La Viscoélasticité des Polymères



Documents pareils
Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ

Les composites thermoplastiques

SOCIETE NATIONALE DES CHEMINS DE FER BELGES SPECIFICATION TECHNIQUE

P M L R O G W. sylomer. Gamme de Sylomer Standard. Propriétés Méthode de test Commentaires. Polyuréthane (PUR) Cellulaire mixte

Colle époxydique multi usages, à 2 composants

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Essais de charge sur plaque

SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite

Adhésif structural pour le collage de renforts

Consolidation des argiles. CUI Yu-Jun ENPC-CERMES, INSTITUT NAVIER

SIMULATION DU PROCÉDÉ DE FABRICATION DIRECTE DE PIÈCES THERMOPLASTIQUES PAR FUSION LASER DE POUDRE

INFLUENCE de la TEMPERATURE. Transition ductile/fragile Choc Thermique Fluage

Caractéristiques des ondes

MESURE DE LA TEMPERATURE

Premier principe : bilans d énergie

Relations structure-propriétés dans les élastomères fortement

Premier principe de la thermodynamique - conservation de l énergie

Oscillations libres des systèmes à deux degrés de liberté

Vis à billes de précision à filets rectifiés

TP 7 : oscillateur de torsion

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

PROPRIÉTÉS TECHNIQUES DU SYSTÈME NEOWEB

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation

Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques

DISQUE DUR. Figure 1 Disque dur ouvert

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Chapitre 2 Les ondes progressives périodiques

Fiche technique Mai, 2011 Dernière version : Oct Produits transparents : SJ 3460 : non adhésif SJ 3560 : Muni d un adhésif acrylique VHB

PROTECTION DEs MAINs ET DEs BRAs INfORMATIONs TEChNIquEs

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Monitoring et suivi du comportement des chaussées

Des innovations avec des matériaux plastiques haute performance. La gamme complète en PTFE, une gamme leader.

Observer TP Ondes CELERITE DES ONDES SONORES

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Styrodur C, un XPS exempt de CFC, HCFC et HFC. De l air, tout simplement. Ecologique, tout simplement.

Etude de l influence d une agression thermique sur les propriétés mécaniques résiduelles de matériaux composites

1 Mise en application

NOTICE DOUBLE DIPLÔME

SOCIETE NATIONALE DES CHEMINS DE FER BELGES SPECIFICATION TECHNIQUE L-70

Voyez la réponse à cette question dans ce chapitre.

SSNV143 - Traction biaxiale avec la loi de comportement BETON_DOUBLE_DP

Rupture et plasticité

Mini_guide_Isis_v6.doc le 10/02/2005 Page 1/15

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

Technologie des contacteurs gaz liquide : cas des colonnes à plateaux et à garnissage. M. Prévost

ANALYSE SPECTRALE. monochromateur

SOMMAIRE Thématique : Matériaux

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Chapitre 5. Le ressort. F ext. F ressort

Mesure de la dépense énergétique

Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges?

La présente fiche technique décrit les exigences auxquelles doit répondre le Système Barofor Round.

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

Semi-conducteurs. 1 Montage expérimental. Expérience n 29

Exercice 1. Exercice n 1 : Déséquilibre mécanique

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

RELAIS STATIQUE. Tension commutée

Exemples de dynamique sur base modale

ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE

SYSTÈME DE GAINES À SPIRALE ET RACCORDS TOURNANTS

Chapitre 11 Bilans thermiques

GENERALITES SUR LA MESURE DE TEMPERATURE

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

Equipement. électronique

Ceinture Home Dépôt. Orthèse lombaire et abdominale. Mother-to-be (Medicus)

Auré. AuréaSystème. Les solutions solaires. Chauffe-Eau Solaire. Combiné Solaire Pulsatoire 90% Système solaire AUTO-VIDANGEABLE et ANTI-SURCHAUFFE

Exemple d acquisition automatique de mesures sur une maquette de contrôle actif de vibrations

ANALYSE ET TRAITEMENT DES DONNÉES PROVENANT DU MONITORING DES PONTS PAR LA TECHNOLOGIE OSMOS

MOTORISATION DIRECTDRIVE POUR NOS TELESCOPES. Par C.CAVADORE ALCOR-SYSTEM WETAL Nov

Processus de rupture dans les roches fragiles : déformations, variations de perméabilité et émission acoustique

1. Introduction 2. Localiser un séisme 3. Déterminer la force d un séisme 4. Caractériser le mécanisme de rupture d un séisme

CONCEPTION PARASISMIQUE DES BATIMENTS (STRUCTURES) INTRODUCTION A LA DYNAMIQUE DES STRUCTURES

CALIBRES OMEGA CO-AXIAL DESCRIPTION ECHAPPEMENT CO-AXIAL REGLAGE OMEGA

Jean-Marc Schaffner Ateliers SCHAFFNER. Laure Delaporte ConstruirAcier. Jérémy Trouart Union des Métalliers

Analyse statique d une pièce

Libre-Service de l agence ISOPAR Garges-lès-Gonesse

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Mini_guide_Isis.pdf le 23/09/2001 Page 1/14

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

Utilisation historique de nanomatériaux en pneus et possibilités de nouveaux développements

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY

Fiche de lecture du projet de fin d étude

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.

Mousses acoustiques : STRASONIC

LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 2012 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND

*EP A1* EP A1 (19) (11) EP A1 (12) DEMANDE DE BREVET EUROPEEN. (43) Date de publication: Bulletin 2000/39

Généralités. Aperçu. Introduction. Précision. Instruction de montage. Lubrification. Conception. Produits. Guides à brides FNS. Guides standards GNS

La fonction exponentielle

Relais statiques SOLITRON MIDI, Commutation analogique, Multi Fonctions RJ1P

Fauteuil dentaire monté vers le haut, Modèle CARE-22

Notions d asservissements et de Régulations

5 Applications. Isolation intérieure des murs de fondation. ISOFOIL est un panneau isolant rigide laminé d un pare-vapeur d aluminium réfléchissant.

Plan du chapitre «Milieux diélectriques»

Tous les produits de la gamme SAF offrent des résistances :

Transcription:

La Viscoélasticité des Polymères ISITV, 2ème année Franck Sosson Ingénieur d étude / Expert Matériaux Docteur en Chimie et Physico Chimie des polymères franck.sosson@smac.fr SMAC, soucieux d améliorer constamment la qualité de ses produits, peut faire évoluer les spécifications sans préavis. Document non contractuel. Tous droits réservés SMAC 2010. 1

La Viscoélasticité des Polymères Plan de cours Introduction à la viscoélasticité La viscoélasticité au quotidien Définition Notion de module Comment caractériser la viscoélasticité Appareil DMA Mobilité moléculaire Température de transition vitreuse Théorie du volume libre Moyens expérimentaux Notion du temps de relaxation Mobilité Equivalence Temps Température Vieillissement des polymères Généralité Le vieillissement accéléré Modèle Arrhenius Relation Structure Propriétés Différentes familles de polymères Influence de la chimie et de la microstructure Notion de formulation Loi de mélange 2

La Viscoélasticité des Polymères Plan de cours Mobilité moléculaire Introduction à la viscoélasticité La viscoélasticité au quotidien Définition Notion de module Comment caractériser la viscoélasticité Appareil DMA Température de transition vitreuse Théorie du volume libre Moyens expérimentaux Notion du temps de relaxation Mobilité Equivalence Temps Température Vieillissement des polymères Généralité Le vieillissement accéléré Modèle Arrhenius Relation Structure Propriétés Différentes familles de polymères Influence de la chimie et de la microstructure Notion de formulation Loi de mélange 3

Introduction à la Viscoélasticité La viscoélasticité au quotidien Le Chewing Gum Le «Silly Putty» Les adhésifs Les Polymères Les pneus temps courts [T< 1s] élastique temps longs [T=24H] visqueux 4

Introduction à la Viscoélasticité Définition Solide ------- Liquide Elastique pur----viscoélastique ----Visqueux pur Retour à la position initiale Solide de Hooke = E.ou = G. Ecoulement Liquide Newtonien = Comportement intermédiaire dépend de Contrainte, Déformation, Vitesse de sollicitation 5

Introduction à la Viscoélasticité Notion de «Module» Changements de formes, de volumes des matériaux sous l action de contraintes Module : mesure de la résistance à la déformation d un matériau sous l aciton d une force/contrainte externe Module Conta int e Déplacement (MPa) 3 types de modules peuvent être définis : Module élastique de traction (Module d Young) E Module élastique de cisaillement (Module de Coulomb) G Module de compression hydrostatique (Bulk modulus) B 6

Introduction à la Viscoélasticité Notion de «Module» Young s Modulus Shear Modulus Bulk Modulus E = G = B = hyd V/V o s = contrainte uniaxiale de traction ou compression t = contrainte de cisaillement s hyd = contrainte hydrostatique de traction ou compression e = déformation normale g = déformation de cisaillement DV/V o = contraction/expansion volumique 7

Introduction à la Viscoélasticité Notion de «Module» Coefficient de Poisson déformation axiale Rapport de la déformation transverse sur la z l z -l 0z l 0z = z l y l y -l 0y l 0y = y Si le volume de l échantillon reste constant : υ = 0,5 exemples : liquides, nombreux élastomères l z l 0z l 0y En général : augmentation du volume sous l effet de la déformation dv/v o = (1 2υ).ε z = y z dv = augmentation du volume initial V o 8

Introduction à la Viscoélasticité Notion de «Module» Material E(GPa) Steel 220 0.28 Copper 120 0.35 Glass 60 0.23 Granite 30 0.30 Polystyrene 3 0.33 Polyethylene 1 0.38 Natural Rubber 0.02 0.49 E = 2G(1 + ) = 3B(1 + 2)=(9KG)/(G+3K) 9

Introduction à la Viscoélasticité Caractériser la viscoélasticité Relaxation = Déformation imposée et fixe, on suit la force Fluage = Force imposée et fixe, on suit la déformation Analyse Mécanique Dynamique = on impose une déformation sinusoïdale, on regarde les modes et le déphasage 10

Introduction à la Viscoélasticité L essai de Relaxation Relaxation = Déformation imposée et fixe, on suit la force Le solide hookéen : Emmagasine l'énergie mécanique fournie La restitue intégralement et instantanément en l'absence de contrainte Retour à l'état d'équilibre 0 Le fluide newtonien : S'écoule indéfiniment Pas d'état d'équilibre Déformation irréversible t Energie entièrement dissipée (chaleur, mouvement) 0 t 0 t 11

Introduction à la Viscoélasticité L essai de Fluage Fluage = Force imposée et fixe, on suit la déformation Le solide hookéen : Emmagasine l'énergie mécanique fournie La restitue intégralement et instantanément en l'absence de déformation Retour à l'état d'équilibre 0 Le fluide newtonien : S'écoule indéfiniment Pas d'état d'équilibre Déformation irréversible t0 Energie entièrement dissipée (chaleur, mouvement) 0 t o 0 t o 12

Introduction à la Viscoélasticité Fluage Recouvrance Réponse du matériau viscoélastique réel Déformation croissante sous charge (fluage) Déformation décroissante à la décharge (recouvrance) Fluage 0 Recovery = 0 (après état d équilibre) Déformation plastique t 0 temps la vitesse de déformation décroit dans les premiers temps puis atteint un stade stationnaire le fluide viscoélastique se détend et atteint éventuellement un équilibre fonction de la déformation max atteinte 13

Introduction à la Viscoélasticité Fluage Recouvrance Creep 0 Recovery = 0 (after steady state) / More Viscous More Elastic t 1 t 2 time 14

Introduction à la Viscoélasticité Analyse Mécanique Dynamique Permet de déterminer des propriétés mécaniques Modules Amortissement des matériaux viscoélastiques en fonction dutemps de la fréquence delatempérature de la déformation Permet de mettre en évidence des mouvements (macro)moléculaires (relaxations, changement de phase, ) Permet d établir des relaxations entre propriétés - structure ou morphologie des matériaux (mélange, cristallinité, ) 15

Introduction à la Viscoélasticité Analyse Mécanique Dynamique Impose une sollicitation sinusoïdale Force ou déformation Echantillon normalisé solicitation Mesure de la réponse Force ou déformation Response Mesure du déphasage Energie dissipée phase angle 16

Introduction à la Viscoélasticité Analyse Mécanique Dynamique Solide de Hooke Purement élastique Matériau viscoélastique = 0 Liquide newtonien Purement visqueux 0 < < 90 = 90 17

Introduction à la Viscoélasticité Analyse Mécanique Dynamique Essai oscillant écriture complexe Sollicitation mécanique : déformation sinusoïdale / temps ε(t) = ε0 cos (ωt) =Re [ε0.ei(ωt)] = Re [ε(t)] εo : amplitude de la déformation de cisaillement ω : pulsation en rad/s Domaine de viscoélasticité linéaire Réponse sinusoïdale, déphasée de δ par rapport à ε(t) (t) = o.cos (ωt + δ)= Re [0.ei(ωt+)] = Re [(t)] 18

Introduction à la Viscoélasticité Analyse Mécanique Dynamique (t) et ε(t) sont reliés par E*, module dynamique complexe : *(t) = E*(t).ε*(t) avec E*(t) = E + i.e E module élastique ou de stockage E module dissipatif ou de perte E* = o.ei(ωt+) /o.εi(ωt) E*= o/εo.ei On vérifie bien que : D où par identification : E = o/ εo. cos E"= o/ εo. sin δ=0 E = o/ εoet E"=0 matériau purement élastique δ=π/2 E =0 et E"= o/ εo matériau purement visqueux 19

Introduction à la Viscoélasticité Analyse Mécanique Dynamique Module dynamique : mesure de la résistance globale / déformation E* ou G* = contrainte/déformation Module élastique : aptitude du matériau à stocker l énergie mécanique fournie E ou G = (contrainte/déformation).cosδ Module visqueux : aptitude du matériau à dissiper l énergie (sous forme de châleur) E ou G = (contrainte/déformation).sinδ tan δ : Energie dissipée lors d un cycle de sollicitation, mesure de l amortissement tan δ = G /G énergie perdue énergie stockée -restituée 20

Introduction à la Viscoélasticité Analyse Mécanique Dynamique Balayage déformation Déformation Mode instrument : multi strain Méthode : équilibre à... C isotherme pdt...min strain sweep Paramètres essai : fréquence : fixe amplitude : variable Sollicitation du matériau à constantes fréquence température amplitude croissante Applications temps domaine viscoélastique linéaire résistance à la rupture 21

Introduction à la Viscoélasticité Analyse Mécanique Dynamique domaine linéaire : module indépendant de la déformation domaine non linéaire : module fonction de la déformation E' ou G' Stress NON VALIDE POUR LA CARACTERISATION EN DMA c = déformation critique déformation (amplitude) 22

Introduction à la Viscoélasticité Analyse Mécanique Dynamique Balayage isochrone, isotherme Déformation Mode instrument : multifréquences Méthode : équilibre à... C isotherme pdt...min Paramètres essai : fréquence amplitude : domaine linéaire Temps Sollicitation du matériau à fréquence température constantes amplitude Applications suivis de réticulation suivis de dégradation 23

Introduction à la Viscoélasticité Analyse Mécanique Dynamique Balayage fréquence Déformation Mode instrument : multifréquences Méthode : équilibre à... C isotherme pdt...min balayage en fréquences Paramètres essai : fréquences amplitude : domaine linéaire t Sollicitation du matériau à fréquence croissante température amplitude Applications constantes suivi des modules à basse et grande vitesse mise en œuvre des polymères (taux de cisaillement croissant) équivalence temps température 24

Introduction à la Viscoélasticité Analyse Mécanique Dynamique exemple sur un polymère amorphe région terminale plateau caoutchoutique transition domaine vitreux 1 2 Loss Modulus (E" or G") log Fréquence (rad/s ou Hz) 25

Introduction à la Viscoélasticité Analyse Mécanique Dynamique Rampe en température Rampe linéaire imposée Réponse du matériau à fréquence constante et amplitude constante time between data points m = ramp rate ( C/min) Denotes Oscillatory Measurement temps (min) 26

Introduction à la Viscoélasticité Analyse Mécanique Dynamique Région vitreuse Zone de transition Plateau caoutchouctique Zone terminale N existe pas pour les matériaux réticulés Storage Modulus (E' or G') Loss Modulus (E" or G") 27

Introduction à la Viscoélasticité Analyse Mécanique Dynamique Exercice = Représenter le comportement au fluage relaxation du polymère dans chaque zone visco élastique Région vitreuse Zone de transition Plateau caoutchouctique Zone terminale Storage Modulus (E' or G') Loss Modulus (E" or G") 28

Analyse Mécanique Dynamique Appareil Rhéomètre ou DMA échantillon capteur de déplacement mesure des déformations Force (contrainte) appliquée via moteur 29

Appareillage Analyse Mécanique Dynamique SAMPLE BIFILAR-WOUND FURNACE CLAMPS LOW MASS, HIGH STIFFNESS CLAMPING FIXTURES AIR BEARING AIR BEARING SLIDE OPTICAL ENCODER DRIVE MOTOR 30

Analyse Mécanique Dynamique Méthodologie Echantillon Mode de déformation Raideur (taille et forme de l échantillon) Type d outil (taille et forme de l échantillon) Force statique / Force suiveuse 31

Analyse Mécanique Dynamique Méthodologie Géométrie de l échantillon : une mesure précise et reproductible de module est lié à une géométrie adaptée de l échantillon (rapport longueur / section transverse cohérent) Différents modes de déformation : E (traction, compression, flexion), G (cisaillement) Raideur : Gamme de la machine (DMA 2890) : 100-10.7 N/m La raideur est liée aux dimensions de l échantillon (longueur, épaisseur, largeur) et peut limiter les possibilités d analyse (/ dimensions outil) 32

Analyse Mécanique Dynamique Raideur (K) Mesure fondamentale en DMA : raideur (k) K = force appliqué / amplitude de déformation Pendant une expérience : signaux bruts = force et amplitude Calibrations appliquées à ces signaux bruts Module déduit par multiplication avec le facteur de forme (geometry factor GF) adéquat : Module = raideur * Geometry factor = K * GF Contraintes et déformations calculées à partir des forces et amplitudes respectivement 33

Analyse Mécanique Dynamique Contrôle contrainte / Rampe T Exemple : importance rapport raideur matériau/force max raideur, K Amplitude de déformation imposée Contrainte Température 34

Analyse Mécanique Dynamique Contrôle contrainte / Rampe T Force Max. atteinte pour la raideur max. Max. Force atteinte raideur, K déformation impossible à suivre contrainte Température 35

Analyse Mécanique Dynamique Raideur vs Module un échantillon épais peut avoir la même raideur qu un échantillon fin F = 1 N x = 10 mm matériau à haut module F = 1 N x = 10 mm matériau à faible module un échantillon épais peut avoir le même module qu un échantillon fin F = 1 N x = 10 mm matériau de faible raideur F = 1 N x = 2 mm matériau de forte raideur 36

Analyse Mécanique Dynamique Choix des outils outil tension film Dual/single cantilever 3P bending Compression Shear shandwich 37

Analyse Mécanique Dynamique Dual Cantilever Mode échantillon outil mobile outil fixe Adapté à de nombreux matériaux (élastomères, thermoplastiques) Matériaux très amortissants Adapté au suivi de réticulation 38

Analyse Mécanique Dynamique Gamme d utilisation Dual Modulus (Pa) 10 13 10 12 10 11 10 10 10 9 GF = 1 F 3 L 192I S(1+ ) L 2A 10 8 10 7 10 6 10 5 10 4 16 mm long 10 mm wide 4 mm thick 35 mm long 12.5 mm wide 3.2 mm thick 35 mm long 12.5 mm wide 1.75 mm thick 8 mm long 12.5 mm wide 0.1 mm thick 10 3 10-1 10 1 10 2 10 0 Geometry Factor (1/mm) 10 3 10 4 10 5 39

Analyse Mécanique Dynamique Single Cantilever Mode Sample Stationary Clamp Movable clamp Adapté à de nombreux matériaux (thermoplastiques) Préférable / dual pour la matériaux non renforcés 40

Analyse Mécanique Dynamique Flexion 3 points Sample Stationary Fulcrum Moveable Clamp Force Adapté aux matériaux de haut module Préférable/dual pour éliminer les effets dus aux serrage (mode de déformation pur) ASTM 41

Analyse Mécanique Dynamique Tension Stationary Clamp Sample (film, fiber,or thin sheet) Movable clamp Adapté aux matériaux sous forme de films ou fibres (échantillons à haut module) Mode TMA à force constante, ou rampe en force («mini-traction») Force constante possible 42

Analyse Mécanique Dynamique Movable Clamp Sample Stationary Clamp Double Cisailleemnt Echantillons carrés : mode pur de déformation en cisaillement modules de cisaillement : G*, G, G et G(t) Adapté pour matériaux mous (gels, adhésifs, élastomères au dessus de la Tg) Utilisable pour matériaux très visqueux 43

Analyse Mécanique Dynamique Compression Stationary Clamp Sample Movable clamp Mode adapté pour les matériaux de modules moyens (gels, élastomères) Outils adaptalbes pour l expansion thermique ou la pénétration 44

Analyse Mécanique Dynamique Calcul des modules L appareil applique toutes les calibrations et mesures les raideurs brutes (stockage et perte) Ks Module= raideur * Geometry factor = K * GF Dual Cantilever : Single Cantilever : 3-Point Bend : GF = GF = 1 F GF = 1 F L 48I 3 L 192I 3 L 12I 3 S(1+ S(1+ S(1+ ) L 2 A ) L 2A ) L 2A L = longueur échantillon ou distance entre mors I = Moment géométrique = 1 / 12 T 3.w pour échantillons rectangulaires A = section transverse = coeff. de Poisson F = Facteur d outil (~ 0.9) S = facteur de cisaillement (~1.5) 45

Analyse Mécanique Dynamique Choix de l amplitude Balayage en déformation ou rampe en force pour déterminer le domaine viscoélastique linéaire Choisir une large gamme Facteurs à prendre en compte : Niveau de force (gamme du TA 2980 : -18N, 0.0001 N) Seuil (fluage) : déformation irréversible si force statique ou dynamique trop élevée Bruits : grande amplitude = bruit plus faible Comportement à considérer sur toute la gamme de fréquences et de déformations 46

La Viscoélasticité des Polymères Plan de cours Introduction à la viscoélasticité La viscoélasticité au quotidien Mobilité moléculaire Température de transition vitreuse Définition Notion de module Comment caractériser la viscoélasticité Appareil DMA Théorie du volume libre Moyens expérimentaux Notion du temps de relaxation Mobilité Equivalence Temps Température Vieillissement des polymères Généralité Le vieillissement accéléré Modèle Arrhenius Relation Structure Propriétés Différentes familles de polymères Influence de la chimie et de la microstructure Notion de formulation Loi de mélange 47

Mobilité Moléculaire Relaxation principale α La transition vitreuse ou relaxation principale α Transition de phase du 2nd ordre (elle ne s'accompagne pas d'un changement d'état) : le matériau est solide (par opposition à liquide ou gazeux) et il le reste. Passage de l'état vitreux (à basse température : cassant) à un état caoutchouteux, et concerne la phase amorphe. Dépend du temps d observation (temps de relaxation) / Equivalence temps-température 48

Mobilité Moléculaire Relaxation principale α En dessous de la Tα, les polymères amorphes sont rigides Module > 109 Pa A l état vitreux : énergie thermique insuffisante pour franchir les barrières de potentiel, segments «gelés» dans les positions fixes Au dessus de la Tα, les polymères amorphes sont souples Module caoutchoutique de l ordre de 105 à106 Pa Chute d environ 4 ordres de grandeur du module entre l état vitreux et l état caoutchoutique au passage de la Tα 49

Mobilité Moléculaire Relaxation principale α La Tα est associée à des mouvements coopératifs hiérarchisés à longue portée de segments moléculaires dans la phase amorphe En général, tout facteur qui affecte la mobilité des segments moléculaires affecte la Tα Nature des segments Rigidité de la chaîne Gène stérique Volume libre 50

Mobilité Moléculaire Relaxation principale α Chute de E Phénomène initial (plus bas en température) Onset associé à des pertes mécaniques Pic de E Phénomène à une température intermédiaire Lié aux changements de propriétés physiques (accroissement de mobilité moléculaire) Pic du tan δ A plus haute température : utilisé dans la littérature comme le point intermédiaire entre l état vitreux et l état caoutchoutique La forme et la hauteur du pic changent avec la proportion/nature de la phase amorphe qui relaxe 51

Mobilité Moléculaire Relaxation principale α Relation entre Tg et Tα Tg phénomène purement thermique (activation thermique) Tα phénomène thermo-mécanique Tg à 10 C/mn Tα à1 C/minet1Hz Sample: FS-4317-01 Size: 17.1400 x 14.7800 x 3.8800 mm Method: TTS 10000 DMA File: Z:...\TTS_FS-4317-01_090410_1 Operator: F. Sosson Run Date: 09-Apr-2010 09:12 Instrument: 2980 DMA V1.4O 1000 1.0 Storage Modulus (MPa) 100 Tan Delta 0.5 10 0.0 1-150 -100-50 0 50 100 Temperature ( C) 52 Universal V4.1D TA Instruments

Mobilité Moléculaire Relaxation principale α Aux temps courts (hautes fréquences) Réponse de type solide Aux temps longs (basses fréquences) Réponse de type liquide Temps court Fréquence élevé τrelax Temps élevé Fréquence faible temps Pas de mouvement possible Etat vitreux Comportement solide Mouvement possible Etat caoutchoutique 53

Mobilité Moléculaire Relaxation principale α Aux temps courts (hautes fréquences) Haute température Aux temps longs (basses fréquences) Basse température Barrière énergétique Théorie du volume libre A 0 K, le volume d un cristal réel inclut des «trous» qui permettent des mouvements limités des éléments de la structure maillée. Cette possibilité de mouvement en tous sens augmente avec la température 54

Mobilité Moléculaire Relaxation principale α Les différents moyens dont on dispose pour augmenter le volume libre Augmenter le nombre de chaînes, donc de groupes terminaux (diminution de la masse moléculaire) ; Augmenter le nombre ou la longueur des chaînes latérales (plastification interne ); Faciliter les mouvements des chaînes principales en introduisant chimiquement dans ces chaînes des segments de faible empêchement stérique, donc de grande mobilité (plastification interne ); Insérer entre les chaînes un composé ayant une bonne affinité pour le polymère et de relativement faible masse moléculaire (plastification externe ). 55

Mobilité Moléculaire Relaxations secondaires β, γ, Relaxations secondaires Transition de phase du 2nd ordre Mouvement de faibles énergies (moins de volume libre) Mouvements locaux au sein d une rotations intramoléculaires (4-6 atomes) Mouvement de groupement latéraux avec mouvement coopératifs de la chaîne principale Mouvements internes au sein d un groupement latéral sans interférence avec les autres groupements Mouvement de petites molécules dans le polymères (ex : plastifiants). Dépend du temps d observation (temps de relaxation) / Equivalence temps-température 56

Mobilité Moléculaire Dépendance en fréquence La Tg est une transition cinétique : elle est donc fortement influencée par la vitesse ou la fréquence de l essai La vitesse des mouvements moléculaires dépend de la température Lorsque la fréquence augmente, les relaxations associées à la Tg ne peuvent se produire qu à plus haute température 57

Mobilité Moléculaire Equivalence Temps Température TTS : relation empirique Basé sur l observation : courbes viscoélastiques à différentes températures sur une gamme de fréquences superposables par un simple décalage horizontal (at) Applicable à la relaxation de contrainte, fluage et les mesures dynamiques Valable sur une gamme de températures autour de la Tα Exemple de loi : Williams Landels Ferry (WLF) C 1 et C 2 : constantes «universelles» 58

Mobilité Moléculaire Equivalence Temps Température Aux temps courts (hautes fréquences) / Basses températures Réponse de type solide Aux temps longs (basses fréquences) / Hautes températures Réponse de type liquide (E' or G') (E" or G") (E' or G') (E" or G") log Frequency Temperature 59

Mobilité Moléculaire Equivalence Temps Température Principe TTS : relation empirique c-à-d basée sur l observation Les courbes obtenues à différentes températures peuvent être exactement jointes les unes aux autres, en les faisant glisser en abscisse le long de ces axes. On obtient alors une courbe unique appelée Courbe Maîtresse. Applicable à la relaxation de contrainte, fluage et les mesures dynamiques Valable sur une gamme de températures autour de la Tα A quoi sert-elle??? Comportement d'un matériau à des fréquences hors du domaine de mesure de l'instrument Prédiction du comportement des matériaux à long terme Fluage : comportement des matériaux sous charge Relaxation de contrainte : stabilité dimensionnelle dans le temps 60

Mobilité Moléculaire Equivalence Temps Température Choix d une température de référence (utilisation) Informations souhaitées à très hautes fréquences (temps courts) Balayages sur la gamme de fréquences de l appareil, à plus basses températures 61

Mobilité Moléculaire Equivalence Temps Température 62

Mobilité Moléculaire Equivalence Temps Température 63

Mobilité Moléculaire Equivalence Temps Température La superposition temps température ne s utilise pas : - S il y a une certaine cristallinité, surtout si le matériau fond sur la gamme en température qui nous intéresse. - Si la structure change avec la température : décomposition, réticulation, - Si le matériau est un copolymère à bloc (TTS ne fonctionnera que sur une gamme de température limitée). - Si le matériau est un composite de plusieurs polymères. Quelques fois il ne faut pas utiliser le loi WLF (même s il semble que cela fonctionne) : - Si T > Tg + 100 C - Si T < Tg et que le matériau n est pas élastomérique - Si la gamme en température est petite, les constantes C1 et C2 ne pourront pas être déterminer précisément. - Dans ces cas, il vaut mieux utiliser une loi d Arrhenius : Ln (a T ) = (Ea/R)(1/T-1/T 0 ) 64

Mobilité Moléculaire Equivalence Temps Température Relaxation secondaire suit une loi Arrhénius Mouvement localisé sur une dizaine d unités de répétition La vitesse des mouvements moléculaires dépend de la température Lorsque la fréquence augmente, les relaxations associées à la Tβ ne peuvent se produire qu à plus haute température 65

Mobilité Moléculaire Equivalence Temps Température β moins énergétique que α Dépendance en fréquence plus importante pour β 66

La Viscoélasticité des Polymères Plan de cours Introduction à la viscoélasticité La viscoélasticité au quotidien Définition Notion de module Vieillissement des polymères Généralité Le vieillissement accéléré Modèle Arrhenius Comment caractériser la viscoélasticité Appareil DMA Mobilité moléculaire Température de transition vitreuse Théorie du volume libre Moyens expérimentaux Notion du temps de relaxation Mobilité Equivalence Temps Température Relation Structure Propriétés Différentes familles de polymères Influence de la chimie et de la microstructure Notion de formulation Loi de mélange 67

Vieillissement des Polymères Généralités Définition «On appel vieillissement toute évolution au cours du temps des propriétés relatives aux fonctionnalités de l objet considéré résultant d une modification de la microstructure ou de la composition du matériau constitutif sous l effet de son instabilité propre, de l interaction avec l environnement, de sollicitations mécaniques ou de la combinaison de plusieurs de ces causes» (Verdu, 1990) Classe de vieillissement des polymères

Vieillissement des Polymères Généralités Pourquoi? Cinétique de dégradation lente des élastomères dans leurs conditions réelles d utilisation Temps d observation trop grands (de 1 à 10 ans voire plus) Nécessité d évaluer et quantifier le vieillissement en laboratoire Principe Réaliser des essais isothermes en enceinte Des prélèvements systématiques permettent d étudier la cinétique de réaction Utilisation de lois simples (Arrhenius, WLF, ) Tous les types d analyse sont envisageables (chimique, mécanique, physicochimique, ) Avantage Agrandir la fenêtre de temps d observation Méthode simple et rapide Matériel accessible et peu onéreux Possibilité de réaliser des essais dans des fluides ou à hygrométrie contrôlée 69

Vieillissement des Polymères Méthode Arrhenius Equation d Arrhenius t t 0. exp E RT T : Température de vieillissement t : temps d apparition du critère de fin de vie t0 : temps caractéristique E : Energie d activation (relié au critère de fin de vie) R : Constante molaire des gaz parfaits Plus la température de vieillissement est importante, plus le temps d apparition du critère de fin de vie diminue Température Ex : Critère de fin de vie 200% d allongement Réalisation d une courbe d endurance ou d une courbe maîtresse 70

Vieillissement des Polymères Méthode Arrhenius Prédiction de la durée de vie d un matériau Courbe d endurance Réaliser le vieillissement suivant au moins 3 température Choisir un critère de fin de vie Déterminer le temps où apparaît le critère de fin de vie pour les trois températures Mettre sur un graphique le logarithme du temps en fonction de l inverse de la température de vieillissement Extrapoler le temps suivant la température désirée 71

Vieillissement des Polymères Méthode Arrhenius Prédiction de la durée de vie d un matériau Réalisation de l équation d Arrhenius Si on observe une droite 1 mécanisme sur toute la gamme de température = comportement arrhénien Si on n observe pas de droite il peut exister plusieurs mécanismes de dégradation suivant la température = comportement non arrhénien 72

Vieillissement des Polymères Méthode Arrhenius Prédiction de la durée de vie d un matériau Allonger le temps d observation Réaliser le vieillissement suivant au moins 3 température Choisir une courbe de référence Tref (température de fonctionnement de la pièce) Faire glisser chaque courbe afin d obtenir des points coïncidant avec une courbe de référence T < Tref, vers les temps cours T > Tref, vers les temps long Quand tous les points définissent une seule est même courbe le glissement est parfait = courbe maîtresse 73

Vieillissement des Polymères Méthode Arrhenius Prédiction de la durée de vie d un matériau Coefficient de glissement log τ log 1 2 a a b T 1 b T 2 log 2 E 1 log a 1 2.303R T2 1 T1 log a T Ea 1 2.303R T2 1 T 1 Si on observe une droite 1 mécanisme sur toute la gamme de température = comportement arrhénien Si on n observe pas de droite il peut exister plusieurs mécanismes de dégradation suivant la température = comportement non arrhénien 74

Vieillissement des Polymères Méthode Arrhenius Comment choisir les températures de vieillissement - Les températures dépendent de la nature de l élastomère - Les températures doivent être supérieures (ou égale pour les courbes maîtresses) à la température en service du matériau - L intervalle de température ne doit pas comporter de transitions (Tg, Tf) car ces dernières se manifestent très souvent par un changement de régime cinétique, - Même profil de courbe quelle que soit la température - L intervalle entre la température de vieillissement accéléré la plus faible et la température d utilisation ne doit pas excéder 20 C si possible Elastomère Température de vieillissement ( C)* Naturel (40) 50 70 100 Exemple Butyl (50) 70 90 110 Polychloroprène (50) 70 90 110 Nitrile (60) 80 100 120 * les températures doivent être ajustées suivant la température de référence 75

Vieillissement des Polymères Méthode Arrhenius Autre cas de glissement : le fluage Toute propriété viscoélastique peut être représentée par une courbe maîtresse Principe d équivalence temps-température 76

La Viscoélasticité des Polymères Plan de cours Introduction à la viscoélasticité La viscoélasticité au quotidien Relation Structure Propriétés Différentes familles de polymères Influence de la chimie et de la microstructure Notion de formulation Loi de mélange Définition Notion de module Comment caractériser la viscoélasticité Appareil DMA Mobilité moléculaire Température de transition vitreuse Théorie du volume libre Moyens expérimentaux Notion du temps de relaxation Mobilité Equivalence Temps Température Vieillissement des polymères Généralité Le vieillissement accéléré Modèle Arrhenius 77

Relation structure propriétés Etude des polymères Matériaux polymères largement utilisés Pour la plupart des applications : importance des propriétés mécaniques et thermomécaniques Nécessité de connaître leur propriétés initiales Nécessité de comprendre les évolutions de ces propriétés en fonction de facteurs extrinsèques (T, vitesse, ) et intrinsèques (structure, composition chimique, ) Le DMA permet de mesurer les propriétés mécaniques des polymères en les reliant aux différences de composition et structure moléculaire (différences physiques et chimiques) 78

Relation structure propriétés Etude des polymères Transition vitreuse Transitions secondaires Cristallinité Poids moléculaires Réticulation Séparation de phase (mélanges, copolymères ) Composites Vieillissement (chimique, physique) Suivi de réticulation Orientation des chaînes macromoléculaires, des charges ou des fibres Influence des aditifs 79

Relation structure propriétés Composition Chimique vs Tg 80

Relation structure propriétés Famille de polymères 81

Relation structure propriétés Effet de la cristallinité Polymères cristallins : systèmes multiphasés constitués de phase amorphe comportant des cristallites dispersés La phase cristalline restreint la mobilité moléculaire des zones amorphes avoisinantes Cas général pour les semi-cristallins, une augmentation de la cristallinité implique : Augmentation de la Tα Diminution de l intensité de la relaxation α Un élargissement de la zone de Tα 82

Effet de la cristallinité sur la Tg Relation structure propriétés Effet de la cristallinité AMORPHOUS PET CRYSTALLINE PET x x x x x x x x x x x x x x x x x x x x 1.0 x x x 10 1.0 x x x x 10 Tan 0.1 x x x x 5 1.0 Tan 0.1 x x x x x x x x x x x 5 1.0 x x x xx 0.5 0.5 0.01 0.1 20 40 60 80 100 120 140 160 x x Temperature ( C) 0.01 0.1 20 40 60 80 100 120 140 160 Temperature ( C) Thompson and Woods, Trans. Faraday Soc., 52, 1383 (1956) 83

Relation structure propriétés Effet de la cristallinité Effet des cristallites : jouent le rôle de nœud de réticulation dans la matrice polymère la cristallinité affecte principalement la réponse mécanique dans la gamme de température entre Tα et Tf (Effet faible en dessous de Tα) Le module d un polymère semi-cristallin est proportionnel au degré de cristallinité indépendant de la température si le taux de cristallité reste constant 65% 40% 25% 0% Crystallinity (100% Amorphous) Temperature M. P. 84

Relation structure propriétés Effet de la cristallinité Bouteille en Polyethylene terepthalate Pressed PET Bottle Resin PET After Temperature Ramp Scan (Cold Crystallization) 85

Relation structure propriétés Effet de la cristallinité Bouteille en Polyethylene terepthalate 2ème cycle G 1.000E10 Repeat Run After Cold Crystallization 1.000E9 G' (Pa) 1.000E8 Initial Scan on Pressed Resin 1.000E7 Temperature Ramp at 3 C/min. Frequency = 1 Hz Strain = 0.025% Cold Crystallization 1.000E6-150.0-100.0-50.0 0 50.0 100.0 150.0 200.0 temperature (Deg C) 86 250.0

Relation structure propriétés Effet d un traitement thermique 10000 Unannealed Sample Annealed Sample 0.20 0.15 Storage Modulus (MPa) 1000 100 0.10 0.05 Tan Delta 10 0.00-100 -50 0 50 100 150 200 250 300 350 Temperature ( C) Universal V2.1A TA Instruments 87

Relation structure propriétés Effet du Mw Peu d effet sur le module en dessous de Tg Tg et la chute de module sont quasi-indépendant de Mw si Mw est très élevées Plateau caoutchoutique fortement dépendant de Mw à l exception des polymères à très faible Mw (< Mc, pas d enchevêtrements) En l absence de nœuds de réticulation, le comportement est déterminé par les enchevêtrements La longueur du plateau caoutchoutique est fonction du nombre d enchevêtrements par macromolécule 88

Relation structure propriétés Effet du Mw Glassy Region MW has practically no effect on the modulus below Tg Transition Region Rubbery Plateau Region Low MW Med. MW High MW Temperature 89

Relation structure propriétés Effet du Mw 90

Relation structure propriétés Effet de la réticulation Polymère linéaires reliés par des nœuds chimiques «thermodurs» (réticulation thermiquement activé) Présence de points d enchevêtrement : augmentation de la densité Réduction de la mobilité moléculaire Augmentation de Tg Pour des faibles taux de réticulation : Tg augmente linéairement avec le nombre de nœuds Pour des forts taux de réticulation, la Tg est large et mal définie 91

Relation structure propriétés Effet de la réticulation M = MW between c crosslinks 120 160 300 30,000 1500 9000 Temperature 92

Relation structure propriétés Effet de la réticulation, 100 100 Frequency = 1Hz Amplitude = 20 microns 140 10 19.51MPa 10 Storage Modulus (MPa) 1 0.1 [ ] Temperature ( C) 120 100 80 60 1 0.1 [ ] Loss Modulus (MPa) 0.01 0.01 40 0.001 0.001 0 10 20 30 40 50 60 70 Time (min) 93 Universal V2.6D TA Instruments

Relation structure propriétés Effet de l orientation Matériaux anisotropes fréquents : Fibres, Polymères amorphes orientés Pièces moulées par injection Composites renforcés fibres Polymères semi-cristallins (avec cristaux orientés) Nombre de modules indépendants fonction du degré de symétrie du système 94

Relation structure propriétés Effet de l orientation Ex : Composite UD à matrice polyester renforcée fibres de verre 1.0E5 Fibers Parallel to Length Fibers Perpindicular to length 1.0E5 Storage Modulus 10000 10000 Storage Modulus (MPa) 1000 Loss Modulus 1000 Loss Modulus (MPa) 100 Notes: Frequency = 1 Hz Amplitude = 40 microns Force Track = 150% Ramp Rate = 3 C/min. length 100 10 10 20 40 60 80 100 120 140 160 180 200 Temperature ( C) Universal V2.6D TA Instruments 95

Relation structure propriétés Effet de l orientation Ex : Composite UD à matrice polyester renforcée fibres de verre 0.12 96.82 C Fibers Parallel to Length Fibers Perpindicular to Length 0.10 104.55 C Notes: Frequency = 1 Hz Amplitude = 40 microns Force Track = 150% Ramp Rate = 3 C/min. Tan Delta 0.08 0.06 0.04 length 0.02 25 50 75 100 125 150 175 200 Temperature ( C) Universal V2.6D TA Instruments 96

Relation structure propriétés Effet du vieillissement Effet du vieillissement sur une couverture de toit en PVC 0.4 Tan Delta 0.3 PVC - Initial Condition PVC - Aged for 90 days PVC Aged for 150 days 10.44 C 150 days 14.91 C 0.2 0.1 0.0-100 -75-50 -25 0 25 50 Temperature ( C) Initial 90 days 12.82 C Universal V2.4D TA 97

Relation structure propriétés Effet des plastifiants Plastifiants : aditifs organiques de bas poids moléculaire généralement Plastifiants utilisés pour deux raisons Diminution de Tα (meilleur comportement à froid) Polymère plus souple Amélioration de la mise en oeuvre Fonction : faciliter les changements de conformation moléculaires Effet sur les thermogrammes : Diminution de la Tα Elargissement du pic de tan δ Antiplastifiants Diminution (voire annulation) des mouvements liés à la relaxation β Diminution du pic tan δ de la relaxation β Pas d influence sur la position en température du pic β Pas d influence sur la relaxation α 98

-2 Relation structure propriétés Mélange de polymères Mélanges incompatibles : 2 transitions observables Polymères compatibles : une seule Tα intermédiaire entre les Tα respectives de chacun des polymères (loi des mélanges) 10 9 Shear modulus, G, (Nm ) 10 8 10 7 10 6 Mélange PS/SB 10 1.0 0.10 Logarithmic decrement 10 5 0.01 1500.01-50 0 50 100 Temperature ( C) 99

Relation structure propriétés Mélange de polymères 100

Relation structure propriétés Mélange de polymères 101

Relation structure propriétés Mélange de polymères 1 relaxation 1 relaxation 1 relaxation 2 relaxations 102