Apprentissage du filtre de Kalman couple avec application à la poursuite de l iris
|
|
|
- Heloïse Bouffard
- il y a 10 ans
- Total affichages :
Transcription
1 Apprentissage du filtre de Kalman couple avec application à la poursuite de l iris Valérian Némesin, Stéphane Derrode, Institut Fresnel (UMR 7249) Ecole Centrale Marseille,
2 Vidéo de l oeil 2
3 Sommaire 1. Détection de la pupille 2. Sélection des images 1. Pupil detection 5./6. Poursuite 3. Segmentation de l iris 4. Fusion des iris-codes 5. Poursuite (Kalman) 6. Apprentissage des paramètres 2. Image selection 3. Iris segmentation 4. Iris code computation and fusion 3
4 1. Détection de la pupille 1. Pupil detection 5/6. Kalman tracking 2. Image selection A. Seuillage de l histogramme B. Sélection des candidats 3. Iris segmentation 4. Iris code computation and fusion Original frame and ROI Segmented pupil 4
5 2. Sélection des images Filtrage passe-haut (noyau de Park [1]): 1. Pupil detection 2. Image selection 5./6. Kalman tracking 3. Iris segmentation 4. Iris code computation and fusion Score de focus: Image de faible qualité (rejetée) Image de bonne qualité [1] B.J. Kang and K.R. Park, Lecture Notes in Computer Science 3546, pp ,
6 3. Segmentation de l iris 1. Pupil detection 5./6. Kalman tracking A. Opérateur de Daugman's B. Détecteur de paupières 2. Image selection 3. Iris segmentation 4. Iris code computation and fusion Original image Segmented iris 6
7 3. Segmentation de l iris 1. Pupil detection 5./6. Kalman tracking A. Opérateur intégro-différentiel de J. Daugman [2] 2. Image selection 3. Iris segmentation 4. Iris code computation and fusion Détection de l iris selon l opérateur de Daugman [2] J. Daugman, IEEE Trans. on Circuits and Systems for Video Technology,
8 3. Segmentation de l iris 1. Pupil detection 5./6. Kalman tracking B. Détecteur de paupières - Algorithme développé dans [3] utilisé comme détecteur de paupières 2. Image selection 3. Iris segmentation 4. Iris code computation and fusion [3] Haddouche, A., et al: Detection of the foveal avascular zone on retinal angiograms using Markov random fields. Digital Signal Processing 20, (2010) 8
9 4. Fusion des iris-codes 1. Pupil detection 5./6. Kalman tracking 2. Image selection 3. Iris segmentation 4. Iris code computation and fusion 9
10 4. Fusion des iris-codes 1. Pupil detection 5./6. Kalman tracking 2. Image selection 3. Iris segmentation 4. Iris code computation and fusion 10
11 5. Poursuite (Kalman) Filtre de «Kalman couple» [3] avec Paramètres: [4] W. Pieczynski and F. Desbouvries, ICASSP 03, Apr
12 5. Poursuite (Kalman) Les équations du filtre Constantes Prédiction 12
13 5. Poursuite (Kalman) Filtrage Lissage 13
14 5. Poursuite (Kalman) Pb numériques important concernant l estimation des matrices de covariance (P). -> Propriété : P = S T S avec S matrice triangulaire supérieure. S peut être calculée efficacement avec un algorithme QR. ->Idée : Calculer les racines des matrices de covariance et non les matrices elles-mêmes. Pour cela, on va étendre la technique développée dans [5] pour le filtre de Kalman au cas du filtre de Kalman couple. [5] P. Kaminski, A. Bryson, and S. Schmidt, IEEE Trans. Autom. Control, Dec
15 5. Poursuite (Kalman) Exemple pour le filtrage filtrage Racines carrées «triviales» prédiction Les deux matrices sont liées par une matrice orthogonale Q*. La décomposition QR de donne. Nous obtenons et. On répète la même stratégie pour toutes les autres matrices définies positives : 15
16 6. Estimation des paramètres Algorithme EM [4] Requiert filtrage et lissage à chaque itération avec Mise en œuvre d algorithmes robustes pour l estimation de Q et F, à chaque itération i. [4] B. Ait-el-Fquih and F. Desbouvries, ICASSP 06, May
17 6. Estimation des paramètres Evolution de la plus petite valeur propre de Q en fonction des itérations. 17
18 Résultats de poursuite 18
19 Conclusion Conclusion Construction d un iris-code à partir d un flux vidéo par sélection des iris de «meilleure qualité» dans le flux vidéo. Poursuite réalisée par un filtre de Kalman dont les paramètres sont appris automatiquement Réduit le nombre de trames perdues Réduit les temps de calcul (~30%) 19
20 Travaux en cours 1/2 Travaux en cours «Temps réel» : 20 trames par seconde 20
21 Travaux en cours 2/2 Travaux en cours Evaluation systématique (MBGC) 137 individus soit 274 classes d'iris 8589 images 986 vidéos 21
Utilisation d informations visuelles dynamiques en asservissement visuel Armel Crétual IRISA, projet TEMIS puis VISTA L asservissement visuel géométrique Principe : Réalisation d une tâche robotique par
MCMC et approximations en champ moyen pour les modèles de Markov
MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:
Géométrie discrète Chapitre V
Géométrie discrète Chapitre V Introduction au traitement d'images Géométrie euclidienne : espace continu Géométrie discrète (GD) : espace discrétisé notamment en grille de pixels GD définition des objets
Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12
Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12 2 Discrimination Invariance Expressions faciales Age Pose Eclairage 11/12/2012 3 Personne Inconnue Identité
Traitement bas-niveau
Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.
Mesure agnostique de la qualité des images.
Mesure agnostique de la qualité des images. Application en biométrie Christophe Charrier Université de Caen Basse-Normandie GREYC, UMR CNRS 6072 Caen, France 8 avril, 2013 C. Charrier NR-IQA 1 / 34 Sommaire
Vérification audiovisuelle de l identité
Vérification audiovisuelle de l identité Rémi Landais, Hervé Bredin, Leila Zouari, et Gérard Chollet École Nationale Supérieure des Télécommunications, Département Traitement du Signal et des Images, Laboratoire
Livrable 2.1 Rapport d analyse et de restructuration de code monothread des modules P, T, Q et F de l encodage MPEG-4 AVC
Groupe des Ecoles des Télécommunications Institut National des Télécommunications Département ARTEMIS Advanced Research & TEchniques for Multidimensional Imaging Systems Livrable 2.1 Rapport d analyse
Détection des points d intérêt et Segmentation des images RGB-D. Présentée par : Bilal Tawbe. Semaine de la recherche de l UQO
Détection des points d intérêt et Segmentation des images RGB-D Présentée par : Bilal Tawbe Semaine de la recherche de l UQO 25 Mars 2015 1. Introduction Les méthodes de détection de points d intérêt ont
STATISTIQUES. UE Modélisation pour la biologie
STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres
Filtrage stochastique non linéaire par la théorie de représentation des martingales
Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de
Technique de compression des images médicales 4D
Technique de compression des images médicales 4D Leila Belhadef 1 et Zoulikha Mekkakia 1 1 Département d Informatique, USTO-MB, BP 1505 El Mnaouer, Oran, Algérie [email protected], [email protected]
INF6304 Interfaces Intelligentes
INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie
Développements algorithmiques au LIAMA et àamap en vue de l'analyse d'une scène forestière
Développements algorithmiques au LIAMA et àamap en vue de l'analyse d'une scène forestière Principaux contributeurs: Zhang Xiaopeng (CASIA-NLPR-LIAMA Coordinateur Groupe Image) Li HongJun (CASIA-NLPR-LIAMA
Modélisation du comportement habituel de la personne en smarthome
Modélisation du comportement habituel de la personne en smarthome Arnaud Paris, Selma Arbaoui, Nathalie Cislo, Adnen El-Amraoui, Nacim Ramdani Université d Orléans, INSA-CVL, Laboratoire PRISME 26 mai
Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients
Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients Frédérick Vautrain, Dir. Data Science - Viseo Laurent Lefranc, Resp. Data Science Analytics - Altares
Echantillonnage Non uniforme
Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas
Modélisation de la Reconfiguration Dynamique appliquée à un décodeur LDPC Non Binaire
Modélisation de la Reconfiguration Dynamique appliquée à un décodeur LDPC Non Binaire LAURA CONDE-CANENCIA 1, JEAN-CHRISTOPHE.PREVOTET 2, YASET OLIVA 2, YVAN EUSTACHE 1 1 Université Européenne de Bretagne
Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57
Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
Apprentissage Automatique
Apprentissage Automatique Introduction-I [email protected] www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs
Laboratoire 4 Développement d un système intelligent
DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG770 - SYSTÈMES INTELLIGENTS ÉTÉ 2012 Laboratoire 4 Développement d un système intelligent 1 Introduction Ce quatrième et dernier laboratoire porte sur le développement
TRAVAUX DE RECHERCHE DANS LE
TRAVAUX DE RECHERCHE DANS LE DOMAINE DE L'EXPLOITATION DES DONNÉES ET DES DOCUMENTS 1 Journée technologique " Solutions de maintenance prévisionnelle adaptées à la production Josiane Mothe, FREMIT, IRIT
Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier
Détection et reconnaissance des sons pour la surveillance médicale Dan Istrate le 16 décembre 2003 Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Thèse mené dans le cadre d une collaboration
Projet de Traitement du Signal Segmentation d images SAR
Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,
Le Data Mining au service du Scoring ou notation statistique des emprunteurs!
France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative
Probabilités stationnaires d une chaîne de Markov sur TI-nspire Louis Parent, ing., MBA École de technologie supérieure, Montréal, Québec 1
Introduction Probabilités stationnaires d une chaîne de Markov sur TI-nspire Louis Parent, ing., MBA École de technologie supérieure, Montréal, Québec 1 L auteur remercie Mme Sylvie Gervais, Ph.D., maître
7 ingrédients pour personnaliser l expérience client et booster votre chiffre d affaires en seulement 5 semaines
7 ingrédients pour personnaliser l expérience client et booster votre chiffre d affaires en seulement 5 semaines 24 S e p t e m b r e 2014 @Emarsys_France #ECP14 23 > 25 SEPTEMBRE 2014 I PARIS I PORTE
Conception systematique d'algorithmes de detection de pannes dans les systemes dynamiques Michele Basseville, Irisa/Cnrs, Campus de Beaulieu, 35042 Rennes Cedex, bassevilleirisa.fr. 1 Publications. Exemples
VIPE CNAM 6 mars 2015. Frank Meyer Orange Labs / IMT / UCE / CRM-DA / PROF
CNAM 6 mars 205 Frank Meyer Orange Labs / IMT / UCE / CRM-DA / PROF 2 UCE / CRM-DA / PROF Application prototype pour l apprentissage multi-label interactif 2 sous-applications en ligne (utilisable par
Amélioration de la fiabilité d inspection en CND grâce à la fusion d information : applications en rayons X et ultrasons
Amélioration de la fiabilité d inspection en CND grâce à la fusion d information : applications en rayons X et ultrasons Ahmad OSMAN 1a, Valérie KAFTANDJIAN b, Ulf HASSLER a a Fraunhofer Development Center
BeSpoon et l homme Connecté
BeSpoon et l homme Connecté Paris 25 et 26 Mars BeSpoon est une société «Fabless» qui a développé en collaboration avec le CEA-Leti un composant IR-UWB (Impulse Radio Ultra Wide Band) dédié à la localisation
Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007
Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................
MASTER D INFORMATIQUE
INSTITUT DE LA FRANCOPHONIE POUR L INFORMATIQUE INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE MEMOIRE DE FIN D ETUDES MASTER D INFORMATIQUE REPARATION DES TRAJECTOIRES DE PERSONNES SUIVIES
Interception des signaux issus de communications MIMO
Interception des signaux issus de communications MIMO par Vincent Choqueuse Laboratoire E 3 I 2, EA 3876, ENSIETA Laboratoire LabSTICC, UMR CNRS 3192, UBO 26 novembre 2008 Interception des signaux issus
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP
Master IMA - UMPC Paris 6 RDMM - Année 2009-200 Fiche de TP Préliminaires. Récupérez l archive du logiciel de TP à partir du lien suivant : http://www.ensta.fr/~manzaner/cours/ima/tp2009.tar 2. Développez
PRESS RELEASE. La première Demand Side Platform française est une DSP mobile netadge, la performance RTB, au service des stratégies media mobile
PRESS RELEASE La première Demand Side Platform française est une DSP mobile netadge, la performance RTB, au service des stratégies media mobile www.netadge.com Janvier 2014 S ommaire LDMServices lance
ISO/CEI 11172-3 NORME INTERNATIONALE
NORME INTERNATIONALE ISO/CEI 11172-3 Première édition 1993-08-01 Technologies de l information - Codage de l image animée et du son associé pour les supports de stockage numérique jusqu à environ Ii5 Mbit/s
L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :
La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.
10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010
10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 Le compressed sensing pour l holographie acoustique de champ proche II: Mise en œuvre expérimentale. Antoine Peillot 1, Gilles Chardon 2, François
We make your. Data Smart. Data Smart
We make your We make your Data Smart Data Smart Une société Une société du du groupe Le groupe NP6 SPECIALISTE LEADER SECTEURS EFFECTIFS SaaS Marketing : 50% Data intelligence : 50% 15 sociétés du CAC
Sujet de thèse : Suivi d objets en mouvement dans une séquence vidéo
Université PARIS DESCARTES Centre universitaire des Saints-Pères UFR DE MATHÉMATIQUES ET INFORMATIQUE Thèse présentée pour l obtention du grade de Docteur de l université PARIS DESCARTES Spécialité : Informatique
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
SEO Campus 2009 : Pagerank et optimisation
SEO Campus 2009 : Pagerank et optimisation Sylvain Peyronnet http://sylvain.berbiqui.org http://www.kriblogs.com/syp 04/02/2009 04/02/2009 SEO Campus 2009 : Pagerank et optimisation 1 / 21 PageRank : la
Fiabilisation des bases de données BtoB : Un enjeu majeur
0 Fiabilisation des bases de données BtoB : Un enjeu majeur 1 L entreprise IMS HEALTH GROUP Société fondée en 1954 Opère dans plus de 100 pays 15 000 collaborateurs 3,3 milliards de dollars de CA Plus
Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans
Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans [email protected] Plan 1. Un peu de
1 Avant-Propos 5 Remerciements. 9 Usages, contraintes et opportunités du mobile. 33 Site ou application : quelle solution choisir? Table des matières
IX Table des matières 1 Avant-Propos 5 Remerciements Partie 1 7 Stratégie et conception des sites et applications mobiles Chapitre 1 9 Usages, contraintes et opportunités du mobile 11 Les usages spécifiques
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Laboratoire d Automatique et Productique Université de Batna, Algérie
Anale. Seria Informatică. Vol. IX fasc. 2 Annals. Computer Science Series. 9 th Tome st Fasc. 2 La sélection de paramètres d un système industriel par les colonies de fourmis Ouahab Kadri, L. Hayet Mouss,
R-ICP : une nouvelle approche d appariement 3D orientée régions pour la reconnaissance faciale
R-ICP : une nouvelle approche d appariement 3D orientée régions pour la reconnaissance faciale Boulbaba BEN AMOR, Karima OUJI, Mohsen ARDABILIAN, et Liming CHEN Laboratoire d InfoRmatique en Images et
MASTER de sciences et technologies, Mention MATHÉMATIQUES ET APPLICATIONS Université Pierre et Marie Curie (Paris VI) Année 2012-2013
MASTER de sciences et technologies, Mention MATHÉMATIQUES ET APPLICATIONS Université Pierre et Marie Curie (Paris VI) Année 2012-2013 [version du 29 juin 2012] 2 Table des matières 1 Master 2, Spécialité
Proposition d un model hiérarchique et coopératif agent pour la segmentation d image
Proposition d un model hiérarchique et coopératif agent pour la segmentation d image Mansouri Ziad 1, Hayet Farida Merouani 1, 1 Département d informatique Laboratoire LRI/Equipe SRF Université Badji Mokhtar
Cours 9 : Plans à plusieurs facteurs
Cours 9 : Plans à plusieurs facteurs Table des matières Section 1. Diviser pour regner, rassembler pour saisir... 3 Section 2. Définitions et notations... 3 2.1. Définitions... 3 2.2. Notations... 4 Section
Ne cherchez plus, soyez informés! Robert van Kommer
Ne cherchez plus, soyez informés! Robert van Kommer Le sommaire La présentation du contexte applicatif Le mariage: Big Data et apprentissage automatique Dialogues - interactions - apprentissages 2 Le contexte
PROGRAMME DETAILLE. Parcours en première année en apprentissage. Travail personnel. 4 24 12 24 CC + ET réseaux
PROGRAMME DETAILLE du Master IRS Parcours en première année en apprentissage Unités d Enseignement (UE) 1 er semestre ECTS Charge de travail de l'étudiant Travail personnel Modalités de contrôle des connaissances
Comment rendre un site d e-commerce intelligent
Comment rendre un site d e-commerce intelligent Alexei Kounine CEO +33 (0) 6 03 09 35 14 [email protected] Christopher Burger CTO +49 (0) 177 179 16 99 [email protected] L embarras du choix Donner envie
Techniques d interaction dans la visualisation de l information Séminaire DIVA
Techniques d interaction dans la visualisation de l information Séminaire DIVA Zingg Luca, [email protected] 13 février 2007 Résumé Le but de cet article est d avoir une vision globale des techniques
Stage : "Développer les compétences de la 5ème à la Terminale"
Stage : "Développer les compétences de la 5ème à la Terminale" Session 2014-2015 Documents produits pendant le stage, les 06 et 07 novembre 2014 à FLERS Adapté par Christian AYMA et Vanessa YEQUEL d après
Université Paul Cézanne d Aix-Marseille III Faculté des Sciences et Techniques de Saint Jérôme HABILITATION À DIRIGER DES RECHERCHES
Université Paul Cézanne d Aix-Marseille III Faculté des Sciences et Techniques de Saint Jérôme HABILITATION À DIRIGER DES RECHERCHES présentée et soutenue publiquement par Stéphane DERRODE le 29 avril
Présentation du sujet de thèse Schémas temporels hybrides fondés sur les SVMs pour l analyse du comportement du conducteur
Présentation du sujet de thèse Schémas temporels hybrides fondés sur les SVMs pour l analyse du comportement du conducteur Réalisé par : Bassem Besbes Laboratoire d Informatique, Traitement de l Information
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Réseau Global MIDI Note applicative
Réseau Global MIDI Note applicative 1 But du manuel Le but de cette note applicative est de démystifié l utilisation du MIDI transporté dans un Réseau Global MIDI. Ce réseau virtuel offre sans aucune restriction,
Personnalisation: Pour bien démarrer Créer une expérience digitale unique pour chaque visiteur. Par John Carione, Acquia
Personnalisation: Pour bien démarrer Créer une expérience digitale unique pour chaque visiteur Par John Carione, Acquia Personnalisation: Pour bien démarrer Créer une expérience digitale unique pour chaque
Introduction au maillage pour le calcul scientifique
Introduction au maillage pour le calcul scientifique CEA DAM Île-de-France, Bruyères-le-Châtel [email protected] Présentation adaptée du tutorial de Steve Owen, Sandia National Laboratories, Albuquerque,
Introduction au datamining
Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des
APPLICATION DE RESEAUX DE NEURONES ARTIFICIELS A LA RECONNAISSANCE AUTOMATIQUE DE CARACTERES MANUSCRITS
Faculté Polytechnique de Mons Dissertation originale présentée pour l obtention du grade de Docteur en Sciences Appliquées par Bernard GOSSELIN APPLICATION DE RESEAUX DE NEURONES ARTIFICIELS A LA RECONNAISSANCE
Business Intelligence
avec Excel, Power BI et Office 365 Téléchargement www.editions-eni.fr.fr Jean-Pierre GIRARDOT Table des matières 1 Avant-propos A. À qui s adresse ce livre?..................................................
Objectif et contexte business : piliers du traitement efficace des données -l exemple de RANK- Khalid MEHL Jean-François WASSONG 10 mars 2015
Objectif et contexte business : piliers du traitement efficace des données -l exemple de RANK- Khalid MEHL Jean-François WASSONG 10 mars 2015 1. fifty-five : présentation 2. Objectifs de Rank 3. Une approche
Une vue d ensemble de la reconnaissance de gestes
Une vue d ensemble de la reconnaissance de gestes Julien Thomet Département d informatique Université de Fribourg [email protected] Résumé Le désir de pouvoir interagir avec un ordinateur de manière
Décision Markovienne appliquée à un jeu de stop ou encore : Pickomino (Heckmeck Am Bratwurmeck)
Décision Markovienne appliquée à un jeu de stop ou encore : Pickomino (Heckmeck Am Bratwurmeck) Stéphane Cardon Nathalie Chetcuti-Sperandio Fabien Delorme Sylvain agrue CRI - Université d Artois {cardon,chetcuti,delorme,lagrue}@cril.univ-artois.fr
CarrotAge, un logiciel pour la fouille de données agricoles
CarrotAge, un logiciel pour la fouille de données agricoles F. Le Ber (engees & loria) J.-F. Mari (loria) M. Benoît, C. Mignolet et C. Schott (inra sad) Conférence STIC et Environnement, Rouen, 19-20 juin
INTRODUCTION AU DATA MINING
INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET TP DE DATA MINING Le TP et le projet consisteront à mettre
Codage hiérarchique et multirésolution (JPEG 2000) Codage Vidéo. Représentation de la couleur. Codage canal et codes correcteurs d erreur
Codage hiérarchique et multirésolution (JPEG 000) Codage Vidéo Représentation de la couleur Codage canal et codes correcteurs d erreur Format vectoriel (SVG - Scalable Vector Graphics) Organisation de
I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...
TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................
Joueur B Pierre Feuille Ciseaux Pierre (0,0) (-1,1) (1,-1) Feuille (1,-1) (0,0) (-1,1) Ciseaux (-1,1) (1,-1) (0.0)
CORRECTION D EXAMEN CONTROLE CONTINU n 1 Question de cours Question 1 : Les équilibres de Cournot et de Stackelberg sont des équilibres de situation de duopole sur un marché non coopératif d un bien homogène.
TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie
PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux [email protected] www.pressesagro.be
Laboratoire d informatique Gaspard-Monge UMR 8049. Journée Labex Bézout- ANSES
Laboratoire d informatique Gaspard-Monge UMR 8049 Journée Labex Bézout- ANSES Présentation du laboratoire 150 membres, 71 chercheurs et enseignants-chercheurs, 60 doctorants 4 tutelles : CNRS, École des
Accélérer l agilité de votre site de e-commerce. Cas client
Accélérer l agilité de votre site de e-commerce Cas client L agilité «outillée» devient nécessaire au delà d un certain facteur de complexité (clients x produits) Elevé Nombre de produits vendus Faible
La gestion de données dans le cadre d une application de recherche d alignement de séquence : BLAST.
La gestion de données dans le cadre d une application de recherche d alignement de séquence : BLAST. Gaël Le Mahec - p. 1/12 L algorithme BLAST. Basic Local Alignment Search Tool est un algorithme de recherche
Figure 3.1- Lancement du Gambit
3.1. Introduction Le logiciel Gambit est un mailleur 2D/3D; pré-processeur qui permet de mailler des domaines de géométrie d un problème de CFD (Computational Fluid Dynamics).Il génère des fichiers*.msh
Manipulateurs Pleinement Parallèles
Séparation des Solutions aux Modèles Géométriques Direct et Inverse pour les Manipulateurs Pleinement Parallèles Chablat Damien, Wenger Philippe Institut de Recherche en Communications et Cybernétique
LES DONNÉES CLIENTS APPLIQUÉES À LA MOBILITÉ : ENJEUX, ÉVOLUTIONS ET ACTIONS
LES DONNÉES CLIENTS APPLIQUÉES À LA MOBILITÉ : ENJEUX, ÉVOLUTIONS ET ACTIONS BIG DATA, DIRTY DATA, MULTI DATA : DE LA THÉORIE À LA PRATIQUE : ARTÉMIS Paris le 4 avril 2013 EFFIA Synergies 20 Bd Poniatowski
Big Graph Data Forum Teratec 2013
Big Graph Data Forum Teratec 2013 MFG Labs 35 rue de Châteaudun 75009 Paris, France www.mfglabs.com twitter: @mfg_labs Julien Laugel MFG Labs [email protected] @roolio SOMMAIRE MFG Labs Contexte
Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction
Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses
Prédiction et Big data
Prédiction et Big data Mitra Fouladirad Institut Charles Delaunay - UMR CNRS 6281 Université de Technologie de Troyes 29 avril 2015 1 1 Sujet Motivation Le pronostic ou la prédiction du comportement futur
Analyse d images. [email protected]. Edmond Boyer UFRIMA 1
Analyse d images [email protected] Edmond Boyer UFRIMA 1 1 Généralités Analyse d images (Image Analysis) : utiliser un ordinateur pour interpréter le monde extérieur au travers d images. Images Objets
Introduction au Data-Mining
Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane
Projet Matlab/Octave : segmentation d'un ballon de couleur dans une image couleur et insertion d'un logo
Projet Matlab/Octave : segmentation d'un ballon de couleur dans une image couleur et insertion d'un logo Dans ce projet, nous allons réaliser le code qui permet d'insérer sur une image, un logo sur un
La Performance Digitale en Business to Business
La Performance Digitale en Business to Business En quoi la performance digitale B2B et son optimisation, est-elle différente d une stratégie digitale B2C? Florent Bourc his - Marketing Stratégique - 2015
DESCRIPTION DES PRODUITS ET MÉTRIQUES
DESCRIPTION DES PRODUITS ET MÉTRIQUES DPM Adobe - Adobe Analytics (2015v1) Les Produits et Services décrits dans cette DPM sont soit des Services On-demand soit des Services Gérés (comme décrits ci-dessous)
La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM
La segmentation à l aide de EG-SAS A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM Définition de la segmentation - Au lieu de considérer une population dans son ensemble,
Optimisation, traitement d image et éclipse de Soleil
Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement
LIVRE BLANC AMÉLIOREZ VOS PERFORMANCES MARKETING ET COMMERCIALES GRÂCE À UNE GESTION DE LEADS OPTIMISÉE
AMÉLIOREZ VOS PERFORMANCES MARKETING ET COMMERCIALES GRÂCE À UNE GESTION DE LEADS OPTIMISÉE 2 A PROPOS Pourquoi la gestion des leads (lead management) est-elle devenue si importante de nos jours pour les
Maintenance du cooling SUX1. Maintenance preventive Maintenance corrective Nouveau circuit SDX1 Nouveau systeme controle PVSS
Maintenance du cooling SUX1 Maintenance preventive Maintenance corrective Nouveau circuit SDX1 Nouveau systeme controle PVSS Maintenance SF1 Maintenance SF1 effectuée en 8 semaines sans coactivité 4 semaines
1 Modélisation d être mauvais payeur
1 Modélisation d être mauvais payeur 1.1 Description Cet exercice est très largement inspiré d un document que M. Grégoire de Lassence de la société SAS m a transmis. Il est intitulé Guide de démarrage
Atelier Sécurité / OSSIR
Atelier Sécurité / OSSIR Présentation Produits eeye SecureIIS Retina [email protected] & [email protected] Sommaire Page 2 Qui sommes nous? SecureIIS Protection Web Retina Scanner de Sécurité Questions
Cours d analyse numérique SMI-S4
ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,
Université de Picardie - Jules Verne UFR d'economie et de Gestion
Université de Picardie - Jules Verne UFR d'economie et de Gestion 23/09/2014 Excel 2003 - Tableau Croisé Dynamique L information mise à disposition de l utilisateur est fréquemment une information de détail
Notice d Utilisation du logiciel Finite Element Method Magnetics version 3.4 auteur: David Meeker
Notice d Utilisation du logiciel Finite Element Method Magnetics version 3.4 auteur: David Meeker DeCarvalho Adelino [email protected] septembre 2005 Table des matières 1 Introduction
