POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa annuel -

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa annuel -"

Transcription

1 POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section i-prépa annuel -

2 I. Vecteur champ magnétique : a) Détection : si l on saupoudre de limaille de fer un support horizontal au-dessous duquel est placée un aimant, on observe que les grains de limaille s alignent selon des lignes appelées lignes de champ. vue de dessus L aimant a modifié les propriétés de l espace, il crée un champ magnétique dans son voisinage. Spectre magnétique : l ensemble des lignes de champ est appelé spectre magnétique Le spectre magnétique de l aimant est représenté ici par six lignes de champ. Chaque ligne est tangente en tout point au vecteur champ magnétique (comme le montrent les aiguilles aimantées) et se referme sur elle-même. L intensité du champ magnétique diminue quand on s en éloigne de l aimant. b) Vecteur champ magnétique : - direction : tangente aux lignes de champ - sens : du pôle Sud vers le pôle Nord de l aiguille aimantée qui le détecte - sa valeur est en Tesla (T) et peut être mesurée par une sonde spécifique : le Teslamètre pour un aimant : de 1 mt à 0,5 T ; pour un nerf humain : 10 T ; pour le champ magnétique terrestre : 2,5 à 70 ; pour les pulsars (cadavres d étoiles) : 4. 10

3 c) l aimant droit : Les lignes de champ sont tangentes en chacun de leur point aux vecteurs champ magnétique. En provenance de l extérieure, elles entrent par le Sud et ressortent par le Nord sans se couper. d) l aimant en U : N Le champ magnétique dans l entrefer d un aimant en U est uniforme. S II. Superposition de deux champs magnétiques : S il y a plusieurs vecteurs champs magnétiques (s il y a plusieurs sources de champ en fait), le vecteur champ magnétique résultant en un point est égal à la somme vectorielle des champs créés par chacune des sources en ce point. = Exercice-type : une aiguille dont le centre O est placé sur l axe de l aimant 1 s aligne sur cet axe suivant le vecteur de valeur 5,0 mt. On place l aimant 2 comme sur la figure : l aiguille tourne dans le sens contraire des aiguilles d une montre d un angle = 24

4 Déterminer les caractéristiques du champ magnétique créé en O par l aimant 2 ainsi que les caractéristiques du champ magnétique résultant solution : 24 = =. 24 = 2,2, 24 = = 24 = 5,5 III. Champ magnétique créé par un courant : a) Champ créé par un long fil rectiligne : un courant circulant dans un long fil rectiligne crée un champ magnétique dont les lignes de champ sont des cercles concentriques centrés sur le fil et situés dans le plan perpendiculaire au fil. Notation : sort du plan (de la feuille) rentre dans le plan (de la feuille) Topographie du champ crée par un courant rectiligne : I

5 Règle du bonhomme d Ampère : «Le sens du champ magnétique en un point est représenté par le bras gauche tendu horizontalement d un observateur placé sur le fil et parcouru par le courant des pieds à la tête, et regardant le point.» En un point M situé à la distance d (en m) du fil parcouru par I (en A), il se crée un champ tel que : =.. : perméabilité magnétique du vide ; =.. ~ exemple : I = 10 A et d = 2 m =... = 1 remarque : la valeur du champ B décroît au fur et à mesure qu on s éloigne du fil (champ magnétique fortement ressenti sous une ligne à haute tension, et de moins en moins au fur et à mesure qu on s en éloigne) b) Champ magnétique dans un solénoïde : Champ au centre d une spire de rayon r : =. Champ magnétique dans un solénoïde : un solénoïde est une bobine dont la longueur est très grande par rapport au rayon ( L > 10r ) A l extérieur du solénoïde, le champ est très faible par rapport au champ régnant à l intérieur ; pour un solénoïde de longueur infini, le champ extérieur est nul.

6 A l intérieur du solénoïde, le champ magnétique est uniforme, les lignes de champ sont parallèles. L'avantage du solénoïde réside dans cette uniformité qui est parfois requise dans certaines expériences de physique. Topographie du champ crée par un solénoïde La valeur du champ magnétique en l absence de noyau de fer doux à l intérieur du solénoïde de longueur L, et constitué de N spires non-jointives et parcouru par un courant I : = Remarque : on peut poser = le nombre de spires par mètre, et on a alors : = S I N IV. Force électromagnétique : Un circuit électrique placé dans un champ magnétique subi des actions mécaniques appelées forces électromagnétiques. Loi de Laplace : la force subie par une portion de fil rectiligne de longueur l, parcourue par un courant I, et placée dans un champ uniforme est appelée force Laplace. Pour un champ magnétique uniforme B r et un courant orienté dans le sens du vecteur l r, la force de Laplace a les caractéristiques suivantes :

7 h é é é 3 è è ( r l, B r, F r ) é h =... =... I : intensité du courant (en A) l : portion de conducteur immergé dans le champ B : intensité du champ (en T) = ; é h Le plus souvent, = ; = 90, ù: =.. Règle des 3 doigts : F r B r r l : main droite autres possibilités : : : ( il faut toujours que le trièdre soit direct ) exemple : tige coulissant sur des rails parcourus par un courant et placés dans l entrefer d un aimant + - S F r N

8 exemple 1 : =.. exemple 2 : =.. Force entre courants parallèles : Soient deux fils rectilignes parcourus chacun par un courant I. Chacun crée un champ magnétique en tout point de l autre. Chaque portion de fil est ainsi soumise à une force de Laplace - les fils s attirent quand ils sont parcourus part des courants de même sens - les fils se repoussent lorsqu ils sont parcourus par des courants de sens contraire

9 Définition légale de l Ampère : «Deux conducteurs rectilignes de longueurs infinis de section négligeable, placés à 1 m l un de l autre dans le vide, et parcourus par un courant constant d intensité égale à 1 A exercent l un sur l autre une force de N» V. Application : couplage électromagnétique La force de Laplace permet la conversion d'énergie électrique en énergie mécanique : ce phénomène est appelé un couplage électromécanique. Ce couplage électromécanique est réversible.. a) le haut-parleur électromagnétique : principe : le haut-parleur est un transducteur, il transforme un signal électrique en vibrations acoustiques (ondes sonores) A partir d un signal électrique alternatif parcouru par les spires d une bobine mobile immergé dans l entrefer d un aimant à champ radial, un déplacement mécanique est engendré, faisant se déplacer la membrane d arrière en avant et d avant en arrière à la fréquence du signal électrique reçu. Ce mouvement de la membrane engendre une compression ou une dilatation des couches d aire avoisinantes, d où la création et la propagation d un signal acoustique. Vue de profil Vue de face

10 Chaque petite portion rectiligne de spire de rayon R est soumise à la force électromagnétique. Tout le long des spires de la bobine, les forces ont même direction, même sens, même valeur. Globalement, la force de Laplace qui s exerce sur la bobine est égale à celle s exerçant sur un fil de longueur L égale à la longueur du fil enroulé en spires sur la bobine : 1 spire de rayon R 2πR n spires de rayon R L = 2πRn =.. = 2πRnI.B b) moteur à courant continu : le rotor est la partie tournante constituée d une bobine rectangulaire : cette bobine est composée de spires en forme de cadre reliées à l alimentation électrique E par un système ou un dispositif collecteur-balai le stator est la partie fixe, il est constitué par un aimant à champ magnétique radial invariant S N S N le champ magnétique radial : la forme des pièces polaires et du rotor sont étudiés pour que, dans l'entrefer, il règne un champ magnétique radial : le vecteur B r est dirigé suivant un rayon du rotor.

11 Système collecteur-balai : Le cadre ne devrait plus tourner, c es à ce moment que le dispositif collecteur-balai inverse le sens du courant. Le sens des forces de Laplace a changé, permettant au cadre de continuer son mouvement dans le même sens. Tous les ½ tour, la normale au plan de la boucle devient parallèle au champ, le collecteur inverse le sens du courant. VI. Champ magnétique terrestre : Il provient des courants électriques issus du mouvement de convection du fer en fusion dans le noyau de notre planète ; il peut être considéré comme le champ créé par un aimant droit placé au centre de la Terre. Remarque : le pôle Nord magnétique est en fait le pôle Sud de cet aimant

12 La magnétosphère est la zone qui délimite l activité du champ magnétique terrestre autour de la Terre (jusqu à 10 fois le rayon terrestre). Le champ magnétique terrestre est caractérisé par ayant pour sens l axe Sud-Nord d une aiguille aimantée. Dans l hémisphère Nord, le pôle Nord d une aiguille pointe vers le sol. Dans l hémisphère Sud, c est le pôle Sud qui pointe vers le sol. A l équateur magnétique, l aiguille reste horizontale, et aux pôles l aiguille est verticale. En pratique, l aiguille d une boussole est astreinte à rester horizontale, elle n indique donc que la composante horizontale du champ terrestre.

13 Méridien magnétique : L angle de déclinaison l angle que fait le méridien magnétique avec le méridien géographique. L angle d inclinaison c est l angle que fait le méridien magnétique avec l horizontale.

14 Exercices d application : le Magnétisme exercice 1 : Une aiguille dont le centre O est placé sur l axe de l aimant (1) s aligne sur cet axe suivant le vecteur de valeur 5,0 mt. On place l aimant (2) comme sur la figure ; l aiguille tourne dans le sens contraire des aiguilles d une montre d un angle α égal à 24. Déterminer les caractéristiques du champ magnétique créé en O par l aimant (2) et du champ magnétique résultant. exercice 2 : On dispose une aiguille aimantée à l intérieur d une bobine. En l absence de courant, cette aiguille prend une direction horizontale perpendiculairement à l axe x x de la bobine, lui aussi horizontal. 1. Quelle est la direction de la composante horizontale T du champ magnétique terrestre? 2. On fait passer un courant d intensité I dans la bobine. L aiguille dévie d un angle α = 47,0 (figure ci-dessus). a) Déterminer le sens du champ magnétique sol créé par la bobine. b) Déterminer le sens du courant de la bobine. c) Calculer la valeur du champ créé par la bobine si elle comporte 150 spires par mètre traversées par un courant d intensité de 100 ma. 3. Calculer la valeur de la composante horizontal du champ terrestre et celle T du champ résultant.

15 exercice 3 : forces sur des fils parallèles Deux fils parallèles sont parcourus par des courants de même intensité I = 6 A, dans le même sens ; ils sont distants de d = 6,0 cm. 1. Donner, en chaque point du segment MM du fil (2), la direction, le sens et la valeur du champ magnétique créé par le fil (1) à la distance d = 6,0 cm. 2. Donner les caractéristiques de la force électromagnétique qui s exerce sur la portion l = MM = 50 cm du fil (2) placé dans le champ du fil (1). Représenter cette force / 3. Donner les caractéristiques du champ magnétique créé par le fil (2) en chaque point du segment l = NN = 50 cm du fil (1) ; quelles sont les caractéristiques de la force de Laplace qui s exerce sur la portion NN placée dans le champ? Représenter cette force / exercice 4 : a) Indiquer dans quel(s) cas une force électromagnétique s exerce sur la tige. Justifier la réponse en précisant la direction et le sens de la force. b) Compléter les schémas suivants en indiquant pour chacun, la caractéristique manquante : - la force de Laplace pour le premier - le sens du courant pour le deuxième - le champ magnétique pour le troisième. c) La tige se déplace de gauche à droite. Indiquer en justifiant les réponses : - le sens de la force de Laplace : - le sens du champ magnétique : - les pôles de l aimant.

16 exercice 5 : exercice 6 : g = 10 m/s² On considère un conducteur mobile cylindrique de longueur L = 8 cm et de masse m = 8g, posé sur des rails conducteurs, écartés d'une longueur l = 6 cm. Les rails sont reliés aux bornes d'un générateur de courant continu d'intensité I = 6 A. Le circuit est soumis au champ magnétique uniforme de valeur B = 0,1 T. On néglige les frottements. 1. Reproduire le schéma en indiquant le sens du champ magnétique. 2. Déterminer le sens et la direction de la force de Laplace qui s'exerce sur le conducteur mobile AB.

17 3. A l'aide d'un fil inextensible enroulé, de masse négligeable, et d'une poulie, on attache une masse M au conducteur AB. Quelle doit être la valeur de M pour que le conducteur AB soit en équilibre? 4. On enlève le fil et la masse M, puis on permute les bornes du générateur. On considère que le conducteur mobile est initialement au repos en O et est soumis au champ magnétique sur la longueur OO' = 4 cm a) Déterminer la nature du mouvement du conducteur AB sur la longueur OO' (sans application numérique) b) Exprimer littéralement puis numériquement l'équation horaire v(t) de ce mouvement c) Exprimer littéralement puis numériquement l'équation horaire x(t) de ce mouvement d) Calculer la vitesse du conducteur mobile en O' e) Combien de temps met le conducteur AB pour aller de O à O" sachant que d'=o'o" = 10 cm

Cours n 15 : Champ magnétique

Cours n 15 : Champ magnétique Cours n 15 : Champ magnétique 1) Champ magnétique 1.1) Définition et caractérisation 1.1.1) Définition Comme nous l avons fait en électrostatique en introduisant la notion de champ électrique, on introduit

Plus en détail

MAGNETISME. 3) Effet du magnétisme 31) Action sur un aimant :

MAGNETISME. 3) Effet du magnétisme 31) Action sur un aimant : MAGNETISME 1) Les différentes sources de champ magnétique La terre crée le champ magnétique terrestre Les aimants naturels : les magnétites Fe 3 O 4 L acier que l on aimante Les électroaimants et circuits

Plus en détail

LE MAGNETISME DES AIMANTS ET DES COURANTS

LE MAGNETISME DES AIMANTS ET DES COURANTS LE MAGNETISME DES AIMANTS ET DES COURANTS 1. Les aimants Un aimant comporte toujours deux pôles appelés le pôle nord (N) et le pôle sud (S) situés, en général, à deux extrémités. Un aimant exerce une action

Plus en détail

Electromagnétisme. Chapitre 1 : Champ magnétique

Electromagnétisme. Chapitre 1 : Champ magnétique 2 e BC 1 Champ magnétique 1 Electromagnétisme Le magnétisme se manifeste par exemple lorsqu un aimant attire un clou en fer. C est un phénomène distinct de la gravitation, laquelle est une interaction

Plus en détail

S 5 F I) Notion de champ magnétique : 1) Mise en évidence : a) Expérience :

S 5 F I) Notion de champ magnétique : 1) Mise en évidence : a) Expérience : Chapitre 5 : CHAMP MAGNETIQUE S 5 F 1) Mise en évidence : a) Expérience : Des petites aiguilles aimantées montées sur pivots sont disposées près d'un aimant droit. Chaque aiguille constitue un dipôle orienté.

Plus en détail

CHAPITRE 8 LE CHAMP MAGNETIQUE

CHAPITRE 8 LE CHAMP MAGNETIQUE CHAPTRE 8 LE CHAMP MAGETQUE ) Champ magnétique 1) Magnétisme Phénomène connu depuis l'antiquité. Les corps possédant des propriétés magnétiques sont appelés des aimants naturel (fer, oxyde magnétique de

Plus en détail

Chapitre P12 : Le magnétisme

Chapitre P12 : Le magnétisme : ) Qu'est-ce que le champ magnétique? 1) Comment détecter un champ magnétique? Expérience : Voir fiche Expériences 1 et 2 En un lieu donné, une aiguille aimantée, pouvant tourner dans un plan horizontal,

Plus en détail

LE CHAMP MAGNETIQUE Table des matières

LE CHAMP MAGNETIQUE Table des matières LE CHAMP MAGNETQUE Table des matières NTRODUCTON :...2 MSE EN EVDENCE DU CHAMP MAGNETQUE :...2.1 Détection du champ magnétique avec une boussole :...2.2 Le champ magnétique :...3.2.1 Le vecteur champ magnétique

Plus en détail

CHAPITRE 14. CHAMP MAGNETIQUE

CHAPITRE 14. CHAMP MAGNETIQUE CHAPITRE 14. CHAMP MAGNETIQUE 1. Notion de champ Si en un endroit à la surface de la Terre une boussole s'oriente en pointant plus ou moins vers le nord, c'est qu'il existe à l'endroit où elle se trouve,

Plus en détail

Moteurs à courant continu Moteurs asynchrones

Moteurs à courant continu Moteurs asynchrones Chapitre 17 Sciences Physiques - BTS Moteurs à courant continu Moteurs asynchrones 1 Loi de Laplace 1.1 Etude expérimentale Le conducteur est parcouru par un courant continu ; il est placé dans un champ

Plus en détail

Chapitre 7. Électromagnétisme. 7.1 Magnétisme. 7.1.1 Aimants

Chapitre 7. Électromagnétisme. 7.1 Magnétisme. 7.1.1 Aimants Chapitre 7 Électromagnétisme 7.1 Magnétisme 7.1.1 Aimants Les aimants furent découverts d abord en Chine et puis en Grèce. Les premiers aimants sont des pierres noires qui ont la propriété d attirer des

Plus en détail

Chapitre 3: Dynamique

Chapitre 3: Dynamique Introduction Le mot dynamique désigne ou qualifie ce qui est relatif au mouvement. Il est l opposé du mot statique. Le mouvement d un point matériel est liée à son interaction avec le monde extérieur ce

Plus en détail

Courant électrique et distributions de courants

Courant électrique et distributions de courants Cours d électromagnétisme Courant électrique et distributions de courants 1 Courant électrique 1.1 Définition du courant électrique On appelle courant électrique tout mouvement d ensemble des particules

Plus en détail

TD16 Machine synchrone et MCC

TD16 Machine synchrone et MCC TD16 Machine synchrone et MCC 161 Machine synchrone simpliste A Travaux Dirigés Un aimant cylindrique allongé peut tourner autour de l'axe passant par son centre et perpendiculaire à son moment magnétique.

Plus en détail

CHAPITRE 2 : Interaction magnétique

CHAPITRE 2 : Interaction magnétique CHAPITRE 2 : Interaction magnétique Prérequis 1. L aiguille d une boussole possède : plusieurs pôles Nord et plusieurs pôles Sud, uniquement un pôle Nord et un pôle Sud, plusieurs pôles Nord ou plusieurs

Plus en détail

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres LE M O TE U R A C O U R A N T C O N TI N U La loi de LAPLACE Un conducteur traversé par un courant et placé dans un champ magnétique est soumis à une force dont le sens est déterminée par la règle des

Plus en détail

Electricité. Chapitre 1: Champ électrique

Electricité. Chapitre 1: Champ électrique 2 e BC 1 Champ électrique 1 Electricité L interaction électromagnétique a été évoqué dans la partie «Interactions fondamentales» en énonçant la loi de Coulomb, et en analysant des phénomènes macroscopiques

Plus en détail

Chapitre 3 : Dynamique du point matériel

Chapitre 3 : Dynamique du point matériel Cours de Mécanique du Point matériel Chapitre 3 : Dynamique SMPC1 Chapitre 3 : Dynamique du point matériel I Lois fondamentales de la dynamiques I.1)- Définitions Le Référentiel de Copernic: Le référentiel

Plus en détail

C - LE CHAMP MAGNÉTIQUE

C - LE CHAMP MAGNÉTIQUE C - LE CHAMP MAGNÉTQUE C - 1 - ORGNE DES CHAMPS MAGNÉTQUES L existence de champs magnétiques est liée aux déplacements de charges électriques. En plus d un champ électrique, une charge électrique en mouement

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

Exercices. Sirius 1 ère S - Livre du professeur Chapitre 15. Champs et forces. Exercices d application. 5 minutes chrono!

Exercices. Sirius 1 ère S - Livre du professeur Chapitre 15. Champs et forces. Exercices d application. 5 minutes chrono! Exercices Exercices d application 5 minutes chrono 1. Mots manquants a. scalaire b. aimants/courants c. aiguille aimantée d. électrostatique. e. uniforme/ parallèles. f. la verticale/la Terre g. gravitation/la

Plus en détail

S 4 F. I) Définitions : 1) En statique et en dynamique :

S 4 F. I) Définitions : 1) En statique et en dynamique : Chapitre 1 : NOTION DE FORCE S 4 F I) Définitions : 1) En statique et en dynamique : Une force, ou action mécanique, peut être définie comme : - toute cause capable de déformer un objet (statique). Exemple

Plus en détail

La gravitation universelle

La gravitation universelle La gravitation universelle Pourquoi les planètes du système solaire restent-elles en orbite autour du Soleil? 1) Qu'est-ce que la gravitation universelle? activité : Attraction universelle La cohésion

Plus en détail

On peut mesurer l intensité (ou la «valeur») d une force à l aide d un dynamomètre. L intensité d une force s exprime en newton, symbole : N

On peut mesurer l intensité (ou la «valeur») d une force à l aide d un dynamomètre. L intensité d une force s exprime en newton, symbole : N CH5 FORCES ET PRINCIPE D INERTIE A) POURQUOI LE MOUVEMENT D UN OBJET EST-IL MODIFIE? POURQUOI SE DEFORME-T-IL? I - RAPPELS. L existence d une force est conditionnée à l identification d une interaction,

Plus en détail

Le moteur à courant continu à aimants permanents

Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Principe, caractéristiques Alimentation, variation de vitesse Puissance, rendement Réversibilité Cette

Plus en détail

Electricité et magnétisme

Electricité et magnétisme Le champ magnétique Activité 1 a) O α S N s G n b) Bobine O s G n α I Document 1 Une petite aiguille aimantée suspendue par son centre de gravité G à un fil sans torsion est placée au voisinage d un aimant

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire Chapitre VII Forces électromagnétiques VII.a. Force de Lorentz La force à laquelle est soumis, à un instant t, un point matériel de charge q, situé en M et se déplaçant à une vitesse v(t) par rapport à

Plus en détail

Electricité et magnétisme - TD n 10 Induction

Electricité et magnétisme - TD n 10 Induction Electricité et magnétisme - TD n 1 Induction 1. Inductance mutuelle - transformateur On considère un solénoïde de section circulaire, de rayon R 1, de longueur, et constitué de N 1 spires. A l intérieur

Plus en détail

Les calculatrices sont interdites.

Les calculatrices sont interdites. Les calculatrices sont interdites. NB. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES) Chapitre 3 LES APPARELS A DEVATON EN COURANT CONTNU ( LES APPRELS MAGNETOELECTRQUES) - PRNCPE DE FONCTONNEMENT : Le principe de fonctionnement d un appareil magnéto-électrique est basé sur les forces agissant

Plus en détail

Session de Juillet 2001. Durée 2 H Documents interdits.

Session de Juillet 2001. Durée 2 H Documents interdits. Session de Juillet 2001 Durée 2 H Documents interdits. Exercice 1 : Oscillations forcées de dipôles électriques Lors d une séance de travaux pratiques, les élèves sont conduits à étudier les dipôles en

Plus en détail

Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies

Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies 1 Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies I. Les forces travaillent. 1. Effets d une force. Les forces appliquées à un système peut : - Déformer

Plus en détail

- cas d une charge isolée en mouvement et par extension d un ensemble de

- cas d une charge isolée en mouvement et par extension d un ensemble de Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k

Plus en détail

Réponds. Réponds. questions. questions. détermine la relation entre le poids et la masse d un objet

Réponds. Réponds. questions. questions. détermine la relation entre le poids et la masse d un objet ( P P B P C bjectifs distinguer le poids et la masse d un objet utiliser la relation de proportionnalité entre le poids et la masse énoncer et utiliser la condition d équilibre d un solide soumis à deux

Plus en détail

LA STATIQUE MODELISATION DES ACTIONS MECANIQUES

LA STATIQUE MODELISATION DES ACTIONS MECANIQUES I- Introduction L MECNIQUE C est la science mise à notre disposition afin de déterminer : les efforts, les caractéristiques d un mouvement, les dimensions, les déformations, les conditions de fonctionnement

Plus en détail

PHYSIQUE - MATHÉMATIQUES

PHYSIQUE - MATHÉMATIQUES SESSION 2013 SECOND CONCOURS ÉCOLE NORMALE SUPÉRIEURE PHYSIQUE - MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche à alimentation autonome, sans imprimante et sans document d accompagnement

Plus en détail

4.1 Charges en mouvement - Courant et intensité électriques

4.1 Charges en mouvement - Courant et intensité électriques Chapitre 4 Distributions de courants En électrostatique, les charges restent immobiles. Leur déplacement est à l origine des courants électriques qui sont la source du champ magnétique que nous étudierons

Plus en détail

Concours d entrée - mai 2012. A remplir par le candidat : Nom :.. Prénom :.. Centre de passage de l examen : N de place :.

Concours d entrée - mai 2012. A remplir par le candidat : Nom :.. Prénom :.. Centre de passage de l examen : N de place :. A remplir par le candidat : Nom : Prénom :.. Centre de passage de l examen : N de place :. Note : Concours filière Technicien Supérieur et er cycle filière Ingénieur Concours nd cycle filière Ingénieur

Plus en détail

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle.

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle. TP force centrifuge Ce TP est évalué à l'aide d'un questionnaire moodle. Objectif : Étudier la force centrifuge dans le cas d un objet ponctuel en rotation uniforme autour d un axe fixe. 1 Présentation

Plus en détail

Physique 30 Labo L intensité du champ magnétique. Contexte : Problème : Variables : Matériel : Marche à suivre :

Physique 30 Labo L intensité du champ magnétique. Contexte : Problème : Variables : Matériel : Marche à suivre : Physique 30 Labo L intensité du champ magnétique Contexte : La plupart des gens qui ont déjà joué avec un aimant permanent savent que plus on s en approche, plus la force magnétique est grande. Il est

Plus en détail

T. GET Chap. 8 :Le moteur asynchrone Chap. 8 : Le moteur asynchrone

T. GET Chap. 8 :Le moteur asynchrone Chap. 8 : Le moteur asynchrone Chap. 8 : Le moteur asynchrone I.Principe Le stator est formé de 3 bobines dont les axes font entre eux un angle de. Il est alimenté par un réseau triphasé équilibré, qui crée dans l entrefer un ( radial

Plus en détail

B = (R 2 + (x x c ) 2 )

B = (R 2 + (x x c ) 2 ) PHYSQ 126: Champ magnétique induit 1 CHAMP MAGNÉTIQUE INDUIT 1 But Cette expérience 1 a pour but d étudier le champ magnétique créé par un courant électrique, tel que décrit par la loi de Biot-Savart 2.

Plus en détail

CH12 : Solide en mouvement de translation

CH12 : Solide en mouvement de translation BTS électrotechnique 1 ère année - Sciences physiques appliquées CH12 : Solide en mouvement de translation Motorisation des systèmes Enjeu : Problématique : En tant que technicien supérieur, il vous revient

Plus en détail

Son et Lumière. L optique géométrique

Son et Lumière. L optique géométrique Son et Lumière Leçon N 3 L optique géométrique Introdution Nous allons au cours de cette leçon poser les bases de l optique géométrique en en rappelant les principes fondamentaux pour ensuite nous concentrer

Plus en détail

Travail d une force Correction

Travail d une force Correction Travail d une force Exercice 1 : Deux jumeaux de même masse m=75,0 kg montent au 5ème étage d'un immeuble en partant du rez-de-chaussée. Le jumeau A emprunte l'ascenseur et le jumeau B l'escalier. La distance

Plus en détail

G.P. DNS05 Octobre 2010

G.P. DNS05 Octobre 2010 DNS Sujet Effet Hall et magnétorésistance...1 I.Loi d'ohm...1 II.Champ magnétique propre...2 III.Loi d'ohm en présence de champ magnétique extérieur...2 IV.Influence de la géométrie...3 V.Disque de Corbino...4

Plus en détail

Définition. Lampe à incandescence. Le vérin

Définition. Lampe à incandescence. Le vérin Définition Un actionneur est un système qui convertit une énergie d entrée sous une certaine forme en une énergie utilisable sous une autre forme. Il est donc possible de le modéliser ainsi. Une ampoule,

Plus en détail

Exercices Electricité

Exercices Electricité Exercices Electricité EL1 Champ électrique 1 Deux charges ponctuelles Soit une charge ponctuelle q1 27 C située en x 0 et une charge q2 3 C en x 1m. a) En quel point (autre que l infini) la force électrique

Plus en détail

Chapitre 1 Magnétostatique

Chapitre 1 Magnétostatique Chapitre 1 Magnétostatique I. Généralités et définitions Les propriétés électriques et magnétiques de la matière ont été révélées par l observa tion de forces : Si, à un endroit, une charge fixe subit

Plus en détail

Charge électrique loi de Coulomb

Charge électrique loi de Coulomb Champ électrique champ magnétique Charge électrique loi de Coulomb 1/ répulsion réciproque de deux charges < r 12 > Q 1 Q 2 Les deux charges Q 1 et Q 2 se repoussent mutuellement avec une force F 12 telle

Plus en détail

moteur asynchrone MOTEUR ASYNCHRONE

moteur asynchrone MOTEUR ASYNCHRONE MOTEUR ASYNCHRONE Rappel: trois bobines, dont les axes font entre eux des angles de 120 et alimentées par un réseau triphasé équilibré, crée dans l'entrefer un champ magnétique radial, tournant à la fréquence

Plus en détail

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m EEl 1 ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS MESURE DU RAPPORT e/m 1. THEORIE 1.1. Effet d un champ électrique sur une charge électrique Dans un champ électrique E une

Plus en détail

GENERALITES SUR LES APPAREILS DE MESURE

GENERALITES SUR LES APPAREILS DE MESURE Chapitre 2 GENERALITES SUR LES APPAREILS DE MESURE I- LES APPAREILS DE MESURE ANALOGIQUES: Un appareil de mesure comprend généralement un ou plusieurs inducteurs fixes ( aimant permanant ou électroaimant)

Plus en détail

Electromagnétisme. Bipolarité Un champ magnétique possède toujours un pôle nord et un pôle sud. Ils sont indissociables.

Electromagnétisme. Bipolarité Un champ magnétique possède toujours un pôle nord et un pôle sud. Ils sont indissociables. Electromagnétisme Les champs magnétiques Les sources de champs magnétiques existent à l état naturel (Terre, aimant naturel) ou peuvent être crées artificiellement (aimant, électro-aimant). L unité du

Plus en détail

Hygiène et Sécurité HS 1

Hygiène et Sécurité HS 1 Hygiène et Sécurité HS 1 Leçon N 2 : L équilibre d un solide Question du jour : qu est-ce qui maintient un objet en équilibre? I. ctions mécaniques : caractéristiques d une force ctivité 1 Effectuer les

Plus en détail

3. Magnétisme. Electricité

3. Magnétisme. Electricité 3. Magnétisme 3.1 Champ magnétique et aimant Les aimants ont la propriété de dévier les aiguilles de boussole et d'attirer les clous. L'origine de cette propriété est complexe. Nous nous contenterons pour

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique C est en 1831 que Michael Faraday découvre le phénomène d induction, il découvre qu un courant électrique est créé dans un conducteur lorsqu il est soumis à un champ magnétique

Plus en détail

3 Charges électriques

3 Charges électriques 3 Charges électriques 3.1 Electrisation par frottement Expérience : Frottons un bâton d ébonite avec un morceau de peau de chat. Approchonsle de petits bouts de papier. On observe que les bouts de papier

Plus en détail

point d application F r intensité: 4 unités

point d application F r intensité: 4 unités A. MÉCANIQUE A1. Forces I) appels 1) Effets d une force: définition Une force est une grandeur physique qui se manifeste par ses effets a) effet dynamique : Une force est une cause capable de produire

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Le Haut-parleur : I) Qu est ce qu un son? II) Le haut-parleur à travers le temps : III) Le principe de son fonctionnement : 1) Principale fonction

Le Haut-parleur : I) Qu est ce qu un son? II) Le haut-parleur à travers le temps : III) Le principe de son fonctionnement : 1) Principale fonction Le Haut-parleur : I) Qu est ce qu un son? II) Le haut-parleur à travers le temps : III) Le principe de son fonctionnement : 1) Principale fonction 2) Description du transducteur 3) Composition 4) Principe

Plus en détail

FORCE MAGNÉTIQUE SUR UN COURANT

FORCE MAGNÉTIQUE SUR UN COURANT PHYSQ 126: F M sur I 1 FORCE MAGNÉTIQUE SUR UN COURANT 1 Théorie Lorsqu un courant électrique circule dans un fil conducteur, et que ce dernier est plongé dans un champ magnétique, il subira l action de

Plus en détail

1 Systèmes triphasés symétriques

1 Systèmes triphasés symétriques 1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Orthoptiste / stage i-prépa intensif - 1 Chapitre 10 : Condensateur et circuit RC I. Notions de base en électricité : a) Courant électrique

Plus en détail

La hauteur du Soleil et la durée d une journée

La hauteur du Soleil et la durée d une journée La hauteur du Soleil et la durée d une journée On dit que le Soleil se lève à l Est pour se coucher à l Ouest ou encore que le Soleil est au zénith à midi. Cela n est pas vrai ou plus exactement pas toujours

Plus en détail

STI2D : Enseignements Technologiques Transversaux

STI2D : Enseignements Technologiques Transversaux 1) Notion de moment d une force : Les effets d une force sur un solide dépendent de la position de la force par rapport au corps. Pour traduire avec précision les effets d une force, il est nécessaire

Plus en détail

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique PGA & SDUEE Année 008 09 Interaction milieux dilués rayonnement Travaux dirigés n. Résonance magnétique : approche classique Première interprétation classique d une expérience de résonance magnétique On

Plus en détail

B - LE CHAMP ELECTRIQUE

B - LE CHAMP ELECTRIQUE B - L CHAP LCTRIQU B - 1 - L VCTUR CHAP LCTRIQU L'orientation du vecteur champ électrique dépend de la nature (positive ou négative) de la charge qui le produit. L effet de ce champ (attraction ou répulsion)

Plus en détail

Comment les forces agissent sur le mouvement?

Comment les forces agissent sur le mouvement? SP. 5 forces et principe d inertie cours Comment les forces agissent sur le mouvement? 1) notion d action et de force : a) Actions exercées sur un système : Actions de contact : Solide posé sur une table

Plus en détail

3 ème Cours : géométrie dans l espace

3 ème Cours : géométrie dans l espace I. La sphère : a) Définition : La sphère de centre et de rayon R est l ensemble de tous les points qui sont situés à la distance R du point. L intérieur de la sphère (l ensemble des points dont la distance

Plus en détail

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012 Cours d électricité Dipôles simples en régime alternatif Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année: 2011-2012 Plan du

Plus en détail

1.1 DIFFÉRENTS TYPES DE LIGNE

1.1 DIFFÉRENTS TYPES DE LIGNE sghhhf hhfhhj gbjgbj bsghh hfhh jgbjgbbs bbsghhhf ;y dpi CHAPITRE 1 LES DIVERSES LIGNES DANS UN CROQUIS Dans tous les dessins, le langage de base est la ligne. Que celle-ci soit droite, verticale, horizontale

Plus en détail

Chapitre 8 - Trigonométrie

Chapitre 8 - Trigonométrie Chapitre 8 - Trigonométrie A) Rappels et compléments ) Le cercle trigonométrique a) Définitions On appelle cercle trigonométrique le cercle de centre O et de rayon dans un repère orthonormal (O, I, J),

Plus en détail

III Univers / IV. Le Sport

III Univers / IV. Le Sport III Univers / IV. Le Sport Mouvements et forces Exercice n 1 : Dynamomètre Exercice n 2 : Une petite voiture dans un train Un enfant est assis dans un train qui circule sur une voie rectiligne et horizontale.

Plus en détail

CHAPITRE 07 MISE EN EVIDENCE DU CHAMP ELECTRIQUE

CHAPITRE 07 MISE EN EVIDENCE DU CHAMP ELECTRIQUE CHAPITRE 07 MISE EN EVIDENCE DU CHAMP EECTRIQUE I) Champ électrique A l'intérieur des armatures d'un condensateur plan, le champ est uniforme. Ses caractéristiques sont : A l'intérieur des armatures d'un

Plus en détail

TPE : travaux pratiques encadrés.

TPE : travaux pratiques encadrés. TPE : travaux pratiques encadrés. Problématique : Qu est- ce que le magnétisme? Comment l appliquer à la création d un verrou magnétique? Lucie Lalmand. Nathalie Lambin. Année 2006-2007. Elodie Devos.

Plus en détail

Chapitre 4.9 Le champ magnétique généré par un solénoïde

Chapitre 4.9 Le champ magnétique généré par un solénoïde Chapitre 4.9 e champ magnétique généré par un solénoïde Champ de deux boucles espacées Si l on courbe notre ligne de courant en cercle, on peut définir l orientation du champ magnétique à l aide de la

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section : i-prépa annuel -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section : i-prépa annuel - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section : i-prépa annuel - 61 Chapitre 7 : Chute d une bille dans un fluide I. Deux nouvelles forces : a) la Poussée d Archimède : Tout corps

Plus en détail

Concours Blanc N 1 Enoncé

Concours Blanc N 1 Enoncé Concours Blanc N 1 Enoncé Physique 20 QCM Durée de l épreuve : 60 min 20 pts Physique 1 QCM 1 Une bille, de masse m = 140 g, est accrochée à un fil inextensible de longueur l = 30 cm, de masse négligeable.

Plus en détail

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g. PHYSQ 130: Hooke 1 LOI DE HOOKE: CAS DU RESSORT 1 Introduction La loi de Hooke est fondamentale dans l étude du mouvement oscillatoire. Elle est utilisée, entre autres, dans les théories décrivant les

Plus en détail

1 Introduction. CIRCUITS RLC À COURANT ALTERNATIF

1 Introduction. CIRCUITS RLC À COURANT ALTERNATIF PHYSQ 126: Circuits RLC 1 CIRCUITS RLC À COURANT ALTERNATIF 1 Introduction. Le but de cette expérience est d introduire le concept de courant alternatif (en anglais, Alternating Current ou AC) et d étudier

Plus en détail

Rappels et compléments :

Rappels et compléments : CHAPITRE 6 MECANIQUE DES FLUIDES VISQUEUX Pr. M. ABD-LEFDIL Université Mohammed V- Agdal Département de Physique Année universitaire 05-06 SVI-STU Rappels et compléments : Un fluide est un milieu matériel

Plus en détail

Mouvement et vitesse . A A B

Mouvement et vitesse . A A B Chapitre 1 Mouvement et vitesse I/ Caractère relatif d'un mouvement Le mouvement d'un objet est décrit par rapport à un autre objet qui sert de référence ( le référentiel) exemple : assis dans une voiture

Plus en détail

Chapitre 5 : Condensateurs

Chapitre 5 : Condensateurs 2 e B et C 5 Condensateurs 37 Chapitre 5 : Condensateurs 1. Qu est-ce qu un condensateur? a) Expérience de mise en évidence 1. Un électroscope est chargé négativement au moyen d'un bâton d'ébonite frotté

Plus en détail

PREMIERE PARTIE : THEORIE

PREMIERE PARTIE : THEORIE Examen de Physique, juin 2014 BA1 EN INFORMATIQUE EXAMEN DE PHYSIQUE juin 2014 Nom : Prénom : PREMIERE PARTIE : THEORIE Question 1 (10 points) : a. [3] Quelles sont les propriétés qui doivent être fournies

Plus en détail

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites I- Les trois lois de Kepler : Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites Les lois de Kepler s'applique aussi bien pour une planète en mouvement

Plus en détail

5 Principes de Newton

5 Principes de Newton 5 Principes de Newton En 1687, Newton 3 énonce ses fameuses trois lois fondamentales de la mécanique concernant les mouvements des corps. 5.1 Première loi de Newton : le principe d inertie Dans la section

Plus en détail

G.P. DNS05 Octobre 2012

G.P. DNS05 Octobre 2012 DNS Sujet Impédance d'une ligne électrique...1 I.Préliminaires...1 II.Champ électromagnétique dans une ligne électrique à rubans...2 III.Modélisation par une ligne à constantes réparties...3 IV.Réalisation

Plus en détail

MOUVEMENTS ET FORCES

MOUVEMENTS ET FORCES 2 nd Cours sur les forces 1 MOUVEMENTS ET FORCES I - DESCRIPTION D'UN MOUVEMENT Pour étudier un mouvement, il faut commencer par préciser le système considéré, c'est-à-dire l'objet ou le point étudié.

Plus en détail

Cours MF101 Contrôle de connaissances: Corrigé

Cours MF101 Contrôle de connaissances: Corrigé Cours MF101 Contrôle de connaissances: Corrigé Exercice I Nous allons déterminer par analyse dimensionnelle la relation entre la Trainée D et les autres paramètres. F D, g,, V, ρ, ν) = 0 1) où D représente

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

SELECTION D'ACCES A LA FORMATION DE MASSEUR-KINÉSITHÉRAPEUTE

SELECTION D'ACCES A LA FORMATION DE MASSEUR-KINÉSITHÉRAPEUTE J. 12 1279 ASSISTANCE tàk HÔPITAUX PUBLI QllE DE PARIS CENTRE DE LA FORMATION ET DU DÉVELOPPEMENT DES COMPÉTENCES SERVICE CONCOURS ET FORMATION DIPLÔMANTE SELECTION D'ACCES A LA FORMATION DE MASSEUR-KINÉSITHÉRAPEUTE

Plus en détail

X X X. Verre. Remarque : Les interactions à distance peuvent être :

X X X. Verre. Remarque : Les interactions à distance peuvent être : Physique : 2 nde Chapitre.7 : Forces et mouvements I. Modèles et interactions 1. Interactions entre deux objets : L énoncé suivant s applique à des objets au repos ou en mouvement. Quand un objet agit

Plus en détail

Chapitre 3 : Plan du chapitre. 2. Tensions simples et tension composées 3. Couplage étoile/triangle 4. Mesure de puissance en triphasé 5.

Chapitre 3 : Plan du chapitre. 2. Tensions simples et tension composées 3. Couplage étoile/triangle 4. Mesure de puissance en triphasé 5. Chapitre 3 : Réseau triphasé Plan du chapitre 1. Présentation 2. Tensions simples et tension composées 3. Couplage étoile/triangle i l 4. Mesure de puissance en triphasé 5. Résumé Plan du chapitre 1. Présentation

Plus en détail

N' = 1440 tr/min ; P 1 = 4500W ; P 2 = 2000 W

N' = 1440 tr/min ; P 1 = 4500W ; P 2 = 2000 W MOTEUR ASYNCHRONE 1) Un moteur asynchrone triphasé à rotor bobiné et à bagues est alimenté par un réseau triphasé 50 Hz dont la tension entre phases est U = 380 V. Les enroulements du stator et du rotor

Plus en détail

Cours de mécanique M14-travail-énergies

Cours de mécanique M14-travail-énergies Cours de mécanique M14-travail-énergies 1 Introduction L objectif de ce chapitre est de présenter les outils énergétiques utilisés en mécanique pour résoudre des problèmes. En effet, parfois le principe

Plus en détail

CH I Les actions mécaniques.

CH I Les actions mécaniques. I) Les actions mécaniques et les forces : CH I Les actions mécaniques. Pour déplacer un bloc de bois posé sur une table, nous devons fournir un effort physique en tirant ou en poussant. Nous réalisons

Plus en détail

Les interactions électromagnétiques

Les interactions électromagnétiques Les interactions électromagnétiques Activité 1 Le champ magnétique La force électromagnétique 1. Le champ magnétique Document 1 : Champ magnétique d un aimant droit Document 2 : champ magnétique d un aimant

Plus en détail