Analyse de Variance. Groupe 1... Groupe K x 1,1... x x... = µ + α i. + e ij. x ij
|
|
|
- Sylvie Gignac
- il y a 10 ans
- Total affichages :
Transcription
1 Analyse de Variance Analyse de Variance à 1 Facteur L'objectif de l'analyse de variance à 1 facteur est de tester l'égalité des moyennes théoriques d'une variable quantitative de différents groupes ou de différents niveaux du facteur considéré Les observations sont sous la forme : Groupe 1 Groupe K x 1,1 x K, 1 x 1, n 1 x K, T 1 T K n K m 1 = T 1 n 1 m K = T K n K N = K n i i= 1 N = K T i i= 1 Le modèle de cette analyse est le suivant : Les hypothèses testées : x ij = µ + α i + e ij H 0 : égalité des moyennes, les groupes sont homogènes ou tous les α i prennent pour valeur 0 H 1 : les groupes ne sont pas homogènes ou au moins un des α i est différent des autres Les conditions d'applications : Tous les x ij suivent des lois Normales de même variance σ 2 (estimée par s e2 ), ou, ce qui est identique, les e ij sont "Normaux", indépendants et de même variance σ 2 (estimée par s e2 )
2 Le tableau d Analyse de Variance est le suivant : Origine Σ des carrés ddl Variance F (a) (b) (a)/(b) Intergroupe K 2 T i i =1 n i T 2 g N K-1 S 2 S 2 s e 2 Intragroupe K i = 1 n i 2 x ji j = 1 K i= 1 T i 2 n i N-K s e 2 Totale K n i i =1 j =1 2 x ji T 2 g N N-1
3 Un programme d'anova avec MATLAB : function [F,F0,Pvalue] = ANOVA1(x,k); [F,F0,Pvalue] = ANOVA1(x,k) ANOVA oneway (10/01/2001) x : data matrix k : number of observation by groupe soit x est une matrice de "size(n K)", avec K groupe et n observations par groupe (ie chaque groupe dans une colonne) soit x est un vecteur et k indique la repartition des observations dans les K groupes (eg k(1) observation pour le premier groupe k(length(k)) observation pour le Keme groupe) F : F value F0 : Fseuil pour alpha = 005 Pvalue ATTENTION : Dans le cas de decomposition orthogonale de la variance, ========= il faudrait utiliser "la variance intra" calculee avec toutes les datas => MODIFICATION de la FONCTION de facon a introduire "varintra" et "df2" N = length(x(:)); [n K] = size(x); somx2 = sum(x(:)^2); if K==1 n = k; K = length(n); na = 1; nb = 0; for i=1:k if i>1 na = na + n(i-1); end nb = nb + n(i); Ti(i) = sum(x(na:nb)); end Tg = sum(ti); somcinter = sum(ti^2/n) - Tg^2/N; somcintra = somx2 - sum(ti^2/n); else [n K] = size(x); Ti = sum(x); Tg = sum(ti); somcinter = sum(ti^2/n) - Tg^2/N; somcintra = somx2 - sum(ti^2/n); end somctotal = somx2 - Tg^2/N; somcintra = -999 si varintra est donnee df2 = N-K ou df2 = df2 df1 = K-1; df2 = N-K; varinter = somcinter / df1; varintra = somcintra / df2; vartotal = somctotal / (N-1); F = varinter/varintra; F0 = qf(095,df1,df2); Pvalue = 1-pf(F,df1,df2);
4 clc; fprintf('\n\n'); fprintf('============================\n'); fprintf(' Analysis of Variance Table \n'); fprintf('===============================================================\n'); fprintf(' Source df Sums of Squares Variances F\n'); fprintf(' \n'); fprintf(' Inter 20f 82f 82f 63f\n',df1,somCinter,varinter,F); fprintf(' Intra 20f 82f 82f\n',df2,somCintra,varintra ); fprintf(' Total 20f 82f 82f\n',N- 1,somCtotal,vartotal); fprintf('====================================================\n'); fprintf(' F Fseuil Pvalue\n'); fprintf(' \n'); fprintf(' 63f 63f 47f\n',F,F0,Pvalue); fprintf('===================================\n\n\n'); Exercices : =================== ANALYSE DE VARIANCE =================== FONCTIONS UTILISEES : ===================== ANOVA1m Bartlettm UTILISER "help name_function" pour obtenir des informations sur les fonctions utilisees Exercice 1 : On mesure le nombre de colonies bactériennes en fonction de 5 milieux de culture différents (k=5) Pour chaque milieu de culture on a fait 10 comptages (ni=10) Les caractéristiques des milieux de culture ont-ils une influence sur le nombre de bactéries qui se développent? Répondre à la question précédente avec un seul test statistique A B C D E
5 Exercice 2 : Dans une étude sur la pollution par insecticides dans les grands lacs américains, on a suivi l'évolution de la concentration de pesticides contenue dans des poissons carnivores (perches, sandres et brochets) Les résultats exprimés en mg/g (DDT, DDD et DDE) en fonction de l'âge des poissons sont les suivants : 2 ans 3 ans 4 ans 5 ans 6 ans La quantité moyenne de pesticides (DDE+DDD+DDT) varie-t-elle selon l'âge des poissons? Exercice 3 : Une étude a porté sur l'effet mutagène de 6 substances (labellées de A à F) 54 cultures cellulaires ont été répartis par tirage au sort dans les 6 groupes et pour chaque groupe on a donc effectué 9 fois la même expérience Les chiffres du tableau suivant ont été obtenus : A B C D E F (somme des x) (somme des x^2) Analyser les résultats obtenus en regardant si les 6 substances on un effet identique Après cette première analyse on s'est aperçu que l'on avait en fait, analyser l'effet de 2 substances X1 et X2 D'après le cahier d'expérience, la substance X1 aurait été utiliser pour les groupes A et E et la substance X2 pour les groupes B, C, D Dans le cas F on n'aurait utiliser aucune substance Ces résultats permettent ils de retrouver des effets homogènes des substances X1 et X2? Les substances X1 et X2 ont elles des effets identiques?
6
7
8
9
10
11
12
13
14
15
16
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
Bureau : 238 Tel : 04 76 82 58 90 Email : [email protected]
Dominique Muller Laboratoire Inter-universitaire de Psychologie Bureau : 238 Tel : 04 76 82 58 90 Email : [email protected] Supports de cours : webcom.upmf-grenoble.fr/lip/perso/dmuller/m2r/acm/
Analyse en Composantes Principales
Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées
Cours 9 : Plans à plusieurs facteurs
Cours 9 : Plans à plusieurs facteurs Table des matières Section 1. Diviser pour regner, rassembler pour saisir... 3 Section 2. Définitions et notations... 3 2.1. Définitions... 3 2.2. Notations... 4 Section
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour [email protected] Une grande partie des illustrations viennent
Etude des propriétés empiriques du lasso par simulations
Etude des propriétés empiriques du lasso par simulations L objectif de ce TP est d étudier les propriétés empiriques du LASSO et de ses variantes à partir de données simulées. Un deuxième objectif est
TP 1 Introduction à Matlab Février 2009
1 Introduction TP 1 Introduction à Matlab Février 2009 Matlab pour «MATtrix LABoratory», est un logiciel qui a été conçu pour fournir un environnement de calcul numérique de haut niveau. Il est particulièrement
Couples de variables aléatoires discrètes
Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude
1 Complément sur la projection du nuage des individus
TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent
Application 1- VBA : Test de comportements d'investissements
Application 1- VBA : Test de comportements d'investissements Notions mobilisées Chapitres 1 à 5 du cours - Exemple de récupération de cours en ligne 1ère approche des objets (feuilles et classeurs). Corps
Introduction aux Statistiques et à l utilisation du logiciel R
Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil
MATLAB : COMMANDES DE BASE. Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */.
Page 1 de 9 MATLAB : COMMANDES DE BASE Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */. Aide help, help nom_de_commande Fenêtre de travail (Command Window) Ligne
Modèles pour données répétées
Résumé Les données répétées, ou données longitudinales, constituent un domaine à la fois important et assez particulier de la statistique. On entend par données répétées des données telles que, pour chaque
Calcul Formel et Numérique, Partie I
Calcul Formel et Numérique N.Vandenberghe [email protected] Table des matières 1 Introduction à Matlab 2 1.1 Quelques généralités.......................... 2 2 Où trouver des informations 2 3 Opérations
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
I. Programmation I. 1 Ecrire un programme en Scilab traduisant l organigramme montré ci-après (on pourra utiliser les annexes):
Master Chimie Fondamentale et Appliquée : spécialité «Ingénierie Chimique» Examen «Programmation, Simulation des procédés» avril 2008a Nom : Prénom : groupe TD : I. Programmation I. 1 Ecrire un programme
Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE
UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
Exemples d application
AgroParisTech Exemples d application du modèle linéaire E Lebarbier, S Robin Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations 4 2 Régression linéaire simple 7 21 Présentation 7 211 Objectif
Évaluation de la régression bornée
Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement
Lois de probabilité. Anita Burgun
Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage
FORMULAIRE DE STATISTIQUES
FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)
distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position
Arbre de NESI distribution quelconque Signe 1 échantillon distribution symétrique non gaussienne Wilcoxon gaussienne Student position appariés 1 échantillon sur la différence avec référence=0 2 échantillons
Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011
Master 1 Biologie et technologie du végétal Année 010-011 Statistiques Rappels de cours et travaux dirigés (Seul ce document sera autorisé en examen) auteur : Jean-Marc Labatte [email protected]
MÉTHODES NUMERIQUES. Cours. Licence de Physique Année Universitaire : 2010-2011 Licence Chimie, parcours Physique. Semestre S3
Licence de Physique Année Universitaire : 2010-2011 Licence Chimie, parcours Physique Semestre S3 Cours MÉTHODES NUMERIQUES Chargé du Cours : M. GAGOU Yaovi E-mail :[email protected] URL : http://www.u-picardie.fr/gagou
Cours d analyse numérique SMI-S4
ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,
VI. Tests non paramétriques sur un échantillon
VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Cours Informatique Master STEP
Cours Informatique Master STEP Bases de la programmation: Compilateurs/logiciels Algorithmique et structure d'un programme Programmation en langage structuré (Fortran 90) Variables, expressions, instructions
TP: Représentation des signaux binaires. 1 Simulation d un message binaire - Codage en ligne
Objectifs : Ce TP est relatif aux différentes méthodes de codage d une information binaire, et à la transmission en bande de base de cette information. Les grandes lignes de ce TP sont l étude des méthodes
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
Calcul Formel et Numérique, Partie I
Calcul Formel et Numérique NicolasVandenberghe [email protected] Table des matières 1 Introduction à Matlab 2 1.1 Quelques généralités.......................... 2 1.2 Où trouver des informations......................
Une introduction. Lionel RIOU FRANÇA. Septembre 2008
Une introduction INSERM U669 Septembre 2008 Sommaire 1 Effets Fixes Effets Aléatoires 2 Analyse Classique Effets aléatoires Efficacité homogène Efficacité hétérogène 3 Estimation du modèle Inférence 4
Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies
Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies Ariane Lançon (Observatoire de Strasbourg) en collaboration avec: Jean-Luc Vergely,
PROJET MODELE DE TAUX
MASTER 272 INGENIERIE ECONOMIQUE ET FINANCIERE PROJET MODELE DE TAUX Pricing du taux d intérêt des caplets avec le modèle de taux G2++ Professeur : Christophe LUNVEN 29 Fevrier 2012 Taylan KUNAL - Dinh
Retentissement de la réforme de l'ircantec 2008 sur la retraite des Praticiens Hospitaliers.
Retentissement de la réforme de l'ircantec 2008 sur la retraite des Praticiens Hospitaliers. Dr Raphaël BRIOT ; Dr Jean GARRIC Syndicat National des Praticiens Hospitaliers d'anesthésie-réanimation RÉSUMÉ
Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke
www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3
Evaluation de la variabilité d'un système de mesure
Evaluation de la variabilité d'un système de mesure Exemple 1: Diamètres des injecteurs de carburant Problème Un fabricant d'injecteurs de carburant installe un nouveau système de mesure numérique. Les
Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.
Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de
1. Structure d'un programme FORTRAN 95
FORTRAN se caractérise par la nécessité de compiler les scripts, c'est à dire transformer du texte en binaire.(transforme un fichier de texte en.f95 en un executable (non lisible par un éditeur) en.exe.)
Figure 1 Différents éléments influençant les mesures de seuil réalisées en champ visuel
LE CHAMP VISUEL DU SUJET NORMAL INFLUENCE DES METHODES D'EVALUATION Jacques CHARLIER U279 INSERM, LILLE INTRODUCTION La connaissance du champ visuel du sujet normal, de ses variations intra et interindividuelles
Théorie des sondages : cours 5
Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : [email protected] Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur
Modèles à Événements Discrets. Réseaux de Petri Stochastiques
Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés
Équation de Langevin avec petites perturbations browniennes ou
Équation de Langevin avec petites perturbations browniennes ou alpha-stables Richard Eon sous la direction de Mihai Gradinaru Institut de Recherche Mathématique de Rennes Journées de probabilités 215,
Principe d un test statistique
Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre
Application sur le Dispositif en Blocs Complètement Randomisés
Roger Vumilia. KIZUNGU Directeur de l Expérimentation Agricole à l INERA Professeur Associé Faculté des Sciences Agronomiques Université de Kinshasa Utilisation des Logiciels de base dans la Recherche
Examen de Logiciels Statistiques
G. Hunault Angers, mai 2011 Licence MEF Examen de Logiciels Statistiques On s intéresse ici au dossier EAEF01 qui contient un extrait des données du recensement américain. On trouvera ces données et leur
Démonstration de la conjecture de Dumont
C. R. Acad. Sci. Paris, Ser. I 1 (005) 71 718 Théorie des nombres/combinatoire Démonstration de la conjecture de Dumont Bodo Lass http://france.elsevier.com/direct/crass1/ Institut Camille Jordan, UMR
Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE
UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
ISFA 2 année 2002-2003. Les questions sont en grande partie indépendantes. Merci d utiliser l espace imparti pour vos réponses.
On considère la matrice de données : ISFA 2 année 22-23 Les questions sont en grande partie indépendantes Merci d utiliser l espace imparti pour vos réponses > ele JCVGE FM1 GM JCRB FM2 JMLP Paris 61 29
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
Exercice : la frontière des portefeuilles optimaux sans actif certain
Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué
Notes introductives à Matlab
Notes introductives à Matlab Le logiciel Matlab consiste en un langage interprété qui s'exécute dans une fenêtre dite d'exécution. L'intérêt de Matlab tient, d'une part, à sa simplicité d'utilisation :
TP 0 : INTRODUCTION À MATLAB
TP 0 : INTRODUCTION À MATLAB Résumé. Matlab est un logiciel de calcul numérique, utilisé dans de nombreux domaines d application. Il se fonde sur le calcul matriciel. Matlab est d ailleurs un raccourci
LABO 5 ET 6 TRAITEMENT DE SIGNAL SOUS SIMULINK
LABO 5 ET 6 TRAITEMENT DE SIGNAL SOUS SIMULINK 5.1 Introduction Simulink est l'extension graphique de MATLAB permettant, d une part de représenter les fonctions mathématiques et les systèmes sous forme
Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse
N7 Notion de fonction Série : Tableaux de données Série 2 : Graphiques Série 3 : Formules Série 4 : Synthèse 57 SÉRIE : TABLEAUX DE DONNÉES Le cours avec les aides animées Q. Si f désigne une fonction,
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
LES GENERATEURS DE NOMBRES ALEATOIRES
LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires
Chapitre 5 : Flot maximal dans un graphe
Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d
Introduction à R. Florence Yerly. Dept. de mathématiques, Université de Fribourg (CH) SP 2011
Dept. de mathématiques, Université de Fribourg (CH) SP 2011 Qu est ce que R? Un logiciel de statistiques libre et gratuit ; Un logiciel multi-plateforme (UNIX, Windows MacOS X) R permet de faire des calculs
Analyse de variance à deux facteurs (plan inter-sujets à deux facteurs) TP9
Analyse de variance à deux facteurs (plan inter-sujets à deux facteurs) TP9 L analyse de variance à un facteur permet de vérifier, moyennant certaines hypothèses, si un facteur (un critère de classification,
SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite
Titre : SDLS08 - Modes propres d'une plaque carrée calculé[...] Date : 03/08/2011 Page : 1/6 SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite Résumé : Ce cas test a pour objectif de
Examen Médian - 1 heure 30
NF01 - Automne 2014 Examen Médian - 1 heure 30 Polycopié papier autorisé, autres documents interdits Calculatrices, téléphones, traducteurs et ordinateurs interdits! Utilisez trois copies séparées, une
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
Cours d algorithmique pour la classe de 2nde
Cours d algorithmique pour la classe de 2nde F.Gaudon 10 août 2009 Table des matières 1 Avant la programmation 2 1.1 Qu est ce qu un algorithme?................................. 2 1.2 Qu est ce qu un langage
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
LES DÉTERMINANTS DE MATRICES
LES DÉTERMINANTS DE MATRICES Sommaire Utilité... 1 1 Rappel Définition et composantes d'une matrice... 1 2 Le déterminant d'une matrice... 2 3 Calcul du déterminant pour une matrice... 2 4 Exercice...
Python - introduction à la programmation et calcul scientifique
Université de Strasbourg Environnements Informatique Python - introduction à la programmation et calcul scientifique Feuille de TP 1 Avant de commencer Le but de ce TP est de vous montrer les bases de
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
La boucle for La boucle while L utilisation du if else. while (condition) { instruction(s) }
VI Initiation à la programmation sous Comme nous l avons constaté tout au long du document, offre de nombreuses fonctionnalités En tant que nouvelles utilisateurs de il vous est désormais PRESQUE possible
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
Introduction. Préambule. Le contexte
Préambule... INTRODUCTION... BREF HISTORIQUE DE L ACP... 4 DOMAINE D'APPLICATION... 5 INTERPRETATIONS GEOMETRIQUES... 6 a - Pour les n individus... 6 b - Pour les p variables... 7 c - Notion d éléments
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
1 Introduction et modèle mathématique
Optimisation parallèle et mathématiques financières Optimisation parallèle et mathématiques financières Pierre Spiteri 1 IRIT ENSEEIHT, UMR CNRS 5505 2 rue Charles Camichel, B.P. 7122 F-31 071 Toulouse,
Cours Bases de données 2ème année IUT
Cours Bases de données 2ème année IUT Cours Bilan : Des vues à PL/SQL corrigé Anne Vilnat http://www.limsi.fr/individu/anne/cours Plan 1 Cas exemple 2 Les tables... 3 Vues et index 4 Privilèges 5 Fonctions
Modèles et Méthodes de Réservation
Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E
Analyse des correspondances avec colonne de référence
ADE-4 Analyse des correspondances avec colonne de référence Résumé Quand une table de contingence contient une colonne de poids très élevé, cette colonne peut servir de point de référence. La distribution
Relation entre deux variables : estimation de la corrélation linéaire
CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
IMPORTATION, CRÉATION, MANIPULATION, EXPORTATION DE DONNÉES STATISTIQUES
IMPRTATIN, CRÉATIN, MANIPULATIN, EXPRTATIN DE DNNÉES STATISTIQUES Bernard Dupont [email protected] [email protected] Bien que l'analyse et le traitement des données ne soient pas sa vocation
TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION
TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun
Apprentissage Automatique
Apprentissage Automatique Introduction-I [email protected] www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs
Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE
Chapitre 5 UE4 : Biostatistiques Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.
Chapitre 4 : Régression linéaire
Exercice 1 Méthodes statistiques appliquées aux sciences sociales (STAT-D-203) Titulaire : Catherine Vermandele Chapitre 4 : Régression linéaire Le diplôme de Master of Business Administration ou MBA est
Aide-mémoire de statistique appliquée à la biologie
Maxime HERVÉ Aide-mémoire de statistique appliquée à la biologie Construire son étude et analyser les résultats à l aide du logiciel R Version 5(2) (2014) AVANT-PROPOS Les phénomènes biologiques ont cela
Algorithmes pour la planification de mouvements en robotique non-holonome
Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot
Travaux pratiques avec RapidMiner
Travaux pratiques avec RapidMiner Master Informatique de Paris 6 Spécialité IAD Parcours EDOW Module Algorithmes pour la Fouille de Données Janvier 2012 Prise en main Généralités RapidMiner est un logiciel
LES PLANS D EXPERIENCES
Tutoriel LES PLANS D EXPERIENCES Jacques GOUPY Revue MODULAD, 006-74 - Numéro 34 LES PLANS D EXPERIENCES. INTRODUCTION Les plans d'expériences permettent d'organiser au mieux les essais qui accompagnent
Le stockage local de données en HTML5
Le stockage local HTML5, pourquoi faire? Dans une optique de réduction des couts de maintenance, de déploiement, beaucoup d'entreprises ont fait le choix de migrer leurs applicatifs (comptables, commerciales,
Cours 4 : Agrégats et GROUP BY
Cours 4 : Agrégats et GROUP BY Agrégat Fonction qui effectue un calcul sur l ensemble des valeurs d un attribut pour un groupe de lignes Utilisation dans une clause SELECT ou dans une clause HAVING 3 types
Découverte du tableur CellSheet
Découverte du tableur CellSheet l application pour TI-83 Plus et TI-84 Plus. Réalisé par Guy Juge Professeur de mathématiques et formateur IUFM de l académie de Caen Pour l équipe des formateurs T 3 Teachers
Analyse Combinatoire
Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien
Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.
Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION
Enquête auprès des parents
Projet Brosse à dents débutant Institut für Hygiene und Arbeitsphysiologie ETH-Zentrum, Clausiusstr. 25 8092 Zürich Adresse électronique: [email protected] Enquête auprès des parents
Travail de projet sur VBA
Travail de projet sur VBA Calcul du Ratio de Sharpe Page 1 sur 25 Table des matières : 1. Introduction 3 2. Démarche générale 3 2.1 Récolte de données 3 2.2 Calculs de rendements 4 2.3 Calculs de volatilités
