Question 1 Algèbre de Boole (6 pts 20 minutes)
|
|
|
- Michele Lanthier
- il y a 8 ans
- Total affichages :
Transcription
1 ELE1300 Automne Examen intra 1/10 Question 1 Algèbre de Boole (6 pts 20 minutes) Sachant que A, B et C sont des variables booléennes. Démontrer que : a) A (A+ B )( A +B) = A B A (A+ B )( A +B) = A (A +B) (A+ B ) = A (A+ B ) = A B b) A B A B = A A B A B = ( A B + A B )( A B +A B) = ( A B + A + B )( A+ B +A B) = ( A + B )( A+ B ) = A + A B +AB = A c) ( B + A B + C ) ( A+ B +A C) = A B + B C + B C ( B + A B + C ) ( A+ B +A C) = ( B + C ) ( A+ B +C) = AB+ B C + A C + B C = AB + B C + A B C + ABC + B C = A B + B C + B C
2 ELE1300 Automne Examen intra 2/10 Question 2 Analyse et synthèse de circuits (7 pts 30 minutes) L implémentation d une fonction logique Z relativement complexe repose sur un XOR de deux autres fonctions X et Y comme indiqué sur le schéma suivant : 1) En considérant que les portes XOR et XNOR à N entrées ont un coût 2N, calculer le coût des fonctions X, Y et Z telles qu elles ont été implémentées. Coût de X(A, B, C, D) = (3+1) + (2+2) = 8 Coût de Y(A, B, C, D) = (3+1) + (2+2) = 8 Coût de Z(A, B, C, D) = = 20 2) Trouver l expression disjonctive simplifiée de X au moyen de la table de Karnaugh. Évaluer son coût minimal. X = D+ A B C AB/CD X Coût (3+1)+(2+1)=7
3 ELE1300 Automne Examen intra 3/10 3) Trouver l expression conjonctive simplifiée de Y au moyen de la table de Karnaugh. Évaluer son coût minimal. Y = (A + D)(B + D)(C + D) AB/CD Y Coût (3+1)+3(2+1)=13 4) Trouver l expression conjonctive simplifiée de Z en vous basant sur les résultats précédents. Évaluer le coût minimal de cette implémentation. Z = A + B+ C AB/CD Z Coût 3+1 = 4 5) Dessinez le circuit optimisé.
4 ELE1300 Automne Examen intra 4/10 Question 3 Circuits avec mux/démux (6 pts 20 minutes) Considérant le circuit suivant implémentant la fonction X : 1) Trouver l expression algébrique de X sous la forme d un produit de sommes : X = 1 A B C D+ A B CD+ A BCD X = A B C D+ A B CD+ A BCD X = (A + B +C + D )(A +B + C + D ) (A + B + C + D ) 2) Donner la table de Karnaugh à variable inscrite de X sans simplifier (inscrire D) :
5 ELE1300 Automne Examen intra 5/10 3) Dessiner dans la zone en pointillés le circuit permettant d obtenir X en sortie
6 ELE1300 Automne Examen intra 6/10 Question 4 Utilisation d un circuit usuel (4 pts 20 minutes) Vous avez fait sous-traiter un travail par une compagnie méchante qui a voulu garder le secret de sa technologie. Voici une partie de circuit combinatoire qu ils ont conçu. Vous voulez trouver l expression algébrique de la fonction F(A, B, C, D). Rappelons que si toutes les entrées e0 à e7 valent toutes 0 alors GS, s2,s1et s0 vallent 0 également. Dans les autres cas, GS vaut 1 et s2s1s0 encodent la position du bit le plus fort qui est à 1. Un ingénieur expérimenté vous aide dans votre démarche. Voici les étapes qu il vous suggère : 1) Exprimer la valeur de F si A=1 : Si A = 1, GS = 1 et la sortie du ET (notée X) vaut 1, F = GS X=1 1=0. 2) Exprimer F si A=0, B=0, C=0 et D=0 : GS = 0, X = 0, F = GS X=0 0=0. 3) Exprimer F si A=0 et (B, C, D) (0, 0, 0) : GS = 1, X = 0, F = GS X=1 0=1 4) Exprimer algébriquement la fonction F(A, B, C, D) : F(A, B, C, D) = A 0 + A (B+C+D) = A B+ A C+ A D
7 ELE1300 Automne Examen intra 7/10 Question 5 - Quine-McCluskey (7 pts 30 minutes) Soit la table de vérité de la fonction logique F(A,B,C,D) : A B C D F ) Retranscrire les maxterms de la fonction F sous forme binaire en soulignant les maxterms facultatifs exemple : 1110 pour ( A +B+ C + D ): F(A,B,C,D) = ) Procéder par la méthode Quine-McCluskey pour simplifier la fonction F(A,B,C,D) et identifier les impliqués premiers X X 0101 X101 1X1X X X X X X Impliqués premiers sous forme binaire :
8 ELE1300 Automne Examen intra 8/10 0X00 ; 010X ; X101 ; 11X1 ; 1X1X 3) Utiliser la table suivante pour identifier les impliqués essentiels de F(A,B,C,D) x 0 0X00 (*) x 1 010X * x 2 X101 * * x 3 11X1 * * x 4 1X1X * Impliqués essentiels : 0X00 4) Les impliqués essentiels couvrent-ils l ensemble des maxterms? Si oui, donner l expression conjonctive simplifiée de la fonction F(A,B,C,D). Autrement, suggérer une solution et donner l expression conjonctive simplifiée de la fonction F(A,B,C,D) ainsi obtenue. L impliqué essentiel ne suffit pas à couvrir l ensemble des maxterms. Nous utilisons la méthode de Petrick pour terminer. P(x 0, x 1, x 2, x 4 ) = x 0 (x 1 +x 2 )(x 2 +x 3 )(x 3 +x 4 ) P(x 0, x 1, x 2, x 4 ) = x 0 (x 1 x 3 +x 2 )(x 3 +x 4 ) P(x 0, x 1, x 2, x 4 ) = x 0 (x 1 x 3 +x 1 x 3 x 4 +x 2 x 3 + x 2 x 4 ) P(x 0, x 1, x 2, x 4 ) = x 0 x 1 x 3 + x 0 x 1 x 3 x 4 + x 0 x 2 x 3 + x 0 x 2 x 4 P(x 0, x 1, x 2, x 4 ) = x 0 x 1 x 3 + x 0 x 2 x 3 + x 0 x 2 x 4 Coût de x 0 x 1 x 3 = (3+1) + (3+1) + (3+1) + (3+1) = 16 Coût de x 0 x 2 x 3 = (3+1) + (3+1) + (3+1) + (3+1) = 16 Coût de x 0 x 2 x 4 = (3+1) + (3+1) + (3+1) + (2+1) = 15 On retient la quatrième solution pour son coût : F(A, B, C, D) = (A+C+D)( B +C+ D )( A +C)
9 ELE1300 Automne Examen intra 9/10 5) Confirmer votre résultat en utilisant une table de Karnaugh
10 ELE1300 Automne Examen intra 10/10 Question 6 Bonus Cette question est facultative. Toutefois, la réussir montrerait que vous maitrisez la matière à un niveau supérieur à ce qui est normalement attendu de vous et nous permettrait de le prendre en note à votre avantage. Donnez l expression algébrique de la fonction F(A, B, C, D) sous forme conjonctive en détaillant clairement votre démarche. L entrée acheminée par le mux coïncide avec la sortie active du demux lorsque A = C. Alors, la fonction F vaut D. Autrement, elle vaut 0. Il en ressort que : F(A, B, C, D) = ACD+ A C D = D( A +C)(A+ C ) Bon travail!
Algèbre binaire et Circuits logiques (2007-2008)
Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits
IFT1215 Introduction aux systèmes informatiques
Introduction aux circuits logiques de base IFT25 Architecture en couches Niveau 5 Niveau 4 Niveau 3 Niveau 2 Niveau Niveau Couche des langages d application Traduction (compilateur) Couche du langage d
2.4 Représentation graphique, tableau de Karnaugh
2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables
Architecture des ordinateurs TD1 - Portes logiques et premiers circuits
Architecture des ordinateurs TD1 - Portes logiques et premiers circuits 1 Rappel : un peu de logique Exercice 1.1 Remplir la table de vérité suivante : a b a + b ab a + b ab a b 0 0 0 1 1 0 1 1 Exercice
Système binaire. Algèbre booléenne
Algèbre booléenne Système binaire Système digital qui emploie des signaux à deux valeurs uniques En général, les digits employés sont 0 et 1, qu'on appelle bits (binary digits) Avantages: on peut utiliser
Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot
Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,
Les portes logiques. Voici les symboles des trois fonctions de base. Portes AND. Portes OR. Porte NOT
Les portes logiques Nous avons jusqu ici utilisé des boutons poussoirs et une lampe pour illustrer le fonctionnement des opérateurs logiques. En électronique digitale, les opérations logiques sont effectuées
Cours Premier semestre
C.Belleudy, D.Gaffé Université de Nice-Sophia Antipolis DEUG Première année SM,MP,MI UECS EEA Électronique Numérique Cours Premier semestre C. Belleudy, D.Gaffé version 3. 2 Électronique Numérique Chapitre
Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
Logique binaire I. L'algèbre de Boole L'algèbre de Boole est la partie des mathématiques, de la logique et de l'électronique qui s'intéresse aux opérations et aux fonctions sur les variables logiques.
Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites
I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
Vecteurs. I Translation. 1. Définition :
Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même
MPI Activité.10 : Logique binaire Portes logiques
MPI Activité.10 : Logique binaire Portes logiques I. Introduction De nombreux domaines font appel aux circuits logiques de commutation : non seulement l'informatique, mais aussi les technologies de l'asservissement
TP - Alarme de voiture / Approche fonctionnelle
TP - Alarme de voiture / Approche fonctionnelle Tous les objets techniques, même les plus compliqués, sont étudiés à l aide d une méthode appelée : étude fonctionnelle ou systémique. 1/ Présentation du
CHAPITRE VIII : Les circuits avec résistances ohmiques
CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On
BCI - TPSP - Processeurs et Architectures Numériques
BCI - TPSP - Processeurs et Architectures Numériques Jean-Luc Danger Guillaume Duc Tarik Graba Philippe Matherat Yves Mathieu Lirida Naviner Alexis Polti Jean Provost c 2002-2011 groupe SEN, Télécom ParisTech
- Instrumentation numérique -
- Instrumentation numérique - I.Présentation du signal numérique. I.1. Définition des différents types de signaux. Signal analogique: Un signal analogique a son amplitude qui varie de façon continue au
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
Séquence 10. Géométrie dans l espace. Sommaire
Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières
Du Premier au Second Degré
Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse
RESUME DE COURS ET CAHIER D'EXERCICES
ARCITECTURE INFO-UP REUME DE COUR ET CAIER D'EXERCICE EPITA F. GABON Architecture EPITA INFO-UP F. Gabon COUR LIVRE D ARCITECTURE 3 REUME D'ELECTRONIUE LOGIUE 4 YTEME DE NUMERATION 6 ALGEBRE DE BOOLE 6
Projet # 3 Serrure à deux clés
Département d électronique industrielle Projet # 3 Serrure à deux clés Semaines 8 et 9, 10 Session 1 Circuits logiques 243-206-RA Automne 2010 Tables des matières 1 OBJECTIFS DE L ACTIVITÉ... 3 1.1 COMPÉTENCES
FONCTION COMPTAGE BINAIRE ET DIVISION DE FRÉQUENCE
I/ GÉNÉRALITÉS I.1/ Fonction Un compteur binaire est utilisé : -pour compter un certain nombre d'évènements binaires -pour diviser la fréquence d'un signal logique par 2 m Page 1 FONCTION COMPTAGE BINAIRE
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Systemesdigitaux. Cours 5
Systemesdigitaux Cours 5 Au derniercours On a vu des blocs classiques plus sophistiques: Additionneur Soustracteur Multiplicateur Comparateur On a vu les architectures et comment les concevoir Aujourd
Représentation des Nombres
Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...
Calculabilité Cours 3 : Problèmes non-calculables. http://www.irisa.fr/lande/pichardie/l3/log/
Calculabilité Cours 3 : Problèmes non-calculables http://www.irisa.fr/lande/pichardie/l3/log/ Problèmes et classes de décidabilité Problèmes et classes de décidabilité Nous nous intéressons aux problèmes
PROBLEME(12) Première partie : Peinture des murs et du plafond.
PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de
Concevoir son microprocesseur
Concevoir son microprocesseur structure des systèmes logiques Jean-Christophe Buisson Collection Technosup Ellipses Avant-propos Ce livre s adresse aux étudiants en informatique de licence et maîtrise,
Conception de circuits numériques et architecture des ordinateurs
Conception de circuits numériques et architecture des ordinateurs Frédéric Pétrot et Sébastien Viardot Année universitaire 2011-2012 Structure du cours C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Codage des
MICROINFORMATIQUE NOTE D APPLICATION 1 (REV. 2011) ARITHMETIQUE EN ASSEMBLEUR ET EN C
Haute Ecole d Ingénierie et de Gestion Du Canton du Vaud MICROINFORMATIQUE NOTE D APPLICATION 1 (REV. 2011) ARITHMETIQUE EN ASSEMBLEUR ET EN C Programmation en mode simulation 1. DOCUMENTS DE RÉFÉRENCE...
Electronique Numérique
Electronique Numérique 1er tome Systèmes combinatoires Etienne Messerli Yves Meyer Septembre 2010 Version 1.4 Mise à jour de ce manuel La base du présent manuel a été écrit par M. Yves Meyer de l'école
CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE
CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En
Les fonctions logiques
1 Les fonctions logiques Le fonctionnement des ordinateurs tout comme d autres appareils électroniques repose sur l emploi des circuits électroniques de logique binaire ou électronique numérique. Dans
Partie théorique (20 points) :
OFPPT Office de la Formation Professionnelle et de la Promotion du Travail Direction Recherche et Ingénierie de la Formation Examen Passage Session Juillet 2012 Variante 2 Filière : Technicien en Maintenance
Pour l épreuve d algèbre, les calculatrices sont interdites.
Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.
ASR1 TD7 : Un microprocesseur RISC 16 bits
{Â Ö Ñ º ØÖ Ý,È ØÖ ºÄÓ Ù,Æ ÓÐ ºÎ ÝÖ Ø¹ ÖÚ ÐÐÓÒ} Ò ¹ÐÝÓÒº Ö ØØÔ»»Ô Ö Óº Ò ¹ÐÝÓÒº Ö» Ö Ñ º ØÖ Ý»¼ Ö½» ASR1 TD7 : Un microprocesseur RISC 16 bits 13, 20 et 27 novembre 2006 Présentation générale On choisit
Chapitre 1 I:\ Soyez courageux!
Chapitre 1 I:\ Soyez courageux! Pour ne rien vous cacher, le langage d'assembleur (souvent désigné sous le terme "Assembleur", bien que ce soit un abus de langage, puisque "Assembleur" désigne le logiciel
CHAPITRE VI ALEAS. 6.1.Généralités.
CHAPITRE VI ALEAS 6.1.Généralités. Lors de la synthèse des systèmes logique (combinatoires ou séquentiels), nous avons supposé, implicitement, qu une même variable secondaire avait toujours la même valeur
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
Activités numériques [13 Points]
N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible
Quelques contrôle de Première S
Quelques contrôle de Première S Gilles Auriol [email protected] http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage
Architecture : Circuits numériques et éléments d architecture
Ecole Nationale Supérieure d Informatique et de Mathématiques Appliquées Architecture : Circuits numériques et éléments d architecture 1 ère année Année scolaire 2014 2015 Consignes Les exercices de ce
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
Rappels et compléments, première partie : Nombres complexes et applications à la géométrie
Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)
Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières
point On obtient ainsi le ou les points d inter- entre deux objets».
Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
ISFA 2 année 2002-2003. Les questions sont en grande partie indépendantes. Merci d utiliser l espace imparti pour vos réponses.
On considère la matrice de données : ISFA 2 année 22-23 Les questions sont en grande partie indépendantes Merci d utiliser l espace imparti pour vos réponses > ele JCVGE FM1 GM JCRB FM2 JMLP Paris 61 29
DEFI MATHS EXPRESS n 2. DEFI MATHS EXPRESS n 1. Le compte est bon : Suite de nombres : 1-3-6-10-15-?
EXPRESS n 1 EXPRESS n 2 Le compte est bon : Suite de nombres : 45 1-3-6-10-15-? 2 10 2 5 EXPRESS n 3 EXPRESS n 4 Nombre mystère : Tangram : Quel est le triple du double de 6? EXPRESS n 5 EXPRESS n 6 Le
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
Manipulations du laboratoire
Manipulations du laboratoire 1 Matériel Les manipulations de ce laboratoire sont réalisées sur une carte électronique comprenant un compteur 4-bit asynchrone (74LS93) avec possibilité de déclenchement
Informatique Générale
Informatique Générale Guillaume Hutzler Laboratoire IBISC (Informatique Biologie Intégrative et Systèmes Complexes) [email protected] Cours Dokeos 625 http://www.ens.univ-evry.fr/modx/dokeos.html
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?
DIALOGUE RS4S232 AVEC TELESURVEILLANCE ET SUPERVISEURS
DIALOGUE RS4S232 AVEC TELESURVEILLANCE ET SUPERVISEURS PARATRONIC-Rue des Genêts - Zone Industrielle - 01600 REYRIEUX - FRANCE Tel. +33 4 74 00 12 70 - Fax. +33 4 74 00 02 42 - E mail : [email protected]
Représentation d un entier en base b
Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir
Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire
Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire Stéphanie Demonchaux To cite this version: Stéphanie Demonchaux. Étude des formes de pratiques de la gymnastique
La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)
La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA) I. L'intérêt de la conversion de données, problèmes et définitions associés. I.1. Définitions:
Encoder 1.60. Encoder 1 sur 15. Codification fil par étage 15 étages max. + 2 flèches + signal de mouvement. Raccordements 0.1 mm²...
Displays ACCESSOIRES AFFICHEURS Encoder Encoder 1 sur 1 Le dispositif Encoder est nécessaire pour une codification 1 fil par étage avec des afficheurs conçus pour code binaire. Le dispositif Encoder convertit
DM 1 : Montre Autoquartz ETA
Lycée Masséna DM 1 : Montre Autoquartz ETA 1 Présentation de la montre L essor de l électronique nomade s accompagne d un besoin accru de sources d énergies miniaturisées. Les contraintes imposées à ces
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
GPA770 Microélectronique appliquée Exercices série A
GPA770 Microélectronique appliquée Exercices série A 1. Effectuez les calculs suivants sur des nombres binaires en complément à avec une représentation de 8 bits. Est-ce qu il y a débordement en complément
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Le théorème de Thalès et sa réciproque
Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre
Microprocesseur + Logiciel
Microprocesseur + Logiciel Robot EVALBOT MOHAMED AKIL BUREAU 5253 UNITE IGI 1001 PROGRAMMATION DES MICROPROCESSEURS Présentation [IGI1001] CONTEXTE SCIENTIFIQUE... 4 1. OBJECTIFS DE L UNITE... 6 2. OBJECTIFS
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES Exercice 1 Dans un repère orthonormé on donne les points A( 1;2 ), ( 5; 6) et les droites a 3x + 2y = 5 et b 4x 3y + 10 = 0. B, 1 C 5; 2, 1 D 7; 2 1)
LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )
SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Programmation Par Contraintes
Programmation Par Contraintes Cours 2 - Arc-Consistance et autres amusettes David Savourey CNRS, École Polytechnique Séance 2 inspiré des cours de Philippe Baptiste, Ruslan Sadykov et de la thèse d Hadrien
Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :
Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?
QUESTION 1 {2 points}
ELE4301 Systèmes logiques II Page 1 de 8 QUESTION 1 {2 points} En se servant de paramètres électriques donnés dans le Tableau 1 ci-dessous, on désire déterminer la fréquence d opération du compteur présenté
Nombre dérivé et tangente
Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Conversion d un entier. Méthode par soustraction
Conversion entre bases Pour passer d un nombre en base b à un nombre en base 10, on utilise l écriture polynomiale décrite précédemment. Pour passer d un nombre en base 10 à un nombre en base b, on peut
CHAPITRE 10. Jacobien, changement de coordonnées.
CHAPITRE 10 Jacobien, changement de coordonnées ans ce chapitre, nous allons premièrement rappeler la définition du déterminant d une matrice Nous nous limiterons au cas des matrices d ordre 2 2et3 3,
Géométrie dans l espace
Géométrie dans l espace Mabrouk Brahim Université Virtuelle de Tunis 2007 Ce cours a pour objet la présentation des différents concepts de la géométrie de l espace comme une continuation de ceux vus en
TP Modulation Démodulation BPSK
I- INTRODUCTION : TP Modulation Démodulation BPSK La modulation BPSK est une modulation de phase (Phase Shift Keying = saut discret de phase) par signal numérique binaire (Binary). La phase d une porteuse
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Série M Débitmètres Eletta. Débitmètre à P avec sortie programmable
Série M Débitmètres Eletta Débitmètre à P avec sortie programmable Débitmètre à fonctions multiples pour gaz et liquides M3 Le débitmètre série M, avec sa conception polyvalente et conviviale, trouve tout
Documentation d information technique spécifique Education. PGI Open Line PRO
Documentation d information technique spécifique Education PGI Open Line PRO EBP Informatique SA Rue de Cutesson - ZA du Bel Air BP 95 78513 Rambouillet Cedex www.ebp.com Equipe Education : 01 34 94 83
UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.
UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases
Architecture de l ordinateur
Architecture de l ordinateur Emmanuel Lazard Université Paris-Dauphine mars 2011 Computers are my forte! BRAZIL (Terry Gilliam, 1985) Ce document a initialement été publié sous forme de livre : Emmanuel
Corrigés Exercices Page 1
Corrigés Exercices Page 1 Premiers algorithmes Questions rapides 1 1) V ; ) F ; 3) V ; 4) F. 1) a ; ) b ; 3) a et b ; 4) b. 3 L'algorithme répond à la question : "le nombre entré estil positif?". 4 a (remarque
Logiciel de Base. I. Représentation des nombres
Logiciel de Base (A1-06/07) Léon Mugwaneza ESIL/Dépt. Informatique (bureau A118) [email protected] I. Représentation des nombres Codage et représentation de l'information Information externe formats
Principes d octroi de crédit et rôle des garanties. Eric Schneider 25.01.2008
Principes d octroi de crédit et rôle des garanties Eric Schneider 25.01.2008 Introduction «Mieux vaut un bon crédit en blanc qu un crédit mal garanti» Vieil adage bancaire Responsabilité Principes d octroi
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
CHAPITRE 1. Suites arithmetiques et géometriques. Rappel 1. On appelle suite réelle une application de
HAPITRE 1 Suites arithmetiques et géometriques Rappel 1 On appelle suite réelle une application de dans, soit est-à-dire pour une valeur de la variable appartenant à la suite prend la valeur, ie : On notera
CODAGE DES SMS. 2 Commandes «AT» 25 3 Matériels utilisés 55 4 Interfacer un téléphone GSM 73 5 Réalisations électroniques 101
1 CODAGE DES SMS PAGE 1.1 Introduction 6 1.2 Généralités 6 1.3 Mode PDU 6 1.4 Codage/décodage par logiciel 21 2 Commandes «AT» 25 3 Matériels utilisés 55 4 Interfacer un téléphone GSM 73 5 Réalisations
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
DE L ALGORITHME AU PROGRAMME INTRO AU LANGAGE C 51
DE L ALGORITHME AU PROGRAMME INTRO AU LANGAGE C 51 PLAN DU COURS Introduction au langage C Notions de compilation Variables, types, constantes, tableaux, opérateurs Entrées sorties de base Structures de
WWW.ELCON.SE Multichronomètre SA10 Présentation générale
WWW.ELCON.SE Multichronomètre SA10 Présentation générale Le SA10 est un appareil portable destiné au test des disjoncteurs moyenne tension et haute tension. Quoiqu il soit conçu pour fonctionner couplé
Conduite dangereuse! L accident. À l aide des renseignements contenus dans le récit de l accident et des documents indiqués ci-dessus :
Fiche d activité FA Conduite dangereuse! Mise en situation 4 Le 30 novembre dernier, Juliette revient de Québec où elle a passé une entrevue pour pouvoir travailler dans la salle d opération d un grand
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition.
Les Angles I) Angles complémentaires, angles supplémentaires 1) Angles complémentaires Deux angles complémentaires sont deux angles dont la somme des mesures est égale à 90 41 et 49 41 49 90 donc Les angles
> Nouveaux services en ligne > avril 4 > Page #
> Nouveaux services en ligne > avril 4 > Page # Deux nouveaux services en ligne Principes (1/2) Engagé dans le déploiement de la stratégie pour faire entrer l école dans l ère du numérique, votre établissement
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Quatrième partie IV. Test. Test 15 février 2008 1 / 71
Quatrième partie IV Test Test 15 février 2008 1 / 71 Outline Introduction 1 Introduction 2 Analyse statique 3 Test dynamique Test fonctionnel et structurel Test structurel Test fonctionnel 4 Conclusion
NatRcs 7.00. Ce document présente la liste des nouvelles fonctionnalités de la 7.00, disponible à partir de Mars 2011.
NATSTAR 5.00 BULLETIN TECHNIQUE Mars 2011 Introduction NatRcs 7.00 Ce document présente la liste des nouvelles fonctionnalités de la 7.00, disponible à partir de Mars 2011. Vous trouvez dans ce bulletin
Cours d Informatique
Cours d Informatique 1ère année SM/SMI 2007/2008, Info 2 Département de Mathématiques et d Informatique, Université Mohammed V [email protected] [email protected] 2007/2008 Info2, 1ère année SM/SMI 1
