Lot Quality Assurance Sampling. Elise Naoufal EVARISQ 15 septembre 2011
|
|
|
- Théophile Adrien Labrie
- il y a 10 ans
- Total affichages :
Transcription
1 Lot Quality Assurance Sampling LQAS Elise Naoufal EVARISQ 15 septembre
2 LQAS Une question d efficacité? LQAS et santé Méthode et Fondements théoriques Détermination du couple (n,d n,d) Conclusion 2
3 Une question d efficacité? 3
4 - Au commencement, était un industriel moyennement fortuné soucieux de son image - Production: de ronds parfaits - Mais: tous les ronds n étaient pas parfaits: une identification rapide de ces ronds s imposait (afin qu ils puissent être retirés de la vente) - Comment? Création d un nouveau poste de contrôle qualité de chaque rond produit. Vérification scrupuleuse tous les soirs, par l industriel lui-même, de chaque rond produit dans la journée. Ou Qualité de l ensemble des ronds produits dans la journée jugée par l évaluation d un échantillon tiré au sort. 4
5 5
6 LQAS et santé 6
7 Au commencement Industrie: naissance du concept dans les années 1920 Contrôle qualité Moindre coût Rapide Objectif: détecter les éléments qui risquent de ne pas répondre à des critères d acceptabilité 7
8 Ensuite Santé: un intérêt grandissant depuis les années : publication OMS de plusieurs rapports/recommandations utilisation méthode LQAS Depuis: Nb de manuels en augmentation Entre 1984 et 2004: 805 études ayant recours au LQAS : 10/an : 128/an 8
9 LQAS Santé 9
10 LQAS Santé 10
11 LQAS Santé 11
12 LQAS Santé 12
13 LQAS Santé 13
14 LQASSanté: un exemple - Je suis responsable d une campagne de vaccination contre la rougeole (Moyens limités) - Je suis chargée d organiser la vaccination des territoires géographiques où la Couverture vaccinale (CV) est plus faible que celle recommandée par l OMS - Problème: identifier les populations à faible CV - Solution: LQAS 14
15 Démarche générale Cibler une intervention sur une population prioritaire Population totale: Prévalence «vraie» Temps, argent Echantillon: Estimation: risque d erreur Gain de temps et d argent Choix de l échantillon: étape délicate 15
16 LQAS: une problématique différente Positionner un paramètre par rapport à une référence Ex: situer P par rapport à une prévalence jugée intéressante P0 Estimer le paramètre avec une certaine précision. Ex: estimer la valeur de P assortie d un intervalle de confiance, par une méthode de sondage classique 16
17 Méthode et Fondements théoriques 17
18 La méthode LQAS Méthode d évaluation de la qualité Permet principalement de déterminer rapidement et à moindre coût dans une population définie, des groupes d éléments ou de sujets risquant de ne pas répondre à des critères d acceptabilité. 18
19 Lot : N Echantillon aléatoire: n - Règle de décision: détermination d un seuil à (d*+ 1) éltsdéfectueux: Rejet du lot Classement: -Critères de établis a priori -Classement 1 à 1 des éléments de n: Défectueux/acceptable - Détermination d un risque d erreur 19
20 Définitions N: taille du lot n: taille de l échantillon d*+1: nombre d éléments défectueux qui permet de rejeter le lot. P₀= seuil élevé:proportion-seuil d éléments défectueux au-delà de laquelle il faut intervenir Lot défectueux P a = seuil bas:proportion-seuil d éléments défectueux en dessous de laquelle on n intervient pas /proportion maximale d éléments défectueux que l enquêteur accepte pour juger un lot de bonne qualité. (Pa < P0) Lot acceptable α: risque de conclure à tort que le lot n est pas défectueux β: risque de conclure à tort que le lot est défectueux 1 β: puissance 20
21 Hypothèses La méthode LQAS basée sur la réalisation d un test avec: Hypothèse nulle: H 0 : lot inacceptable (intervention nécessaire) P déf P 0 Hypothèse alternative: H a : lot acceptable (pas d intervention) P déf < P 0 Test unilatéral Même sens +++: H 0 =lot inacceptable - Risque santé: risque α - αfixé par le décideur: contrôle 21
22 αet β α : Risque de 1 ère espèce: risque de rejeter à tort H 0 alors que H 0 est vraie Risque de conclure à tort que le lot n est pas défectueux Risque pour les patients/consommateurs Le choix d une valeur faible de α implique une forte sélection et un risque élevé de refus à tort des bons lots. β: Risque de 2ème espèce: risque de ne pas rejeter à tort H 0 alors que H 0 est faux Risque de conclure à tort que le lot est défectueux Risque pour le fournisseur/industriel Risque de refuser des lots qui satisfont au critère qualité (c.à.d. des lots ayant une proportion d éléments défectueux inférieure à P a ) 22
23 Conséquences liées aux conclusions du test Population réelle Décision H 0 : P P 0 H a : P < P 0 Lot inacceptable Lot acceptable Lot jugé inacceptable 1- α Test sensible aux mauvais lots (sensibilité) β Mauvaise décision: risque pour le «fournisseur» ou l industriel Lot jugé acceptable α Mauvaisedécision: risque pour le consommateur ou la communauté 1-β Test reconnaissant les lots convenables (spécificité) 23
24 Conséquences liées aux conclusions du test 24
25 Synthèse: OCC 25
26 Synthèse: courbes OCC 26
27 Synthèse: courbes OCC 27
28 Synthèse: courbes OCC 28
29 Synthèse: courbes OCC 29
30 Fondements théoriques La distribution de d* suit une loi hypergéométrique (tirage sans remise) Probabilité de tirer déléments défectueux dans un échantillon de taille ntiré aléatoirement d un lot de taille Ncontenant une proportion P d éléments défectueux Espérance= np 0 Variance= np 0 (1-P 0 )((N-n)/(N-1)) 30
31 Fondements théoriques approximations possibles de la loi hypergéométrique Loi hypergéométrique Espérance= np et Variance= np(1-p)((n-n/n-1)) Approximation Loi binomiale Loi normale Conditions N>>>n N >>>> Taux de sondage < 10% 0.1< P< 0.9 np> 10 N(1-P) > 10 Paramètres Espérance= np Variance= np(1-p) Espérance= np Variance= np(1-p)((n-n/n-1)) 31
32 Détermination du couple (n, d*) En pratique 32
33 La détermination du couple (n,d*) Dépend: du risque (α et β) pris par le décideur Doit répondre à une condition:probabilité d avoir d* éléments défectueux dans n doit être inférieure à α. 33
34 3 types de scénarios possibles avec (P a, β) sans (P a, β) P 0 P 0 P 0 α α α P a N N β d* n n et d* n d* (cas classique) 34
35 1 er scénario, cas classique: Ex: Comparaison d une proportion observée à une valeur théorique Détermination de (n,d*) en fonction de: P a, β, P 0, α Loi hypergéométrique Ou, si conditions de convergence vers la loi normale satisfaites: 1 35
36 1 er scénario: exemple IQSS 2010 Résultats de l enquête IQSS 2010: - P traçabilité douleur = N=600 En posant: - α=0.05 et β=0.2 - P 0 =0.5 - P a =0.3 n=6 et d*=1 36
37 2ème scénario: d* et N fixés Quand le prix d une erreur de type II est considéré comme négligeable. Détermination de n à partir de N, d*, P 0, α. Calcul Tables Ex: N= , d*=4, P 0= 0.2, α=
38 3 ème scénario: n et N fixés Etude multicentrique, ressources limitées Détermination de (n,d*) en fonction de: N, P 0, α, n Calcul de la fonction de répartition de la loi hypergéométrique (N, n, P0) Ex: N=150, P0=0.5, α=0.05 n=10 38
39 LQAS 1 ou 2 degrés LQAS 1 degré: 1 échantillon LQAS2 degrés: Echantillonnage double: (diminution des coûts) Détermination de 2 valeurs critiques d 1 d 2 2 tailles d échantillon n 1 et n 2 étapes: Analyse de l échantillon n 1 : si d* d 1 ou d* > d 2 (résultats extrêmes) arrêt conclusions basées sur le résultat de n1, si d 1 < d* d 2 : analyse du 2 ème échantillon n 2 conclusions basées sur le résultat des 2 échantillons. 39
40 La démarche en résumé 1. Définir le lot 2. LQAS à 1 ou 2 degré(s) 3. Définir les critères de classement (qualité) 4. Définir les seuils en fonction du scénario (P 0, α et ) 5. Déterminer la bonne combinaison du couple (n,d*) 6. Tirage au sort de l échantillon 7. Classement des éléments 8. Décision 40
41 Conclusion 41
42 LQAS Méthode issue du milieu industrielle de + en + utilisée dans différents domaines de la santé. Intérêt: Rapide: arrêt à d*+1 Econome Efficace Méthode adaptée lorsqu il s agit de vérifier qu un objectif est atteint Attention aux spécificités liées à la santé: Importance de bien poser les hypothèses Limiter le risque α 42
43 Références bibliographiques Lemeshaw, Stanley and Scott Taber Lot Quality Assurance Sampling: Single-and Double-Sampling Plans. World Health Statistics Quarterly 44: JutandMA, Salamon R «La technique de sondage par lots appliquée à l assurance qualité: méthode et applications en santé publique». Revue d épidémiologie et de santé publique. 48, Robertson, Susan E and Joseph J Valadez Global Review of Health Care Surveys using Lot Quality Assurance Sampling (LQAS), Social Science and Medicine 63(6): RhodaD, Fernandez S, FitchD, LemeshowS «LQAS: User Beware». International journal of Epidemiology; 39:60:68. Olives C, Pagano M «Bayes-LQAS: classifyingthe prevalence of global acute malnutrition». Emerging themes in epidemiology. 7:3. RabarijaonaLP, AndriamarosonBJ, RavaoalimalalaVE, RavoniarimbininaP, MiglianiR «Identification des communautés cibles en zone de bilharziose urinaire par la méthode de Lot Quality Assurance Sampling à Madagascar». Arch Inst Pasteur de Madagascar; 67 (1&2) :
44 Merci de votre attention 44
Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE
UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction
Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison
Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence
Lois de probabilité. Anita Burgun
Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage
Principe d un test statistique
Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre
Le Data Mining au service du Scoring ou notation statistique des emprunteurs!
France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE
Chapitre 5 UE4 : Biostatistiques Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.
La nouvelle planification de l échantillonnage
La nouvelle planification de l échantillonnage Pierre-Arnaud Pendoli Division Sondages Plan de la présentation Rappel sur le Recensement de la population (RP) en continu Description de la base de sondage
TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.
STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION
LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION Sylvie Gervais Service des enseignements généraux École de technologie supérieure ([email protected]) Le laboratoire des condensateurs
CONCEPTION ET TIRAGE DE L ÉCHANTILLON
CHAPITRE 4 CONCEPTION ET TIRAGE DE L ÉCHANTILLON Ce chapitre technique 1 s adresse principalement aux spécialistes de sondage, mais aussi au coordinateur et aux autres responsables techniques de l enquête.
Estimation et tests statistiques, TD 5. Solutions
ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études
La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites
La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»
Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences
Chapitre 3 : INFERENCE
Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage
Cours de Tests paramétriques
Cours de Tests paramétriques F. Muri-Majoube et P. Cénac 2006-2007 Licence Ce document est sous licence ALC TYPE 2. Le texte de cette licence est également consultable en ligne à l adresse http://www.librecours.org/cgi-bin/main?callback=licencetype2.
Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES
LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
TESTS D'HYPOTHESES Etude d'un exemple
TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses
Docteur José LABARERE
UE7 - Santé Société Humanité Risques sanitaires Chapitre 3 : Epidémiologie étiologique Docteur José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
Biostatistiques : Petits effectifs
Biostatistiques : Petits effectifs Master Recherche Biologie et Santé P. Devos DRCI CHRU de Lille EA2694 [email protected] Plan Données Générales : Définition des statistiques Principe de l
Package TestsFaciles
Package TestsFaciles March 26, 2007 Type Package Title Facilite le calcul d intervalles de confiance et de tests de comparaison avec prise en compte du plan d échantillonnage. Version 1.0 Date 2007-03-26
Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE
UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables
VI. Tests non paramétriques sur un échantillon
VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
Loi binomiale Lois normales
Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli
EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO
EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO Auteur Baguinébié Bazongo 1 Ingénieur Statisticien Economiste Chef de l Unité de recherche à l Institut national
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
PLAN DE COURS CEGEP DU VIEUX-MONTRÉAL
PLAN DE COURS CONTRÔLE DE LA QUALITÉ 241-B60-VM TECHNIQUE DE GÉNIE MÉCANIQUE 241-06 PONDÉRATION : 2-1-1 Compétence : 012Z Contrôler la qualité d un produit DÉPARTEMENT DE LA MÉCANIQUE CEGEP DU VIEUX-MONTRÉAL
Essais précoces non comparatifs : principes et calcul du nombre de sujets nécessaire
Essais précoces non comparatifs : principes et calcul du nombre de sujets nécessaire Sylvie CHABAUD Direction de la Recherche Clinique et de l Innovation : Centre Léon Bérard - Lyon Unité de Biostatistique
Introduction à la Statistique Inférentielle
UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique
En 2014, comment mener à bien une enquête aléatoire en population générale par téléphone?
En 2014, comment mener à bien une enquête aléatoire en population générale par téléphone? Prémila Choolun 1, François Beck 2, Christophe David 1, Valérie Blineau 1, Romain Guignard 3, Arnaud Gautier 3,
Calcul élémentaire des probabilités
Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire La loi de Poisson. Définition. Exemple. 1 La loi de Poisson. 2 3 4
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R
Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences
Excel Avancé. Plan. Outils de résolution. Interactivité dans les feuilles. Outils de simulation. La valeur cible Le solveur
Excel Avancé Plan Outils de résolution La valeur cible Le solveur Interactivité dans les feuilles Fonctions de recherche (ex: RechercheV) Utilisation de la barre d outils «Formulaires» Outils de simulation
La survie nette actuelle à long terme Qualités de sept méthodes d estimation
La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg
Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.
Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION
TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options
Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.
Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences
Comment les pratiques en milieu scolaire agissent-elles au regard des inégalités sociales de santé? Regard sur trois continents
Comment les pratiques en milieu scolaire agissent-elles au regard des inégalités sociales de santé? Regard sur trois continents Rencontre francophone internationale sur les inégalités sociales de santé
Essais cliniques de phase 0 : état de la littérature 2006-2009
17 èmes Journées des Statisticiens des Centres de Lutte contre le Cancer 4 ème Conférence Francophone d Epidémiologie Clinique Essais cliniques de phase 0 : état de la littérature 2006-2009 Q Picat, N
Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring
Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING
CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING SÉLECTION DES RISQUES PRÉVISION DES DÉFAUTS SUIVI ET CONTRÔLE Pierre-Louis GONZALEZ Différents types de
TP N 57. Déploiement et renouvellement d une constellation de satellites
TP N 57 Déploiement et renouvellement d une constellation de satellites L objet de ce TP est d optimiser la stratégie de déploiement et de renouvellement d une constellation de satellites ainsi que les
Couples de variables aléatoires discrètes
Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Z I G U I N C H O R SITUATION ECONOMIQUE ET SOCIALE REGIONALE 2013. Service Régional de la Statistique et de la Démographie de Ziguinchor
Z I G U I N C H O R REPUBLIQUE DU SENEGAL Un Peuple Un But Une Foi ------------------ MINISTERE DE L ECONOMIE, DES FINANCES ET DU PLAN ------------------ AGENCE NATIONALE DE LA STATISTIQUE ET DE LA DEMOGRAPHIE
TESTS D HYPOTHÈSE FONDÉS SUR LE χ². http://fr.wikipedia.org/wiki/eugénisme
TESTS D HYPOTHÈSE FONDÉS SUR LE χ² http://fr.wikipedia.org/wiki/eugénisme Logo du Second International Congress of Eugenics 1921. «Comme un arbre, l eugénisme tire ses constituants de nombreuses sources
Équivalence et Non-infériorité
Équivalence et Non-infériorité Éléments d Introduction Lionel RIOU FRANÇA INSERM U669 Mars 2009 Essais cliniques de supériorité Exemple d Introduction Données tirées de Brinkhaus B et al. Arch Intern Med.
METHODOLOGIE GENERALE DE LA RECHERCHE EPIDEMIOLOGIQUE : LES ENQUETES EPIDEMIOLOGIQUES
Enseignement du Deuxième Cycle des Etudes Médicales Faculté de Médecine de Toulouse Purpan et Toulouse Rangueil Module I «Apprentissage de l exercice médical» Coordonnateurs Pr Alain Grand Pr Daniel Rougé
CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité
1 CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité Une situation fréquente en pratique est de disposer non pas d un résultat mais de plusieurs. Le cas se présente en assurance, par exemple :
Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision
Page n 1. Tests du χ 2 une des fonctions des statistiques est de proposer, à partir d observations d un phénomène aléatoire (ou modélisé comme tel) une estimation de la loi de ce phénomène. C est que nous
Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke
www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3
Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014
Tests du χ 2 Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014 A. Lourme http://alexandrelourme.free.fr Outline
DÉCISIONS À PRENDRE AVANT DE COMMENCER
CHAPITRE 2 DÉCISIONS À PRENDRE AVANT DE COMMENCER Ce chapitre s adresse aux directeurs de programme, à leurs partenaires nationaux, aux coordinateurs d enquête et au personnel technique. Il vous aidera
FORMULAIRE DE STATISTIQUES
FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)
Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités
Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année
TEST DE DÉPISTAGE DE L IMMUNITÉ CONTRE LE
TEST DE DÉPISTAGE DE L IMMUNITÉ CONTRE LE 14 TÉTANOS ET LA ROUGEOLE 14.1 INTRODUCTION Soumaïla MARIKO Comme on l a déjà précisé au chapitre 1, des tests de dépistage de l immunité contre le tétanos et
COORDINATION NON COOPÉRATIVE: MÉTHODES D ENCHÈRES
COORDINATION NON COOPÉRATIVE: MÉTHODES D ENCHÈRES Cours 6c Principe Protocole centralisé, un commissaire-priseur/vendeur (auctioneer) et plusieurs enchérisseurs/acheteurs (bidders) Le commissaire-priseur
Évaluations aléatoires : Comment tirer au sort?
Évaluations aléatoires : Comment tirer au sort? William Parienté Université Catholique de Louvain J-PAL Europe povertyactionlab.org Plan de la semaine 1. Pourquoi évaluer? 2. Comment mesurer l impact?
Aide-mémoire de statistique appliquée à la biologie
Maxime HERVÉ Aide-mémoire de statistique appliquée à la biologie Construire son étude et analyser les résultats à l aide du logiciel R Version 5(2) (2014) AVANT-PROPOS Les phénomènes biologiques ont cela
STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes
STA108 Enquêtes et sondages Sondages àplusieurs degrés et par grappes Philippe Périé, novembre 2011 Sondages àplusieurs degrés et par grappes Introduction Sondages à plusieurs degrés Tirage des unités
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour [email protected] Une grande partie des illustrations viennent
La valeur présente (ou actuelle) d une annuité, si elle est constante, est donc aussi calculable par cette fonction : VA = A [(1-1/(1+k) T )/k]
Evaluation de la rentabilité d un projet d investissement La décision d investir dans un quelconque projet se base principalement sur l évaluation de son intérêt économique et par conséquent, du calcul
Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7
Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
LECTURE CRITIQUE 1 ER PAS
1 LECTURE CRITIQUE D UN ARTICLE SCIENTIFIQUE 1 ER PAS FORUM PCI 20,05,14 MJ Thévenin / Inf. EPIAS/ SMPH BUTS ET ORGANISATION DE LA PRÉSENTATION Utiliser une grille de lecture critique d un article Comprendre
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
CAPTEURS - CHAINES DE MESURES
CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,
Document d orientation sur les allégations issues d essais de non-infériorité
Document d orientation sur les allégations issues d essais de non-infériorité Février 2013 1 Liste de contrôle des essais de non-infériorité N o Liste de contrôle (les clients peuvent se servir de cette
A quels élèves profite l approche par les compétences de base? Etude de cas à Djibouti
A quels élèves profite l approche par les compétences de base? Etude de cas à Djibouti Hamid Mohamed Aden, Directeur du CRIPEN, Djibouti Xavier Roegiers, Professeur à l Université de Louvain, Directeur
Théorie des sondages : cours 5
Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : [email protected] Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur
COMPARAISON DE LOGICIELS TESTANT L INDEPENDANCE DE VARIABLES BINAIRES
J. sci. pharm. biol., Vol.9, n - 00, pp. 9-0 EDUCI 00 9 VALLEE POLNEAU S.* DIAINE C. COMPARAISON DE LOGICIELS TESTANT L INDEPENDANCE DE VARIABLES BINAIRES Notre étude visait à comparer les résultats obtenus
Probabilité et Statistique pour le DEA de Biosciences. Avner Bar-Hen
Probabilité et Statistique pour le DEA de Biosciences Avner Bar-Hen Université Aix-Marseille III 2000 2001 Table des matières 1 Introduction 3 2 Introduction à l analyse statistique 5 1 Introduction.................................
4 Distributions particulières de probabilités
4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
Bureau N301 (Nautile) [email protected]
Pre-MBA Statistics Seances #1 à #5 : Benjamin Leroy-Beaulieu Bureau N301 (Nautile) [email protected] Mise à niveau statistique Seance #1 : 11 octobre Dénombrement et calculs de sommes 2 QUESTIONS
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
Le groupe Casino choisit NP6 pour adapter sa communication email aux enjeux du Responsive Design
Le groupe Casino choisit NP6 pour adapter sa communication email aux enjeux du Responsive Design Client de NP6 depuis 2010, le groupe Casino, l un des leaders mondiaux du commerce alimentaire, souhaitait
Le niveau de revenus des ménages est associé à la couverture vaccinale par le vaccin pneumocoque conjugué chez les enfants d'ile-de-france
Le niveau de revenus des ménages est associé à la couverture vaccinale par le vaccin pneumocoque conjugué chez les enfants d'ile-de-france Jean-Paul Guthmann, Pierre Chauvin, Yann Le Strat, Marion Soler,
Impact du mobile banking sur les comportements d épargne et de transferts à Madagascar. Florence Arestoff Baptiste Venet
Impact du mobile banking sur les comportements d épargne et de transferts à Madagascar Florence Arestoff Baptiste Venet 1 Introduction : contexte du contrat de recherche Ce contrat de recherche fait suite
Echantillonnage Non uniforme
Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Item 169 : Évaluation thérapeutique et niveau de preuve
Item 169 : Évaluation thérapeutique et niveau de preuve COFER, Collège Français des Enseignants en Rhumatologie Date de création du document 2010-2011 Table des matières ENC :...3 SPECIFIQUE :...3 I Différentes
Tests statistiques et régressions logistiques sous R, avec prise en compte des plans d échantillonnage complexes
, avec prise en compte des plans d échantillonnage complexes par Joseph LARMARANGE version du 29 mars 2007 Ce cours a été développé pour une formation niveau M2 et Doctorat des étudiants du laboratoire
T de Student Khi-deux Corrélation
Les tests d inférence statistiques permettent d estimer le risque d inférer un résultat d un échantillon à une population et de décider si on «prend le risque» (si 0.05 ou 5 %) Une différence de moyennes
