Le vieillissement musculaire : mécanismes potentiels et modulations nutritionnelles. Unité de Nutrition Humaine Clermont-Ferrand



Documents pareils
Utilisation des substrats énergétiques

Tableau récapitulatif : composition nutritionnelle de la spiruline

BASES DE L ENTRAINEMENT PHYSIQUE EN PLONGEE

École secondaire Mont-Bleu Biologie générale

ULBI 101 Biologie Cellulaire L1. Le Système Membranaire Interne

Chapitre II La régulation de la glycémie

Dr E. CHEVRET UE Aperçu général sur l architecture et les fonctions cellulaires

1ST2S Biophysiopathologie : Motricité et système nerveux La physiologie neuro-musculaire :

Pourquoi je ne vois pas mes abdos?

GUIDE COMPLET SUR LES PROTÉINES COMMENT SÉLECTIONNER VOS PROTÉINES ET QUAND LES CONSOMMER. v3.0

La filtration glomérulaire et sa régulation

L APS ET LE DIABETE. Le diabète se caractérise par un taux de glucose ( sucre ) trop élevé dans le sang : c est l hyperglycémie.

AMINES BIOGENIQUES. Dopamine/Noradrénaline/Adrénaline (CATECHOLAMINES) Sérotonine/Histamine/Dopamine

Le Test d effort. A partir d un certain âge il est conseillé de faire un test tous les 3 ou quatre ans.

Professeur Diane GODIN-RIBUOT

CHAPITRE 3 LA SYNTHESE DES PROTEINES

SANTÉ. E-BOOK équilibre. stop. cholesterol diabete hypertension. Réduire le cholestérol, l hypertension et le diabète SANS MEDICAMENT!

LES OMEGA 3 OU LES ACIDES GRAS ESSENTIELS D ORIGINE MARINE

Quoi manger et boire avant, pendant et après l activité physique

La gestion des hypoglycémies au cours du sport : insuline ou diététique?

Protéines. Pour des Canadiens actifs. De quelle quantité avez-vous besoin?

IMMUNOLOGIE. La spécificité des immunoglobulines et des récepteurs T. Informations scientifiques

APERÇU TECHNIQUE DE L ageloc Vitality APERÇU DU PRODUIT

«Boire un verre de vin par jour augmente la longévité.»

Respiration Mitochondriale

Annales de Biologie Cellulaire QCM (niveau SVT 1 er année)

Maladies neuromusculaires

«Peut-on jeûner sans risque pour la santé?»

Composition corporelle

ATELIER SANTE PREVENTION N 2 : L ALIMENTATION

Transport des gaz dans le sang

L eau dans le corps. Fig. 6 L eau dans le corps. Cerveau 85 % Dents 10 % Cœur 77 % Poumons 80 % Foie 73 % Reins 80 % Peau 71 % Muscles 73 %

L équilibre alimentaire.

TD de Biochimie 4 : Coloration.

Programme de réhabilitation respiratoire

1. Principes de biochimie générale. A. Bioénergétique et dynamique. a) Intro: Les mitochondries passent leur temps à fabriquer de l énergie.

GUIDE D INFORMATIONS A LA PREVENTION DE L INSUFFISANCE RENALE

L exercice à la retraite. Dr. Bich-Han Nguyen Résidente II, Physiatrie Université de Montréal

Transport des gaz dans le sang

Mesure de la dépense énergétique

Activité 38 : Découvrir comment certains déchets issus de fonctionnement des organes sont éliminés de l organisme

Compléments - Chapitre 5 Spectroscopie

STRUCTURE ET FONCTION DES PLURICELLULAIRES

Insulinothérapie et diabète de type 1

QUI PEUT CONTRACTER LA FA?

Le VIH et votre cœur

Mention : STAPS. Sport, Prévention, Santé, Bien-être. Objectifs de la spécialité

THEME 2 : CORPS HUMAIN ET SANTE : L EXERCICE PHYSIQUE

Sport et maladies métaboliques (obésité, diabète)

Activité physique et diabète non insulinodépendant

ACIDES BASES. Chap.5 SPIESS

Le rôle de l endocytose dans les processus pathologiques

Dr Laurence FAYARD- JACQUIN Cœurs du Forez Mise à jour

Rôle des acides biliaires dans la régulation de l homéostasie du glucose : implication de FXR dans la cellule bêta-pancréatique

CLINIMIX AVIS DE LA COMMISSION DE LA TRANSPARENCE

Le stress oxydant provoqué par l'exercice : une fatalité?

CONCOURS DE L INTERNAT EN PHARMACIE

Découvrez un nouveau métier :

Après chirurgie bariatrique, quel type de tissu adipeux est perdu? Dr Emilie Montastier Hôpital Larrey, Toulouse

APS résumé partie III

Cellules procaryotes Service histologie Pr.k.mebarek

SECTEUR 4 - Métiers de la santé et de l hygiène

Les Animaux habitent presque toutes les parties de la biosphère. La structure et la fonction chez les Animaux : principes fondamentaux.

LA QUESTION DE LA PRISE DE POIDS CHEZ LE FUMEUR EN SEVRAGE TABAGIQUE

Structure quantique cohérente et incohérente de l eau liquide

Génétique et génomique Pierre Martin

La musculation CP5. Orienter et développer les effets de l activité physique en vue de l entretien de soi

d importantes quantités de CO,. Summary. Influence of diet on respiratory quotients and fat deposition in growing pigs.

LES ÉLÉMENTS CONSTITUTIFS DE L ENTRAÎNEMENT POUR UN DÉVELOPPEMENT À LONG TERME DE L ATHLÈTE

LES BASES PHYSIOLOGIQUES DE L EXERCICE MUSCULAIRE

Origine du courant électrique Constitution d un atome

LES TROUBLES MUSCULOSQUELETTIQUES. Le 2 décembre 2008

LE SPORT POUR CHACUN! Docteur CASCUA Stéphane Médecin du sport

Le traitement pharmacologique du diabète de type 2 : que devez-vous savoir?

University of Tokyo Graduate School of Agricultural and Life Sciences et. Kanagawa Academy of Science and Technology

INTRODUCTION À L'ENZYMOLOGIE

Tâche : Comparer l étiquette de produits alimentaires afin de connaître leur valeur nutritive.

Le traitement du paludisme d importation de l enfant est une urgence

DOSSIER SCIENTIFIQUE DE L'IFN "LES GLUCIDES" SOMMAIRE

2 C est quoi la chimie?

ORIGINE ET DIFFERENTS TYPES DE RYTHMES BIOLOGIQUES. Carine Bécamel

Commentaires sur les Épreuves de Sciences de la Vie et de la Terre

AGREGATION DE BIOCHIMIE GENIE BIOLOGIQUE

Pathologie VIH. Service maladies infectieuses Archet 1. Françoise ALEXIS, infirmière Monique BORGHI, infirmière 15 octobre 2013

LE GRAND LIVRE Du. Pr Jean-Jacques Altman Dr Roxane Ducloux Dr Laurence Lévy-Dutel. Prévenir les complications. et surveiller la maladie

COMMISSION DE LA TRANSPARENCE AVIS. 19 octobre 2011

Le traitement en effet est, au début, une épreuve pour tout le monde : la malade d abord, les parents ensuite et même les thérapeutes.

Le trajet des aliments dans l appareil digestif.

Toxicité à long-terme d un herbicide Roundup et d un maïs modifié génétiquement pour tolérer le Roundup

L influence du sport sur le traitement du diabète de type 1

Partie 1. Addition nucléophile suivie d élimination (A N + E) 1.1. Réactivité électrophile des acides carboxyliques et groupes dérivés

Maladie neuromusculaire

Le VIH et votre apparence physique

Banque Agro-Veto Session 2014 Rapport sur les concours A filière BCPST

AVIS 1 / 7. Afssa Saisine n 2009-SA Maisons-Alfort, le 30 octobre 2009

INSUFFISANCE CARDIAQUE «AU FIL DES ANNEES»

& BONNES POSTURES TMS TROUBLES MUSCULO-SQUELETTIQUES. Le guide. Guide offert par la MNT

DOSSIER D'INSCRIPTION

Fonctionnement de l organisme et besoin en énergie

Transcription:

Le vieillissement musculaire : mécanismes potentiels et modulations nutritionnelles Stéphane Walrand Unité de Nutrition Humaine Clermont-Ferrand

Sommaire 1-Modification de la composition corporelle au cours du vieillissement 2-Rappels sur les fonctions, la structure et le métabolisme du muscle squelettique 3-Définition de la sarcopénie 4-Conséquences 5-Causes 6-Traitement(s)

Sommaire 1-Modification de la composition corporelle au cours du vieillissement 2-Rappels sur les fonctions, la structure et le métabolisme du muscle squelettique 3-Définition de la sarcopénie 4-Conséquences 5-Causes 6-Traitement(s)

Modification de la composition corporelle avec l âge La masse grasse augmente régulièrement au cours du vieillissement Elle double entre 20 et 70 ans passant de 18-25% à 35-40% du poids du corps chez les femmes et de 13-18% à 30-35% chez les hommes La masse maigre diminue Homme : cette perte commence dès 30 ans et représente 5 à 12kg entre 30 et 70 ans Femme : plus tardive, surtout à partir de la ménopause, elle atteint 4 à 8kg entre 50 et 70 ans La perte de masse maigre au cours du vieillissement est surtout liée à une réduction de la masse musculaire

Influence de l âge sur la composition corporelle de l homme 80 70 60 Masse (kg) 50 40 30 Graisses Muscles Autres tissues 20 10 0 20-29 30-39 60-69 70-79 Age (ans) Evolution de la proportion de muscles squelettiques par rapport au poids corporel entre 30 et 70 ans : 40 à 34% chez l homme et 30 à 22% chez la femme Cohn, 1980

La sarcopénie : définition Perte involontaire et physiologique de la masse, de la qualité et de la force des muscles squelettiques se produisant au cours du vieillissement Rosenberg, 1989 Sujet ad Sujet ag ag

Sommaire 1-Modification de la composition corporelle au cours du vieillissement 2-Rappels sur les fonctions, la structure et le métabolisme du muscle squelettique 3-Définition de la sarcopénie 4-Conséquences 5-Causes 6-Traitement(s)

Fonctions des muscles Production du mouvement Mouvements du corps humain Les muscles squelettiques assurent la locomotion et la manipulation, la vision, les expressions du visage Les muscles cardiaques et lisses assurent la circulation sanguine, le maintien de la pression artérielle et le péristaltisme intestinal Maintien de la posture Surtout rôle des muscles squelettiques Stabilisation des articulations Dégagement de chaleur Contraction musculaire = perte d énergie maintien de la température corporelle

Structure et niveaux d organisation d un muscle squelettique

Anatomie microscopique d une fibre musculaire squelettique Longue et grande cellule cylindrique (diamètre : 10-100 µm; L : 30 cm) Entourée d une membrane cytoplasmique : sarcolemme Cytoplasme de la cellule musculaire : sarcoplasme importantes réserves de glycogène et de myoglobine Myoglobine : protéine se liant à l oxygène, spécifique de la cellule musculaire Dans le sarcoplasme : organites habituels (mitochondrie, Golgi, ) et des organites plus spécifiques : myofibrilles et réticulum sarcoplasmique

Structure d une fibre musculaire squelettique

Structure d une fibre musculaire squelettique Myofibrille : alternance de bandes sombres et claires : stries Bandes sombres : strie A = filaments épais Bandes claires : strie I + autour des filaments épais = filaments fins Milieu de la strie A : zone claire ou zone H, possédant en son milieu une ligne plus sombre : ligne M. Milieu de la strie I : zone plus foncée : ligne Z Région comprise entre deux lignes Z : sarcomère plus petite unité contractile de la fibre musculaire

Structure et composition moléculaire des filaments Filament épais constitué de grosses protéines : myosine Filament fin composé de petites protéines : actine Dans un sarcomère, chaque filament épais compte environ 200 molécules de myosine.

Composition de la myosine (filament épais) Structure de la myosine : - tige cylindrique - tête sphérique comportant elle-même 2 lobes La tige de la myosine comporte 2 chaînes polypeptidiques lourdes identiques entrelacées. A l extrémité de ces chaîne lourdes : lobes de la tête de myosine Constitués par la liaison de deux chaînes polypeptidiques légères. Tête de myosine = pont d union Site actif de la myosine Site de liaison de l actine contraction musculaire Site de liaison de l ATP ATPase Production d énergie nécessaire à la contraction du muscle

Composition des filaments minces Principalement composés d actine : - Sous-unités (monomères) constituées de plusieurs chaînes peptidiques - Monomères regroupés en polymères de longs filaments d actine - Filaments forment une structure hélicoïdale - Sites de liaison de la myosine lors de la contraction Tropomyosine : protéine cylindrique, autour de l actine. Dans une fibre musculaire au repos, elle bloque les sites actifs d actine empêchant ainsi la fixation des molécules de myosine. Troponine : complexe de 3 polypeptides. TnI : sous-unité inhibitrice qui se fixe à l actine TnT : se lie à la tropomyosine et induit sa fixation à l actine TnC : liaison aux ions calcium Régulation des interactions myosine actine se produisant lors de la contraction

Mécanismes de la contraction musculaire : Ca 2+ dépendant

Mécanismes de la contraction musculaire : ATP-dépendant

Couplage excitation - contraction PLAQUE MOTRICE

Vitesse de contraction Types de Fibres Musculaires Fibres à contraction lente = type 1 Fibres à contraction rapide = type 2 Principales voies de production d ATP Fibres oxydatives (production d ATP par les voies aérobies d oxydation) Fibres glycolytiques (production d ATP par la glycolyse anaérobie) Les muscles ne sont pas constitués d un seul type de fibres La plupart des muscles comportent un mélange des différents types une certaine vitesse de contraction une certaine résistance à la fatigue Cette proportion varie également d une personne à l autre Facteurs génétiques capacités athlétiques Muscles d un marathonien : ~80% de fibres oxydatives à contraction lente Muscles de sprinters : ~60% de fibres oxydatives à contraction rapide

Métabolisme des muscles Contraction musculaire nécessite de l énergie fournie par l ATP Réserves d ATP dans le muscle pas très importantes Importance de régénérer l ATP pour maintenir constante sa concentration intra-cellulaire Hydrolyse de la créatine phosphate Glycolyse anaérobie Oxydation aérobie du glucose et des acides gras

Sommaire 1-Modification de la composition corporelle au cours du vieillissement 2-Rappels sur les fonctions, la structure et le métabolisme du muscle squelettique 3-Définition de la sarcopénie 4-Conséquences 5-Causes 6-Traitement(s)

La sarcopénie : définition Perte involontaire et physiologique de la masse, de la qualité et de la force des muscles squelettiques se produisant au cours du vieillissement Rosenberg, 1989 La surface de section du muscle diminue de 40% entre 20 et 80ans Sujet ad Sujet ag ag + diminution de leur densité et infiltration graisseuse

La sarcopénie : à ne pas confondre avec Le «wasting syndrome» : perte de poids (à la fois masses maigres et grasses) induite par des apports alimentaires inadéquates et/ou un syndrome de malabsorption. Ex : Sida La cachexie : perte de masse maigre induite par un phénomène inflammatoire. Ex : Infection généralisée

Sarcopénie Masse, force et fonction du muscle Short KR, 2004

Sarcopénie Spécifique de la typologie musculaire Perte sélective du nombre et de la taille des fibres. Etudes post-mortem : réduction de 40 % du nombre et de 26 % de la surface des fibres musculaires entre 20 et 80 ans. L âge affecte de façon inégale les différentes fibres : la surface des fibres de type 1 ne varie pas mais le nombre et la taille des fibres de type 2 diminuent (augmentation du pourcentage des fibres de type 1). Proportion des fibres Vastus lateralis Surface des fibres 53 9000 52 8000 51 7000 50 6000 % 49 48 47 28 ans 68 ans Surface (µm) 5000 4000 28 ans 68 ans 46 3000 45 2000 44 1000 43 Type 1 Type 2 0 Type 1 Type 2

Sarcopénie Spécifique de la typologie musculaire Marzani, 2005

Conséquences sur la force musculaire Réduction de la force musculaire au niveau des membres supérieurs et inférieurs Diminution de la force musculaire considérablement réduite si on tient compte du déclin de la masse musculaire Diminution de la puissance musculaire fortement liée à la réduction de la masse (mais également de la qualité de la fibre) Frontera, 2000 Walrand, 2003

En résumé La sarcopénie = diminution de la masse et de la fonction musculaires au cours du vieillissement Surtout liée à une réduction du nombre et de la surface des fibres de type 2 (glycolytiques-rapides-blanches) Induit une diminution de la force musculaire chez le sujet âgé (également perturbations métaboliques)

Sommaire 1-Modification de la composition corporelle au cours du vieillissement 2-Rappels sur les fonctions, la structure et le métabolisme du muscle squelettique 3-Définition de la sarcopénie 4-Conséquences 5-Causes 6-Traitement(s)

La sarcopénie : conséquences Fonctionnelles Métaboliques Appareil locomoteur Incapacités physiques Perte d autonomie Risque de chutes et de fractures réponse au stress désordres métaboliques (insulino-résistance) Morbidité Mortalité

La sarcopénie : conséquences fonctionnelles Stalenhoef, 1999

La sarcopénie : conséquences métaboliques Nair, 2005

Sommaire 1-Modification de la composition corporelle au cours du vieillissement 2-Rappels sur les fonctions, la structure et le métabolisme du muscle squelettique 3-Définition de la sarcopénie 4-Conséquences 5-Causes 6-Traitement(s)

La sarcopénie : causes Intrinsèques - Réduction de la masse protéique musculaire = ralentissement du renouvellement protéique musculaire - Diminution de l influx nerveux - Dysfonctionnement mitochondrial - Accumulation de modifications post-traductionnelles - Altérations hormonales - Perturbation de l état inflammatoire Extrinsèques - Réduction de l activité physique - Altération de l adaptation nutritionnelle Effet anabolique du repas

La sarcopénie : causes Intrinsèques - Réduction de la masse protéique musculaire = ralentissement du renouvellement protéique musculaire - Diminution de l influx nerveux - Dysfonctionnement mitochondrial - Accumulation de modifications post-traductionnelles - Altérations hormonales - Perturbation de l état inflammatoire Extrinsèques - Réduction de l activité physique - Altération de l adaptation nutritionnelle Effet anabolique du repas

Rappels sur le métabolisme protéique Définition : ensemble des processus régulant le métabolisme des acides aminés et le renouvellement des protéines corporelles Protéines (10-12 kg) Synthèse protéique (300 g/j) Interconversions Protéolyse (300 g/j) Apports exogènes et synthèse de novo (70 g/j) Acides aminés libres (80 g) Fonctions spécifiques Dégradation (70 g/j) Urée, NH4, CO2

Le métabolisme protéique Acide aminé traceur ( 13 C-Leucine ) Protéines (10-12 kg) Protéosynthèse (300 g/j) Protéolyse (300 g/j) Interconversions Apports exogènes et synthèse de novo (70 g/j) AA libres (80 g) Fonctions spécifiques Dégradation (70 g/j) Urée NH4 CO2

La perte de la masse musculaire correspond quantitativement à une réduction de la surface des fibres et donc essentiellement à une perte de protéines myofibrillaires (myosine, actine ) La sarcopénie : causes Réduction de la masse protéique musculaire Diminution de l expression des gènes des protéines contractiles

La sarcopénie : causes Réduction de la masse protéique musculaire Réduction des vitesses de synthèse des protéines musculaires au cours du vieillissement Vitesse de synthèse de la myosine Vitesse de synthèse et fonction des protéines mitochondriales

Rappels sur le métabolisme protéique Régulation par la prise du repas

La sarcopénie : causes Réduction de la masse protéique musculaire Renouvellement des protéines musculaires : altération de la réponse au repas chez le rat âgé. mg de protéines synthétisées/j 9 8 7 6 5 4 3 2 * Vitesse de synthèse des protéines musculaires NS Postabsorptif Postprandial 1 0 Adultes Agés Mosoni, 1995

La sarcopénie : causes Réduction de la masse protéique musculaire Renouvellement des protéines musculaires : altération de la réponse à une perfusion d acides aminés et de glucose chez l homme âgé. Vitesse de synthèse des protéines musculaires Volpi, 2000

Moindre réponse de la synthèse protéique musculaire au repas chez le sujet âgé Causes?

La sarcopénie : causes Moindre réponse de la synthèse protéique musculaire au repas chez le sujet âgé : hypothèses explicatives 1ère hypothèse : Une augmentation de l extraction splanchnique des acides aminés apportés par l alimentation 70 60 Intake Absorption Availability Muscle Protein % d'extraction 50 40 30 20 AA * * Adultes Agés AA 10 0 Leucine Phenylalanine Boirie, 1997, Volpi, 1999

Insulin and leucine signal transduction pathway translation initiation Leucine Insulin receptor IRS PI3-K PKB 4EBP1 eif4e P mtor P P 4EBP1 P P P P P S6K1 P P P P S6 P P eif4e + eif4g eif4f ARNt AA ARNm Protein translational machinery Protein

La sarcopénie : causes Moindre réponse de la synthèse protéique musculaire au repas chez le sujet âgé : hypothèses explicatives 2nde hypothèse : Une désensibilisation du muscle squelettique aux acides aminés apportés par l alimentation Dardevet, 2000

La sarcopénie : causes Moindre réponse de la synthèse protéique musculaire au repas chez le sujet âgé : hypothèses explicatives 3ème hypothèse : Une désensibilisation du muscle squelettique à l insuline Guillet, 2004

Regulation of muscle protein metabolism by amino acids during aging During aging Intake Absorption Availability Muscle Protein AA AA Reduced intake (Campbell, 1994; 2001 Rousset, 2003) Higher splanchnic extraction (Boirie, 1997 Volpi, 1999) Reduced sensibility to leucine (in vitro) (Dardevet, 2000) Beneficial effect of high aminoacidemia (Volpi, 1998; 1999; Dardevet, 2002; Arnal, 2002)

En résumé Une des causes de la sarcopénie est la moindre vitesse de renouvellement des protéines musculaires avec l âge en période postprandiale et postabsorptive Cette altération pourrait être due à : -une augmentation de l extraction splanchnique des acides aminés -une désensibilisation du muscle aux acides aminés -une désensibilisation du muscle à l insuline

La sarcopénie : causes Intrinsèques - Réduction de la masse protéique musculaire = ralentissement du renouvellement protéique musculaire - Diminution de l influx nerveux - Dysfonctionnement mitochondrial - Accumulation de modifications post-traductionnelles - Altérations hormonales - Perturbation de l état inflammatoire Extrinsèques - Réduction de l activité physique - Altération de l adaptation nutritionnelle Effet anabolique du repas

La sarcopénie : causes Dysfonctionnement mitochondrial et accumulation de modifications post-traductionnelles L activité mitochondriale Matrice Membrane interne Krebs cycle Mitochondrie ANT Espace inter-membranaire Membrane externe Cycle de Krebs Chaîne de phosphorylation oxydative e- e- e- Flux d électrons ATP

Protéines ADN La sarcopénie : causes Lipides Dysfonctionnement mitochondrial Polysaccharides O 2.- Cu-ZnSOD Catalase H 2 O Cytoplasme Outer Mitochondrial Membrane O.- 2 e - e - e - O 2.- O 2.- MnSOD GPX H 2 O

La sarcopénie : causes Dysfonctionnement mitochondrial et accumulation de modifications post-traductionnelles Augmentation de la production de RLO mitochondriaux au cours du vieillissement Capel, 2004

La sarcopénie : causes Dysfonctionnement mitochondrial et accumulation de modifications post-traductionnelles Augmentation de l oxydation des protéines musculaires totales et mitochondriales Protéines musculaires totales (+30%) Protéines mitochondriales (+150%) 2 1,8 * 1,6 1,4 nmol/mg protéines 1,2 1 0,8 0,6 0,4 0,2 0 adultes Agés Lass, 1999

+ La sarcopénie : causes RLO Dysfonctionnement mitochondrial et conséquences des dommages oxydatifs MUTATIONS ADN mitochondrial OXYDATION Protéines mitochondriales LIPOPEROXYDATION Lipides membranes mitochondriales Activités enzymatiques Fuite de protons Transport d électrons Force proton-motrice Production ATP état 2 de respiration du turnover protéique S A R C O P E N I E

La sarcopénie : causes Dysfonctionnement mitochondrial et conséquences des dommages oxydatifs Diminution du nombre de copies de l ADN mitochondrial Diminution de l expression des gènes mitochondriaux (chaîne respiratoire) Diminution de l activité des enzymes mitochondriale

La sarcopénie : causes Dysfonctionnement mitochondrial et conséquences des dommages oxydatifs Contenu en ATP Diminution du contenu et de la production d ATP par la cellule musculaire diminution de la contraction musculaire (myosine=atpase) altération du renouvellement protéique musculaire Production d ATP Drew, 2003

La sarcopénie : causes Dysfonctionnement mitochondrial et conséquences des dommages oxydatifs Impact des anomalies de la chaîne de transport d électrons sur le diamètre des fibres musculaires ZONE D ATROPHIE CTE normale CTE anormale CTE normale CTE: chaîne de transport d électrons CTE normale Bua, 2002

En résumé Il existe un dysfonctionnement mitochondrial musculaire au cours du vieillissement Conséquences : -diminution des capacités de production d ATP -altérations moléculaires atrophie de la fibre

Traitements potentiels de la sarcopénie 1-l exercice physique 2-la nutrition 3-l hormonothérapie

Traitements potentiels de la sarcopénie 1-l exercice physique 2-la nutrition 3-l hormonothérapie

Deux types d exercice -endurance -résistance Traitements potentiels de la sarcopénie 1-l exercice physique Effet d un exercice de résistance (3 mois musculation, 3 sets de 8 répétitions 3 fois/sem) sur la vitesse de renouvellement des protéines musculaires chez le sujet âgé Effet d un exercice d endurance (4 mois vélo, 45 min 3 à 4 fois/semaine) sur la vitesse de renouvellement des protéines musculaires chez le sujet âgé Balagopal, 2001, Short, 2004

En résumé Chez le sujet âgé, il est possible grâce à l exercice physique : -d augmenter les vitesses de synthèse des protéines musculaires (ex de résistance ou d endurance) -d améliorer les fonctions mitochondriales musculaires (ex de résistance) -d augmenter la surface des fibres musculaires (ex de résistance) -d améliorer la force musculaire (ex de résistance)

Traitements potentiels de la sarcopénie 1-l exercice physique 2-la nutrition 3-l hormonothérapie

Traitements potentiels de la sarcopénie 2-Stratégies nutritionnelles Le vieillissement s accompagne d une augmentation de l extraction splanchnique et d une désensibilisation du muscle squelettique aux acides aminés apportés par le repas. Comment augmenter la biodisponibilité des acides aminés au niveau musculaire chez le sujet âgé?

Traitements potentiels de la sarcopénie 2-Stratégies nutritionnelles 1ère solution : Augmenter les apports protéiques Les apports journaliers recommandés en protéines pour le sujet âgé sont-ils équivalents à ceux de l adulte? Actuellement pas de réponse claire car désaccord entre les études utilisant soit : -des bilans azotés -des acides aminés traceurs Probablement pas de modification des besoins mais répartition des flux d azote différente (de la périphérie vers les territoires centraux) Walrand, 2005

Traitements potentiels de la sarcopénie 2-Stratégies nutritionnelles 1ère solution : Augmenter les apports protéiques Doublement des AJR pendant 10 jours : aucun effet sur les synthèses protéiques corps entier et musculaires µmol/kgffm/h µmol/kgffm/h 140 120 100 80 60 40 20 0 Lysine flux µmol/kgffm/h Leucine flux * * # 160 * * Young Older NOLD after correction for respiratory CO2 recovery 140 120 100 80 60 40 20 0 Young Older 140 120 100 80 60 40 20 0 Young Older Leucine oxidation after correction for respiratory 13CO2 recovery µmol/kgffm/h 40 35 30 25 20 15 10 5 0 * * Young Older % of leucine flux oxidized after correction for respiratory 13CO2 recovery % 25 20 15 10 5 0 * # Young Older %/h 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 Mixed muscle protein FSR Young Older Walrand, 2008

Traitements potentiels de la sarcopénie 2-Stratégies nutritionnelles 1ère solution : Augmenter les apports protéiques De plus, effets secondaires d une augmentation des apports protéiques chez la personne âgée, notamment sur la fonction rénale. ml/min/sa 160 120 80 40 Filtration rénale Glomerular filtration rate p=0.001 * p<0.006 # p=0.00001 # AP HP 0 Young Doublement des AJR pendant 10 jours Old Walrand, 2008

Traitements potentiels de la sarcopénie 2-Stratégies nutritionnelles 2ème solution : Modifier la chronobiologie des apports protéiques Effet d un régime de charge protéique sur le renouvellement protéique au niveau musculaire chez le rat âgé Arnal, 2002

Traitements potentiels de la sarcopénie 2-Stratégies nutritionnelles 2ème solution : Modifier la chronobiologie des apports protéiques Effet d un régime de charge protéique sur le renouvellement protéique au niveau du corps entier chez le sujet âgé Arnal, 1999

En résumé Un régime de charge protéique (80% des apports journaliers sur un repas) permet d améliorer le bilan azoté, le renouvellement protéique corps entier et musculaire au cours du vieillissement

Traitements potentiels de la sarcopénie 2-Stratégies nutritionnelles 3ème solution : Optimiser la vitesse de digestion des protéines Principe : utiliser des protéines à digestion rapide (ex des protéines de lait : le lactosérum = protéine rapide, caséine = protéine lente) Boirie, 1997

Traitements potentiels de la sarcopénie 2-Stratégies nutritionnelles 3ème solution : Optimiser la vitesse de digestion des protéines Effet d un apport en protéine rapide (lactosérum) ou lente (caséine) sur le renouvellement protéique au niveau du corps entier chez le sujet âgé Dangin, 2003

Traitements potentiels de la sarcopénie 2-Stratégies nutritionnelles 3ème solution : Optimiser la vitesse de digestion des protéines Effet d un apport en protéine rapide (lactosérum) ou lente (caséine) sur le renouvellement protéique au niveau musculaire chez le rat âgé 0,6 %/h 0,5 0,4 0,3 0,2 0,1 0 1 Soleus Tibialis 0,7 %/h 0,6 0,5 0,4 0,3 0,2 0,1 0 1 Soleus Tibialis Protéines musculaires totales 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0 %/h * 1 Soleus Tibialis Caséine Lactosérum Protéines musculaires mitochondriales 0,6 0,5 0,4 0,3 0,2 0,1 0 %/h * 1 Soleus Tibialis Myosine Actine Zangarelli et Walrand, 2005

En résumé L utilisation d une protéine à digestion et à absorption rapide permet d augmenter la biodisponibilité périphérique en acides aminés et d améliorer la synthèse protéique musculaire au cours du vieillissement

Traitements potentiels de la sarcopénie 2-Stratégies nutritionnelles 4ème solution : Utiliser des acides aminés possédant des propriétés biologiques Principe : utiliser les propriétés anaboliques de la leucine Effet d un apport supplémentaire en leucine sur la vitesse de synthèse des protéines musculaires chez le rat adulte ou âgé Dardevet, 2002

Traitements potentiels de la sarcopénie 2-Stratégies nutritionnelles 4ème solution : Utiliser des acides aminés possédant des propriétés biologiques Effet d un apport supplémentaire en leucine sur la vitesse de synthèse de la myosine, des protéines sarcoplasmiques et mitochondriales musculaires chez le rat adulte ou âgé Myosine Protéines sarcoplasmiques Protéines mitochondriales Guillet, 2004

En résumé Chez le sujet âgé, il est possible d augmenter la biodisponibilité périphérique en acides aminés en utilisant : un régime de charge protéique, une protéine à digestion rapide ou un apport supplémentaire en acide(s) aminé(s). Ces régimes permettent d augmenter les vitesses de renouvellement des protéines musculaires. Impact à long terme? Effet sur la force musculaire?

Traitements potentiels de la sarcopénie 2-Stratégies nutritionnelles Vers de nouvelles stratégies nutritionnelles??? Lipides Polysaccharides Protéines ADN O 2.- Cu-ZnSOD Catalase H 2 O Cytoplasme Outer Mitochondrial Membrane Effet de la restriction calorique sur la production de RLO par les mitochondries du muscle squelettique O 2.- e - e - e - O 2.- O 2.- MnSOD GPX H 2 O

Traitements potentiels de la sarcopénie 2-Stratégies nutritionnelles Vers de nouvelles stratégies nutritionnelles??? Coupler les effets bénéfiques de la restriction calorique et des protéines à digestion rapide Restriction calorique Protéines à digestion rapide Diminution de la production de RLO Amélioration de la biodisponibilié périphérique en acides aminés Protection des macromolécules de la cellules musculaire (protéines, lipides, ADN) Augmentation des vitesses de synthèse des protéines musculaires Amélioration des fonctions musculaires

Caloric restriction Electron transport chain activity State 3 oxygen consumption State 2 oxygen consumption nmol ATP.min -1.mg -1 muscle fiber 12 10 8 6 4 2 Production d ATP p=0.07 0 Soleus Tibialisanterior AL PER ER # ROS production Oxidative damage Mitochondrial coupling ATP production Muscle strength Grip force 40 35 30 25 20 15 10 5 0 AL Cas AL WP PER Cas PER WP ER WP ER WP Newton Force musculaire Newton.kg -1 BW Mitochondrial FSR Myosin and Actin FSR Amino acids availability Maintenance of protein intake %.h -1 0.4 B AL 0.35 Synthèses PER 0.3 ER protéique 0.25 # 0.2 # 0.15 * 0.1 0.05 0 Mitochondrial Myosin proteins # Actin

En résumé L utilisation combinée de la restriction calorique (protection des macromolécules de la cellule musculaire, notamment mitochondriales) et d un apport en protéines rapides (amélioration de la biodisponibilité en acides aminés) au cours du vieillissement permet : 1-de restaurer l activité mitochondriale 2-de stimuler la vitesse de synthèse des protéines musculaires Amélioration de la fonction (force) musculaire