Statistiques EXERCICE 1 : TEMPS PASSÉ DEVANT LA TÉLÉVISION. On a interrogé des adolescents pour
|
|
|
- Brian Paul
- il y a 9 ans
- Total affichages :
Transcription
1 Statistiques EXERCICE 1 : TEMPS PASSÉ DEVANT LA TÉLÉVISION 1 cm 2 représente un effectif 4 On a interrogé des adolescents pour 16 connaître la durée hebdomadaire d audience des émissions télévisées. 12 Les résultats sont regroupés en classe d amplitude deux heures. 6 On a obtenu l histogramme ci contre : 4 Les effectifs correspondants sont indiqués au dessus des classes Durée d écoute 1.(a) Combien d adolescents interrogés ont déclaré regarder la télévision entre 4 et 6 heures par semaine? (b) Quel est l effectif total de la population interrogée? (c) Remplir le tableau des effectifs suivants : Durée [0; 2[ [2; 4[ [4; 6[ [6; 8[ [8; 10[ [10; 12[ Effectif 2. Calculer une valeur approchée de la moyenne m. Information Pour calculer la moyenne lorsque les valeurs du caractère sont rassemblées en classe, on remplace chaque classe par son milieu Par exemple dans cet exercice, la classe [0; 2[ sera remplacée par 1. On obtient ainsi une valeur approchée de la moyenne. 3. La classe modale la classe [6; 8[? Donner une définition de la classe modale. 4. Donner une valeur approchée de l étendue EXERCICE 2 : DISTANCE LIEU DE TRAVAIL DOMICILE Une entreprise a effectué une enquête auprès de son personnel en leur demandant la distance en km qui sépare l usine de leur domicile 1 21 novembre 2016
2 On a obtenu le tableau ci-dessous. Distance ]0; 5] ]5; 10] ]10; 15] ]15, 20] ]20; 30] ]30; 50] Effectif On dispose par ailleurs des deux graphiques ci-dessous : (Effectif) 0.5 cm 2 représente un effectif Distance (Distance) Quel est parmi ces deux histogrammes celui qui représente le mieux la situation. Expliquez. 2. Calculer une valeur approchée de la moyenne. 3. Quelle est la classe modale? 4. Donner une valeur approchée de l étendue EXERCICE 3 Une autre entreprise a effectué la enquête auprès de son personnel On a obtenu l histogramme ci-contre Effectif Compléter le tableau des effectifs ci-dessous : Distance (en km ) [0; 5[ [5; 10[ [10; 15[ [15; 20[ [20; 30[ [30; 50[ [50; 100[ Effectif 2. Cette entreprise possède une usine dans une autre ville. On a posé la même question au personnel de cette dernière. On a obtenu le tableau suivant : 2 21 novembre 2016
3 Distance (en km ) [0; 10[ [10; 20[ [20; 30[ [30; 50[ [50; 100[ Effectif Cette fois encore les classes n ont pas forcément la même amplitude. Par exemple la classe [50; 100[ est 5 fois plus étendue que la classe [0, 10[. En effet l amplitude de la classe [50; 100[ est 50 tandis que l amplitude de la classe [0, 10[ est 10. Donc pour un même effectif la hauteur de la bande correspondant à la classe [50; 100[ doit être 5 fois plus que la bande correspondant à la classe [0; 10[. Information Les hauteur des bandes sont proportionnelles à leurs effectifs et inversement proportionnelles aux amplitudes de leurs classes. En effet dans un histogramme l effectif d une classe est représenté par l aire de la bande correspondante et non par sa hauteur. Construire ci-dessous un histogramme représentant la série statistique EXERCICE 4 : COURBE DES EFFECTIFS CUMULÉS OU DES FRÉQUENCES CUMULÉES Une étude statistique a été menée par la direction de l évaluation et de la prospective portant sur le nombre d élèves des 1429 lycées publics en France en Le tableau ci-dessous présente la répartition des lycées selon le nombre d élèves par établissement. Nombre d élèves ]200; 300] ]300; 500] ]500; 700] ]700; 900] ]900; 1500] ]1500; 2200] Nombre de Lycées Interpréter par une phrase la nombre 199 que l on lit en deuxième ligne et quatrième colonne novembre 2016
4 2. Compléter le tableau ci-dessous qui donne les effectifs cumulés croissants Nombre d élèves x Nombre de lycées ayant moins de x élèves Remarque Le nombre de lycées dont le nombre d élèves est inférieur ou égal à x est appelé : effectif cumulé croisssant associé à x 3. le tableau des effectifs cumulés croissants se représente par ce que l on appelle la courbe des effectifs cumulés croissants E.F.C x (a) Représenter sur le graphique la classe [400; 750] (b) Utiliser le graphique pour lire l effectif des lycées dont le nombre d élèves est situé entre 400 et 750. En déduire une valeur approchée du nombre des lycées dont le nombre d élèves est situé entre 400 et 750. En déduire une valeur approchée de la fréquence des lycées dont le nombre d élèves est situé entre 400 et 750. (c) Utiliser le graphique pour obtenir une valeur approchée de la médiane et des quartiles. Détaillez votre démarche avec soin novembre 2016
5 EXERCICE 5 : COURBE DES EFFECTIFS CUMULÉS OU DES FRÉQUENCES CUMULÉES Les durées en seconde des communications d un standard téléphonique sont regroupées en classe de même amplitude La première classe correspond à l intervalle [30; 50[. On a représenté ci-dessous le polygone des effectifs cumulés croissants de cette série : E.F.C En exploitant le graphique entourer la bonne réponse : L effectif total de la population est : L amplitude en secondes d une classe est : L effectif de la troisième classe est : le centre de la dernière classe est : Le nombre de communications dont la durée dépasse une minute est : Le nombre de communications dont la durée est comprise entre 60 secondes et 100 secondes est : Utiliser le graphique pour obtenir une valeur approchée de la médiane et des quartiles novembre 2016
6 EXERCICE 6 : RETOUR AUX INDICATEURS Voici une série de notes entières de moyenne 12 : 10 ;6 ;5 ;15 ;17 ;7 ;14 ;9 ;15 ;13 ;15 ;17 ;13 les questions suivantes portent toutes sur cette série de valeurs 1. Agir sur la moyenne (a) Modifier deux notes sans changer la moyenne (b) Modifier trois notes sans changer la moyenne (c) Supprimer une note pour que la moyenne augmente le plus possible (d) Supprimer une note pour que la moyenne diminue le plus possible (e) Modifier une note pour que la moyenne augmenet de 1 2. Agir sur la médiane (a) Peut on augmenter la médiane de 1 en modifiant une seule note? (b) Peut on diminuer la médiane de 1 en modifiant une seule note? 3. Agir sur la moyenne et la médiane (a) En modifiant deux notes, peut-on garder la même moyenne et augmenter la médiane de 1? (b) En modifiant une note peut-on garder la même médiane et diminuer la moyenne de 1? 4. Pour aller plus loin : Proposer une série de 12 notes de moyenne 11 et de médiane 12, novembre 2016
Représentation d une distribution
5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
Statistique : Résumé de cours et méthodes
Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère
STATISTIQUES DESCRIPTIVES
1 sur 7 STATISTIQUES DESCRIPTIVES En italien, «stato» désigne l état. Ce mot à donné «statista» pour «homme d état». En 1670, le mot est devenu en latin «statisticus» pour signifier ce qui est relatif
Séries Statistiques Simples
1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12
1 2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30
Statistiques avec la graph 35+
Statistiques avec la graph 35+ Enoncé : Dans une entreprise, on a dénombré 59 femmes et 130 hommes fumeurs. L entreprise souhaite proposer à ses employés plusieurs méthodes pour diminuer, voire arrêter,
BACCALAURÉAT PROFESSIONNEL SUJET
SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)
MATHÉMATIQUES. Mat-4104
MATHÉMATIQUES Pré-test D Mat-404 Questionnaire e pas écrire sur le questionnaire Préparé par : M. GHELLACHE Mai 009 Questionnaire Page / 0 Exercice ) En justifiant votre réponse, dites quel type d étude
Statistiques 0,14 0,11
Statistiques Rappels de vocabulaire : "Je suis pêcheur et je désire avoir des informations sur la taille des truites d'une rivière. Je décide de mesurer les truites obtenues au cours des trois dernières
Baccalauréat ES Amérique du Nord 4 juin 2008
Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
Statistiques à une variable
Statistiques à une variable Calcul des paramètres statistiques TI-82stats.fr? Déterminer les paramètres de la série statistique : Valeurs 0 2 3 5 8 Effectifs 16 12 28 32 21? Accès au mode statistique Touche
Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme
Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle
Systèmes de transmission
Systèmes de transmission Conception d une transmission série FABRE Maxime 2012 Introduction La transmission de données désigne le transport de quelque sorte d'information que ce soit, d'un endroit à un
INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE
INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique
Chapitre 2 Les ondes progressives périodiques
DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................
Plus petit, plus grand, ranger et comparer
Unité 11 Plus petit, plus grand, ranger et comparer Combien y a-t-il de boules sur la tige A? Sur la tige B? A B Le nombre de boules sur la tige A est plus grand que sur la tige B. On écrit : > 2 On lit
La diffusion des technologies de l information et de la communication dans la société française
La diffusion des technologies de l information et de la communication dans la société française Étude réalisée par le Centre de Recherche pour l'étude et l'observation des Conditions de Vie (CREDOC) pour
Bulletin d information statistique
INFOSTAT JUSTICE Divorces : une procédure à deux vitesses Zakia Belmokhtar * Mai 2012 Numéro 117 En visant à permettre un règlement plus rapide et plus complet des demandes en divorce, la loi du 26 mai
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS
Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence
FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines
FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1
TP A.1 Page 1/5 BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1 Ce document comprend : - une fiche descriptive du sujet destinée à l examinateur : Page 2/5 - une
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Le suivi de la qualité. Méthode MSP : généralités
Le suivi de la qualité La politique qualité d une entreprise impose que celle maîtrise sa fabrication. Pour cela, elle doit être capable d évaluer la «qualité» de son processus de production et ceci parfois
La diffusion des technologies de l information et de la communication dans la société française
La diffusion des technologies de l information et de la communication dans la société française Étude réalisée par le Centre de Recherche pour l'étude et l'observation des Conditions de Vie (CREDOC) pour
SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases
SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
TP 7 : oscillateur de torsion
TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)
Etude statistique des données fournies par la CCIJP
Etude statistique des données fournies par la CCIJP Sommaire Introduction : Stagnation du nombre de cartes accordées en 2012... 4 1. Dans quels secteurs d activité les journalistes encartés travaillent-ils?
5.2 Théorème/Transformée de Fourier a) Théorème
. Théorème de Fourier et Transformée de Fourier Fourier, Joseph (788). Théorème/Transformée de Fourier a) Théorème Théorème «de Fourier»: N importe quelle courbe peut être décomposée en une superposition
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S
FICHE Fiche à destination des enseignants TS 35 Numériser Type d'activité Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S Compétences
L analyse boursière avec Scilab
L analyse boursière avec Scilab Introduction La Bourse est le marché sur lequel se traitent les valeurs mobilières. Afin de protéger leurs investissements et optimiser leurs résultats, les investisseurs
Séquence 4. Statistiques. Sommaire. Pré-requis Médiane, quartiles, diagramme en boîte Moyenne, écart-type Synthèse Exercices d approfondissement
Séquence 4 Statistiques Sommaire Pré-requis Médiane, quartiles, diagramme en boîte Moyenne, écart-type Synthèse Exercices d approfondissement 1 Introduction «Etude méthodique des faits sociaux par des
Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique adapté
Compétences travaillées : Mettre en œuvre un protocole expérimental Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique
PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS
PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS Matériel : Un GBF Un haut-parleur Un microphone avec adaptateur fiche banane Une DEL Une résistance
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la
Chapitre 5. Calculs financiers. 5.1 Introduction - notations
Chapitre 5 Calculs financiers 5.1 Introduction - notations Sur un marché économique, des acteurs peuvent prêter ou emprunter un capital (une somme d argent) en contrepartie de quoi ils perçoivent ou respectivement
BACCALAUREAT GENERAL MATHÉMATIQUES
BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la
Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction
Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses
Statistique descriptive. Fabrice MAZEROLLE Professeur de sciences économiques Université Paul Cézanne. Notes de cours
Statistique descriptive Fabrice MAZEROLLE Professeur de sciences économiques Université Paul Cézanne Notes de cours Dernière mise à jour le mercredi 25 février 2009 1 ère année de Licence Aix & Marseille
4 Statistiques. Les notions abordées dans ce chapitre CHAPITRE
CHAPITRE Statistiques Population (en milliers) 63 6 6 6 Évolution de la population en France 9 998 999 3 Année Le graphique ci-contre indique l évolution de la population française de 998 à. On constate
Logistique, Transports
Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,
Manipulation de données avec SAS Enterprise Guide et modélisation prédictive avec SAS Enterprise Miner
Le cas Orion Star Manipulation de données avec SAS Enterprise Guide et modélisation prédictive avec SAS Enterprise Miner Le cas Orion Star... 1 Manipulation de données avec SAS Enterprise Guide et modélisation
Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques
Didier Pietquin Timbre et fréquence : fondamentale et harmoniques Que sont les notions de fréquence fondamentale et d harmoniques? C est ce que nous allons voir dans cet article. 1. Fréquence Avant d entamer
Les pratiques de consommation de jeux vidéo des Français
Les pratiques de consommation de jeux vidéo des Français Rappel de la méthodologie mise en œuvre Echantillon Mode de recueil Dates de terrain 2800 individus âgés de 6 à 65 ans. Plus précisément : 2000
FORD FOCUS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 17 19 20 21 9 3 1 1 6 4 2 5 7 8 10 23 25
Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique
PGA & SDUEE Année 008 09 Interaction milieux dilués rayonnement Travaux dirigés n. Résonance magnétique : approche classique Première interprétation classique d une expérience de résonance magnétique On
Fluctuation d une fréquence selon les échantillons - Probabilités
Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille
Livret d accueil pour les futurs parents, les parents et les assistant(e)s maternel(le)s
Livret d accueil pour les futurs parents, les parents et les assistant(e)s maternel(le)s Un livret, pour qui? Ce livret est destiné aux parents et futurs parents qui souhaitent trouver un mode de garde
Seconde Généralités sur les fonctions Exercices. Notion de fonction.
Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et
Notion de fonction. Résolution graphique. Fonction affine.
TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................
Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français
Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français Avant de débuter, demander aux élèves de préparer le matériel suivant : crayon à papier, gomme,
I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300
I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,
ANALYSE SPECTRALE. monochromateur
ht ANALYSE SPECTRALE Une espèce chimique est susceptible d interagir avec un rayonnement électromagnétique. L étude de l intensité du rayonnement (absorbé ou réémis) en fonction des longueurs d ode s appelle
NFC Near Field Communication
NFC Near Field Communication 19/11/2012 Aurèle Lenfant NFC - Near Field Communication 1 Sommaire! Introduction! Fonctionnement! Normes! Codage! Intérêts! Usages! Sécurité NFC - Near Field Communication
La simulation probabiliste avec Excel
La simulation probabiliste avec Ecel (2 e version) Emmanuel Grenier [email protected] Relu par Kathy Chapelain et Henry P. Aubert Incontournable lorsqu il s agit de gérer des phénomènes aléatoires
Exemples d utilisation de G2D à l oral de Centrale
Exemples d utilisation de G2D à l oral de Centrale 1 Table des matières Page 1 : Binaire liquide-vapeur isotherme et isobare Page 2 : Page 3 : Page 4 : Page 5 : Page 6 : intéressant facile facile sauf
STATISTIQUES DESCRIPTIVES
STATISTIQUES DESCRIPTIVES ORGANISATION DES DONNÉES Etude de population 53 784 56 28 4 13 674 8375 9974 60 Consommation annuelle du lait Dossier n 1 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu
TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.
TD 11 Les trois montages fondamentaux.,.,. ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe ***exercice 11.1 On considère le montage ci-dessous : V = 10 V R 1 R s v e
Calculs de probabilités avec la loi normale
Calculs de probabilités avec la loi normale Olivier Torrès 20 janvier 2012 Rappels pour la licence EMO/IIES Ce document au format PDF est conçu pour être visualisé en mode présentation. Sélectionnez ce
QUESTIONNAIRE ENTREPRISE
ENQUETE CREATION CRECHE INTERENTREPRISES QUESTIONNAIRE ENTREPRISE 1. Votre entreprise Nom... Commune :... Nom, coordonnées et fonction de la personne répondant au questionnaire : Secteur d activité :...
Guide utilisateur Performance
Guide utilisateur Performance http://performance.solware.fr 1 SOMMAIRE A. Introduction : Présentation du service... 3 B. Connexion au site... 3 C. fonctionnement du site... 4 1. Informations du service...
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Communication B to C : Omnicanal or Die
Communication B to C : Omnicanal or Die Les DERNIERES NOUVELLES D ALSACE Christian Bach Frédéric Chalaye 2 3 4 Un nouveau tempo De nouveaux médias / de nouvelles compétences Le modèle de la «rédaction
Instructeur du dossier : Adresse : Téléphone : E-mail :
Commission Permanente d Action Sociale. DEMANDE d AIDE FINANCIERE 2015 Vacances Familiales ou Individuelles, Cures, Voyages pour Insuffisants Respiratoires, Maladies rares, Neurologiques, Asthme Séjours
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )
SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Projet de décision unilatérale instituant (ou régularisant) un régime collectif complémentaire obligatoire couvrant le risque
Papier Sté Date : Projet de décision unilatérale instituant (ou régularisant) un régime collectif complémentaire obligatoire couvrant le risque La direction de l entreprise : Dont le siège social est situé
Les devoirs en Première STMG
Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................
Diviser un nombre décimal par 10 ; 100 ; 1 000
Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les
Université de La Rochelle. Réseaux TD n 6
Réseaux TD n 6 Rappels : Théorème de Nyquist (ligne non bruitée) : Dmax = 2H log 2 V Théorème de Shannon (ligne bruitée) : C = H log 2 (1+ S/B) Relation entre débit binaire et rapidité de modulation :
Réduction Dégressive Fillon (RDF) annualisée
Réduction Dégressive Fillon (RDF) annualisée Depuis le 1er janvier 2011, la réduction est calculée par référence à la rémunération annuelle du salarié (primes comprises) et non plus sur la base de son
à destination des structures privées de services à la personne.
à destination des structures privées de services à la personne. Impacts de la Convention Collective Nationale du Service à la Personne sur la gamme Apologic. Contenu 1 La CCN SAP... 2 2 Impacts sur les
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
Sommaire de la séquence 12
Sommaire de la séquence 12 Séance 1........................................................................................................ J étudie un phénomène naturel : la marée................................................................
SimpleDriver MANUEL UTILISATEUR
SimpleDriver MANUEL UTILISATEUR Version 1.2.2 au 15/12/11 SimpleDriver est un logiciel OPSILOG OPSILOG 44 chemin du Devès 30560 St Hilaire de Brethmas Tél : 0 950 36 52 86 Fax : 04 66 600 432 e-mail :
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
Ouverture d'un point de vente L étude de la zone de chalandise.
Ouverture d'un point de vente L étude de la zone de chalandise. La zone de chalandise : une zone géographique de captation La zone de chalandise, ou zone d attraction, est le territoire géographique dans
Indications pour une progression au CM1 et au CM2
Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir
TAUX FIXE, TAUX INDEXE
Catégories d emprunts Mobiliser un emprunt, c est essentiellement choisir un taux, une durée, un profil d amortissement et une périodicité. Nous décrivons ci-dessous les différentes modalités qui s offrent
Qui fait quoi sur internet?
Ans Note d éducation permanente de l ASBL Fondation Travail-Université (FTU) N 2015 8, avril 2015 www.ftu.be/ep Qui fait quoi sur internet? Analyse des inégalités sociales dans l utilisation d internet
Caractéristiques des ondes
Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace
Les Français et le courrier publicitaire. Rapport
Les Français et le courrier publicitaire Rapport Sommaire 1. Présentation de l'étude 2. Principaux enseignements 3. Résultats détaillés 4. Les habitudes en termes de courrier 5. Appréciation des différents
entourer les catégories E q u i p e m e n t c o n c e r n é Lieu d'implantation : Charge initiale : Kg
FICHE D'INTERVENTION sur CIRCUIT de FROID, CLIMATISATION, POMPE A CHALEUR (fixe) CONTENANT des CFC HCFC ou HFC à conserver 5 ans par l'opérateur et le détenteur suivant le Code de l'environnement articles
Oscillations libres des systèmes à deux degrés de liberté
Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à
Je fais le point 1. PrénoM :... Il y a... oiseaux. Guide de l enseignant p.64. Écris les nombres dictés. Écris les nombres effacés par Gribouille.
1 Guide de l enseignant p.64 Écris les nombres dictés. Je fais le point 1 PrénoM :.... 2 Écris les nombres effacés par Gribouille. 2 20 1 4 11 10 1 16 1 3 Écris combien il y a d oiseaux. sur l image d
Questionnaire sur les Antécédents Linguistiques. (Version 2.0, 2012)
Questionnaire sur les Antécédents Linguistiques (Version 2.0, 2012) Voyez http://cogsci.psu.edu/ pour l usage et crédit en ligne Veuillez fournir vos coordonnées ci-dessous: Nom: Email: Téléphone: Veuillez
PLAN DE COURS CEGEP DU VIEUX-MONTRÉAL
PLAN DE COURS CONTRÔLE DE LA QUALITÉ 241-B60-VM TECHNIQUE DE GÉNIE MÉCANIQUE 241-06 PONDÉRATION : 2-1-1 Compétence : 012Z Contrôler la qualité d un produit DÉPARTEMENT DE LA MÉCANIQUE CEGEP DU VIEUX-MONTRÉAL
Suites numériques 4. 1 Autres recettes pour calculer les limites
Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est
Quel système d équations traduit cette situation? x : la hauteur du rectangle. y : l aire du rectangle. C) y = 4x + 25.
1 La base d un rectangle dépasse sa hauteur de 4 cm. Si on ajoute 17 au périmètre de ce rectangle, on obtient un nombre égal à celui qui représente l aire de ce rectangle. Soit x : la hauteur du rectangle
P.L.U. Plan Local d'urbanisme PRESCRIPTION D'ISOLEMENT ACOUSTIQUE AU VOISINAGE DES INFRASTRUCTURES TERRESTRES DOCUMENT OPPOSABLE
Commune du Département de l'oise P.L.U Plan Local d'urbanisme PRESCRIPTION D'ISOLEMENT ACOUSTIQUE AU VOISINAGE DES INFRASTRUCTURES TERRESTRES DOCUMENT OPPOSABLE Document Établi le 20 septembre 2013 Le
