEPH
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Conventions d écriture et outils de mise au point
Logiciel de base Première année par alternance Responsable : Christophe Rippert [email protected] Introduction Conventions d écriture et outils de mise au point On va utiliser dans cette
Conception des bases de données : Modèle Entité-Association
Conception des bases de données : Modèle Entité-Association La modélisation d un problème, c est-à-dire le passage du monde réel à sa représentation informatique, se définit en plusieurs étapes pour parvenir
Quelques algorithmes simples dont l analyse n est pas si simple
Quelques algorithmes simples dont l analyse n est pas si simple Michel Habib [email protected] http://www.liafa.jussieu.fr/~habib Algorithmique Avancée M1 Bioinformatique, Octobre 2008 Plan Histoire
SNT4U16 - Initiation à la programmation 2014-2015. TD - Dynamique de POP III - Fichiers sources
SNT4U16 - Initiation à la programmation Licence SVT 2 ème année 2014-2015 TD - Dynamique de POP III - Fichiers sources contacts : [email protected], [email protected], [email protected],
Rappel sur les bases de données
Rappel sur les bases de données 1) Généralités 1.1 Base de données et système de gestion de base de donnés: définitions Une base de données est un ensemble de données stockées de manière structurée permettant
I. Introduction aux fonctions : les fonctions standards
Chapitre 3 : Les fonctions en C++ I. Introduction aux fonctions : les fonctions standards A. Notion de Fonction Imaginons que dans un programme, vous ayez besoin de calculer une racine carrée. Rappelons
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
1 Recherche en table par balayage
1 Recherche en table par balayage 1.1 Problème de la recherche en table Une table désigne une liste ou un tableau d éléments. Le problème de la recherche en table est celui de la recherche d un élément
Chapitre 7. Récurrences
Chapitre 7 Récurrences 333 Plan 1. Introduction 2. Applications 3. Classification des récurrences 4. Résolution de récurrences 5. Résumé et comparaisons Lectures conseillées : I MCS, chapitre 20. I Rosen,
Génie Logiciel avec Ada. 4 février 2013
Génie Logiciel 4 février 2013 Plan I. Généralités II. Structures linéaires III. Exceptions IV. Structures arborescentes V. Dictionnaires I. Principes II. Notions propres à la POO I. Principes Chapitre
