IV. PHÉNOMÉNES DE CORROSION



Documents pareils
Rappels sur les couples oxydantsréducteurs

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Principe de la corrosion galvanique :

Chapitre 1: Les métaux et leurs utilisations

TP : Suivi d'une réaction par spectrophotométrie

Calcaire ou eau agressive en AEP : comment y remédier?

REACTIONS D OXYDATION ET DE REDUCTION

Physique : Thermodynamique

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

Physique Chimie. Réaliser les tests de reconnaissance des ions Cl -,

T4 Pourquoi éteindre les phares d une voiture quand le moteur est arrêté? Comment fabriquer une pile? un accumulateur?

Site : mail : mennier@isnab.fr SUJET ES - session 2003 Page 1 68-(7(6VHVVLRQ

*EP A1* EP A1 (19) (11) EP A1 (12) DEMANDE DE BREVET EUROPEEN. (43) Date de publication: Bulletin 2000/39

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

MESURE DE LA TEMPERATURE

Chapitre 1 Régime transitoire dans les systèmes physiques

FICHE TECHNIQUE POSTE METALLIQUE

Capacité Métal-Isolant-Semiconducteur (MIS)

Titre alcalimétrique et titre alcalimétrique complet

Mesures calorimétriques

Chapitre 11 Bilans thermiques

TRAVAUX PRATIQUES D INTRODUCTION À L ÉTUDE DES RÉACTIONS ÉLECTROCHIMIQUES

La gravure. *lagravureparvoiehumide *lagravuresèche

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

Equipement d un forage d eau potable

INFOFICHE EB001 NETTOYAGE ET ENTRETIEN DES PAVÉS ET DES DALLES DE RUE EN BÉTON

LABORATOIRES DE CHIMIE Techniques de dosage

Présentations GTF. Point de vue d un utilisateur final. Durée de vie des ouvrages : Approche Prédictive, PerformantielLE et probabiliste

Notions de Chimie Générale - 4. Sommaire

ACIDES BASES. Chap.5 SPIESS

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

STANDARD DE CONSTRUCTION CONDUITS, ATTACHES ET RACCORDS DE

Physique Chimie. Quelques aspects de la physique et de la chimie du piano

Chapitre 7 Les solutions colorées

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Choix multiples : Inscrire la lettre correspondant à la bonne réponse sur le tiret. (10 pts)

Exemple de cahier de laboratoire : cas du sujet 2014

Vous avez dit... LED??? DOCLED V2 Page 1 / 14

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

Mesure de conductivité on-line. Mesurer Surveiller Régler. Mesure de conductivité on-line. Eaux d égout communales et eaux usées industrielles

MISE À LA TERRE POUR LA SÉCURITÉ ÉLECTRIQUE

Séquence 4. Les liquides et la conduction électrique. 1 Qu est-ce qu une «solution aqueuse»? 2 Tous les liquides ne sont pas des solutions aqueuses.

Fiche de révisions sur les acides et les bases

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Mesure de Salinité Réalisation d'un conductimètre

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

RELEVE D ETAT DU PONT DES GRANDS-CRÊTS. On a procédé une auscultation visuelle entre le 23 et le 29 mars 2007.

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

Eau chaude sanitaire FICHE TECHNIQUE

CONSTRUCTION DES COMPETENCES DU SOCLE COMMUN CONTRIBUTION DES SCIENCES PHYSIQUES

SP. 3. Concentration molaire exercices. Savoir son cours. Concentrations : Classement. Concentration encore. Dilution :

VERRE DECORATIF AGC POUR APPLICATIONS INTERIEURES GUIDE DE NETTOYAGE ET D ENTRETIEN

Résonance Magnétique Nucléaire : RMN

GENERALITES SUR LA MESURE DE TEMPERATURE

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Effets électroniques-acidité/basicité

4. Conditionnement et conservation de l échantillon

TSTI 2D CH X : Exemples de lois à densité 1

CONCOURS COMMUN 2010 PHYSIQUE

TECHNIQUES: Principes de la chromatographie

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

Guide de l hivernage. Conseils de remisage pour les Motocycles, les Scooters et les Quads. * Donnez vie à vos rêves

Nombre dérivé et tangente

CIRCUITS DE PUISSANCE PNEUMATIQUES

ELEC2753 Electrotechnique examen du 11/06/2012

La fonction exponentielle

ACCREDITATION CERTIFICATE. N rév. 5. Satisfait aux exigences de la norme NF EN ISO/CEI : 2005 Fulfils the requirements of the standard

Acides et bases. Acides et bases Page 1 sur 6

LES GENERATEURS ELECTROCHIMIQUES Energie, Puissance et Technologie

Convertisseurs statiques d'énergie électrique

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

ELECTRICITE. Introduction

Notes. Schéma général PRODUCTION ÉLECTROLYTIQUE Composés inorganiques, nonmétaux

ANALYSE SPECTRALE. monochromateur

Recommandations pour le contrôle par méthode électrique des défauts des revêtements organiques appliqués sur acier en usine ou sur site de pose

Fonctions de plusieurs variables

Oscillations libres des systèmes à deux degrés de liberté

SOMMAIRE ARTIPRIX PIQUAGES - FORAGES - PERCEMENTS DES MURS FORAGES DANS MURS FORAGES DANS PLANCHERS PERCEMENTS SAIGNÉES SCELLEMENTS

Les rencontres de l Agence de l eau Clermont Ferrand 10 janvier TECHNIQUES D EPURATION Dispositifs agréés Abdel LAKEL, CSTB

Les résistances de point neutre

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Electrification statique - Problèmes et solutions L application des sources ionisantes. Auteur: Dr Mark G Shilton, CChem, MRSC. (Copie du document

Copropriété: 31, rue des Abondances Boulogne-Billancourt

Synthèse et propriétés des savons.

Réussir son installation domotique et multimédia

Circuits RL et RC. Chapitre Inductance

Elma Clean - Elma Tec Clean - Elma Lab Clean

Dr Berdj Haroutunian, 5, Chemin Gottret ch-1255 VEYRIER tél (0) berdj@haroutunian.ch

Chapitre 3 CONDUCTEURS ET ISOLANTS

Thermodynamique (Échange thermique)

LA NORME NF C INSTALLATION ELECTRIQUE

BTS BAT 1 Notions élémentaires de chimie 1

Origine du courant électrique Constitution d un atome

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

Suivi d une réaction lente par chromatographie

METEOROLOGIE CAEA 1990

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

SECTEUR 4 - Métiers de la santé et de l hygiène

CHAPITRE IX : Les appareils de mesures électriques

Transcription:

IV. PHÉNOMÉNES DE CORROSION 1. Nature de la corrosion a. Définition La corrosion d'un métal est l'oxydation de cet élément à l'état d'ion métallique : il s'agit donc d'une réaction d'oxydo - réduction. Si le métal M est oxydé à l'état de cation M n+, il se produit donc : M = M n+ + ne Cette réaction électrochimique exige la présence d'un oxydant Ox susceptible de capter les électrons, soit : Ox + n e = Red n- La réaction de corrosion du métal se traduit donc par le bilan : M + Ox M n+ + Red n- Remarque : l'oxydation d'un métal peut avoir lieu dans une atmosphère sèche par exemple avec O 2 ou Cl 2 (corrosion sèche) ou en présence d'humidité (corrosion humide). b. Facteurs de la corrosion humide On peut les classer en deux catégories : - les facteurs extérieurs : - air oxydant (O 2, CO 2 ) - vapeur d'eau atmosphérique (H 2 O) - pluie (H 2 O, H + ) - contact eau de mer (H 2 O, sels divers NaCl) - les facteurs liés au matériau : - hétérogénéité de surface (défauts, rayures) - hétérogénéité de composition (impuretés, alliage, contact avec un autre métal, soudure) - hétérogénéité de température - hétérogénéité de concentration du milieu à son contact (dilution différentielle, aération différentielle) c. Corrosion uniforme ou différentielle i. Corrosion uniforme Cela suppose que le métal ait une surface parfaitement homogène et que le mélange réactionnel à son contact soit lui aussi parfaitement homogène. Il y a corrosion uniforme si toute la surface du métal est attaquée de la même façon et s'il n'y a pas de circulation d'électrons au sein du métal. C'est cas par exemple d'une tige de fer pur totalement immergée dans l'eau acidulée et parfaitement agitée. Il y a transfert direct du réducteur Fe(s) à l'oxydant H + (aq) : Fe(s) + 2 H + (aq) Fe 2+ (aq) + H 2 (g) La corrosion est dite chimique. ii. Corrosion différentielle Cela suppose une hétérogénéité quelconque. Il y a corrosion différentielle lorsque l'attaque s'exerce de façon différente en deux zones de la surface du métal. Il y a nécessairement circulation d'électrons au sein du métal pour relier ces deux zones. Cette corrosion est dite aussi électrochimique pour traduire la participation des électrons de conduction du métal. Exemples : - cas d'une canalisation en cuivre amenant l'eau au contact d'un radiateur en fer : le fer rouille au niveau de la jonction. - cas d'une canalisation en fer enterrée dans deux sols de nature différente (argileux à faible teneur en O 2 et sablonneux à forte teneur en O 2 ) : le fer rouille dans la zone argileuse. 2. Etude thermodynamique : E - ph de corrosion a. Tracé des diagrammes E-pH L'étude thermodynamique de la corrosion humide s effectue avec les diagrammes E-pH, tracés avec : - les concentrations des espèces solubles étant prises égales à 10-6 mol.l -1 (concentration faible pour traduire l'apparition de corrosion) - les phases condensées (hydroxydes, oxydes ) envisagées étant les plus stables et assurent une protection du métal contre l'agression de la solution aqueuse

b. Les trois domaines du diagramme On peut mettre en évidence trois domaines : - domaine de la corrosion : c'est la région E-pH où le métal se trouve sous forme ionique (à la concentration de 10-6 mol.l -1 ). Il y a eu oxydation du métal et donc corrosion pour donner une espèce soluble. - domaine d'immunité : c'est le domaine de stabilité thermodynamique du métal. La corrosion étant impossible thermodynamiquement ne peut donc pas se produire (la cinétique n'intervient pas dans ce cas). - domaine de passivité : c'est le domaine où se trouvent les différentes phases condensées (en général des oxydes et des hydroxydes) qui recouvrent le métal et le protègent d'une attaque ultérieure. Le métal a donc été oxydé en surface, mais cette pellicule le protège d'une attaque en profondeur. On voit là tout l'intérêt d'une couche protectrice très stable, compacte et fortement liée au métal. c. Diagramme E-pH du fer On retrouve les trois domaines (voir le diagramme ci-contre): - corrosion : elle a lieu surtout en milieu acide ou neutre, le fer étant oxydé en Fe 2+ ou Fe 3+ - immunité : domaine de stabilité du métal pour des potentiels négatifs - passivation : elle résulte de la formation d'une couche d'oxyde ferrique protectrice pour des ph neutre ou basique. 3. Etude cinétique à l aide des courbes intensité - potentiel La corrosion, si elle est thermodynamiquement possible, est conditionnée par une cinétique favorable. Cette cinétique est appréhendée grâce aux courbes intensité - potentiel. a. Courbes intensité - potentiel i. Mécanisme réactionnel : On distingue en particulier le transfert de masse, pour les solutés qui doivent migrer de -ou versl'électrode ; le transfert de charge, pour la migration des électrons entre les espèces adsorbées et l'électrode. Intensité et vitesse : l'intensité électrique est dξ I = n F où n est le coefficient stoechiométrique des dt électrons. dξ Rappel : la vitesse de la réaction est : v =. dt Courbe 1 L'intensité électrique est donc proportionnelle à la vitesse de la réaction. ii. Convention : L'intensité électrique I est : Positive si l'électrode est le siège d'une oxydation (intensité anodique) Négative si elle est le siège d'une réduction (intensité cathodique).

iii. Classification des systèmes : Systèmes rapides : dès que E est différent du potentiel de repos (E r est donné par la formule de Nernst) et l'intensité I qui traverse l'électrode est non nulle (cf. courbe 1) : Si E > E r alors I > 0 Si E < E r alors I < 0 Systèmes lents : pour de tels couples redox, il existe une plage de potentiels pour laquelle l'intensité I reste quasi nulle (cf. courbe 2) : Si E > E r + η A alors I > 0 Si E < E r η C alors I < 0 E [Er η C ;Er + η A ] ) I = 0 Par convention, la surtension anodique η A est positive, tandis que la surtension cathodique η C est négative. Courbe 2 Existence de palier de diffusion : La limitation de la vitesse (c'est à dire de l intensité I) par l'étape de diffusion des espèces en solution (transfert de masse) se caractérise par un palier dans la courbe I = f(e) (cf. courbe 3), caractéristique d'une espèce soluté. Courbe 3 iv. Utilisation des courbes intensité - potentiel Position du problème : on s'intéresse à deux couples rédox : Cathode (lieu de la réduction): Ox 1 Red 1 Anode (lieu de l oxydation): Red 2 Ox 2 Thermodynamique et courbe intensité - potentiel : L'évolution est thermodynamiquement : possible si E 1 > E 2 ; impossible E 1 < E 2.

NB : on retrouve la "règle du gamma" (cf. figure). Cinétique et courbe intensité - potentiel : L'évolution est cinétiquement : rapide si I est grand pour une faible variation de tension; lente si I est faible ; interdite (ou bloquée) si I est quasi- nul. c. Evolutions spontanées et forcées Evolution spontanée : le potentiel E se fixe à E M tel que I C = I A (cf. courbe 4). Courbe 4 Courbe 5 Pile : (Evolution spontanée) L'intensité est la même (cf. courbe 5) dans les deux demi - piles (à la cathode et à l'anode) : I C = I A = I La tension aux bornes de la pile est : u = (E 1 E 2 ) (η A + η C ) R.I avec E 1 et E 2, les potentiels des deux couples donnés par les formules de Nernst, η A et η C, les surtensions éventuelles, et R, la résistance du circuit. Electrolyseur : (Evolution forcée, compléments H.P.) L'intensité est la même (cf. courbe 6) dans les deux demi - piles (à la cathode et à l'anode) : I C = I A La tension à appliquer aux bornes de l électrolyseur est : u = (E 1 E 2 ) (η A + η C ) + R.I avec E 1 et E 2, les potentiels des deux couples donnés par les formules de Nernst, η A et η C, les surtensions éventuelles, et R, la résistance de l électrolyseur. Courbe 6

Compléments : Exemple de système lent : les couples de l eau (courbe expérimentale) b. Piles avec électrodes différentes i. Aspect expérimental Très souvent dans l'industrie, des pièces métalliques sont constituées de métaux différents liés entre eux : il suffit que ces métaux soient en contact avec de l'eau pour réaliser une pile. On considère deux électrodes court-circuitées, l'une de fer et l'autre de cuivre, qui plongent dans une solution aqueuse préalablement désaérée de NaCl à 1 mol.l -1 environ (milieu simulant l'eau de mer). On ajoute quelques gouttes d'orthophénantroline. E (Cu 2+ /Cu) = 0,34 V E (Fe 2+ /Fe) = - 0,44 V Au bout de quelques minutes, on constate un rosissement de la solution traduisant la présence d'ions Fe 2+ qui donne avec l'orthophénantroline un complexe rose. A l'anode, il y a eu oxydation (corrosion) du fer : Fe = Fe 2+ + 2e A la cathode de cuivre, il y a eu réduction : 2 H 2 O(l) + 2 e = H 2 (g) + 2 HO (aq) D'autre part, grâce à la phénolphtaléine, on peut montrer que la solution devient basique au voisinage du cuivre. Le bilan est donc : Fe(s) + 2 H 2 O(l) = Fe 2+ (aq) + H 2 (g) + 2 HO (aq) Des deux métaux en contact, c'est le plus électropositif, donc le plus réducteur,qui est oxydé : seuls Fe 2+ et Cu(s) peuvent coexister (domaine commun). Lorsque deux métaux constituent une pile de corrosion, c'est le plus électropositif (celui qui a le plus petit E ) qui se corrode. On a ainsi mis en évidence une méthode pour protéger un métal de la corrosion : le relier à un autre métal plus électropositif que lui.

ii. Aspect cinétique : potentiel mixte Les courbes intensité - potentiel sur chaque électrode sont données ci-contre. Les deux électrodes étant en contact ont le même potentiel E. Par ailleurs, le courant d'oxydation (1) est égal au courant de réduction (2) en valeur absolue. Il en résulte que le point M de fonctionnement est tel que : i ox =-i red. Le potentiel M est appelé potentiel mixte : c'est le potentiel commun des deux métaux en contact. On l'appelle également potentiel de corrosion. c. Vitesse de corrosion (Compléments H.P.) i. Loi de Tafel On peut montrer théoriquement (équations de Butler-Volmer) que l'intensité i croit exponentiellement avec le B. E potentiel E : i = Ae avec A et B qui sont des constantes caractéristiques du couple. On peut aussi écrire le résultat connu sous le nom de loi de Tafel : E = a + b log i Le choix de la valeur absolue de i permet d'étudier de même la réduction cathodique (pour laquelle i <0) ii. Diagramme d'evans Un métal M est corrodé si sa courbe d'oxydation anodique i = f(e) admet des valeurs de E communes avec une courbe de réduction sur un autre métal, soit existence d'un potentiel mixte. On utilise alors la représentation des courbes i =f(e) en prenant les coordonnées semi logarithmiques, log i et E liées à la loi de Tafel. On obtient alors le diagramme d'evans. Les deux droites se coupent en un point M dont les coordonnées sont : - E m potentiel mixte ou potentiel de corrosion - log i cor qui permet d'atteindre le courant de corrosion i cor et donc la vitesse de corrosion d. Piles avec électrodes identiques i. Pile de concentration On considère la pile dans laquelle deux électrodes identiques (fer) plongent dans deux solutions différentes de Fe 2+, l'une concentrée à droite, et l'autre diluée à gauche. Ce système ne peut pas être en équilibre car les concentrations ne sont pas les mêmes : Le retour à l'équilibre va entraîner l'égalité des potentiels, donc des concentrations, ce qui suppose : - dans (2), une réduction cathodique : Fe 2+ (aq) + 2 e = Fe(s) - dans (1), une oxydation anodique : Fe(s) = Fe 2+ (aq) + 2 e Il y a donc corrosion dans la solution la plus diluée. ii. Pile d'evans : aération différentielle La solution de gauche (1) a été portée à ébullition pour chasser l'air alors que l'on fait barboter de l'air dans la solution de droite (2). Grâce à l'orthophénantroline, on met en évidence la formation d'ions Fe 2+ (aq) dans le compartiment de gauche suivant la réaction : Fe(s) = Fe 2+ (aq) + 2 e. Dans le compartiment de droite, le dioxygène est donc réduit au contact du fer : O 2 (g) + 2 H 2 O + 4e = 4 HO (aq)

L'équation - bilan s'écrit donc : 2 Fe(s) + O 2 (g) + 2 H 2 O = 2 Fe 2+ (aq) + 4 HO (aq) On constate que c'est dans la zone la moins oxygénée que le fer se corrode. Ce phénomène est très général et correspond à une aération différentielle (la concentration en O 2 est différente d'une région à l'autre). Dans l'autre zone, le dioxygène est consommé ce qui tend à diminuer le différentiel d'aération. Ainsi, si une pièce en fer présente une fissure, c'est dans la partie la plus profonde de la fissure, donc la moins aérée, que se produit la corrosion : celle-ci se poursuit en profondeur pouvant entraîner la perforation s'il s'agit d'une plaque. 4. Méthodes de protection du fer a. Protection physique On peut isoler le fer du milieu corrosif en le recouvrant d'une pellicule de peinture. Exemples : peintures anti-rouille à base de minium Pb 3 O 4 (s). De même, on peut déposer sur le fer un revêtement plastique permettant de réaliser des clôtures (grillage plastifié). b. Protection chimique La couche protectrice peut être créée par une réaction chimique : la pièce de fer est plongée dans un bain chaud de phosphate de zinc provoquant la formation d'une couche de phosphate de fer imperméable (parkérisation dans l'industrie automobile). c. Protection métallique en surface On peut protéger le fer par une couche protectrice de zinc (lui-même passivé). En cas d'éraflure du métal protecteur, le fer est mis en contact avec le milieu corrosif : on réalise alors une pile de corrosion dans laquelle c'est le métal le plus électropositif qui s'oxyde, c'est-à-dire le zinc. Cet accident n'entraîne donc pas la corrosion du fer. Exemples : galvanisation ou électrozingage. d. Protection électrochimique Le fer est relié électriquement à du zinc par exemple (ou un autre métal plus électropositif que lui comme Mg ou Al). On a ainsi réalisé une pile de corrosion dans laquelle : - le fer est la cathode, siège d'une réaction de réduction : 2 H 2 O(l) + 2 e = H 2 (g) + 2 HO (aq) - le zinc est l'anode, siège d'une réaction d'oxydation : Zn(s) = Zn 2+ (aq) + 2 e On constate qu'il y a consommation de l'anode en zinc : on parle d'anode sacrificielle. La vitesse de corrosion du zinc peut être déterminée grâce au diagramme d'evans. Bien entendu, la protection du fer cesse lorsque l'anode en zinc est entièrement consommée. Applications : coques des navires, pipelines, cuves en acier enterrées ou immergées.