VOIE DES PENTOSES PHOSPHATES) (PRODUCTION DU POUVOIR REDUCTEUR ET DU RIBOSE)



Documents pareils
1. Principes de biochimie générale. A. Bioénergétique et dynamique. a) Intro: Les mitochondries passent leur temps à fabriquer de l énergie.

Respiration Mitochondriale

5.5.5 Exemple d un essai immunologique

Les plantes et la lumière

VARIATIONS PHOTO-INDUITES DE LA FLUORESCENCE DU NADPH CHLOROPLASTIQUE

Le stress oxydant provoqué par l'exercice : une fatalité?

Méthodes de mesure des activités enzymatiques

Partie 1. Addition nucléophile suivie d élimination (A N + E) 1.1. Réactivité électrophile des acides carboxyliques et groupes dérivés

ACIDES BASES. Chap.5 SPIESS

ULBI 101 Biologie Cellulaire L1. Le Système Membranaire Interne

Utilisation des substrats énergétiques

L eau de Javel : sa chimie et son action biochimique *

INTRODUCTION À L'ENZYMOLOGIE

LA A RESPIRATION CELLULAIRE

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

AGREGATION DE BIOCHIMIE GENIE BIOLOGIQUE

Conditions de culture Consommation d O 2 (nmoles O 2 /min)

Rôle de la PTOX dans la tolérance au stress lumineux chez les plantes alpines Etude d écotypes alpins chez Arabidopsis thaliana

CHAPITRE 3 LA SYNTHESE DES PROTEINES

Transfusions sanguines, greffes et transplantations

- pellicule de fruits qui a un rôle de prévention contre l'évaporation, le développement de moisissures et l'infection par des parasites

2 C est quoi la chimie?

A mes très chers parents

SESSION 2013 ÉPREUVE À OPTION. (durée : 4 heures coefficient : 6 note éliminatoire 4 sur 20) CHIMIE

Allégations relatives à la teneur nutritive

Transport des gaz dans le sang

Transport des gaz dans le sang

Concours du second degré Rapport de jury. Session 2013 CERTIFICAT D'APTITUDE AU PROFESSORAT DE L'ENSEIGNEMENT TECHNIQUE (CAPET)

1 ère partie : Enzymologie et Métabolisme

(ERWINIA PECTINOLYTIQUES)

Titre alcalimétrique et titre alcalimétrique complet

(72) Inventeur: Baijot, Bruno Faculté des Se. Agronom. de l'etat Dép. de Technol. agro-alimentaire et forestière groupe Ceteder B5800 Gembloux(BE)

École secondaire Mont-Bleu Biologie générale

Effets électroniques-acidité/basicité

Indicateur d'unité Voyant Marche/Arrêt

VALORISATION DES CO-PRODUITS ISSUS DE LA PRODUCTION INDUSTRIELLE DE BIOCOMBUSTIBLES

BACCALAURÉAT TECHNOLOGIQUE

Le ph, c est c compliqué! Gilbert Bilodeau, agr., M.Sc.

1.2 Coordinence. Notion de liaison de coordinence : Cas de NH 3. et NH 4+ , 3 liaisons covalentes + 1 liaison de coordinence.

Les biopiles enzymatiques pour produire de l électricité

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Portrait du Groupe Roquette

Quel sirop choisir pour le nourrissement d hiver.

REACTIONS D OXYDATION ET DE REDUCTION

Suivi d une réaction lente par chromatographie

C. Magdo, Altis Semiconductor (Corbeil-Essonne) > NOTE D APPLICATION N 2

Compléments - Chapitre 5 Spectroscopie

Le rôle de l endocytose dans les processus pathologiques

Europâisches Patentamt 19 à. European Patent Office Office européen des brevets (fi) Numéro de publication : A1

Comment déterminer la structure des molécules organiques?

Résonance Magnétique Nucléaire : RMN

TD DOSAGE DE PROTEINES ET ELECTROPHORESE : PARTIE THÉORIQUE BST1 SVT

Commentaires sur les épreuves de Sciences de la Vie et de la Terre

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

MAÎTRISER LA LECTURE DES ÉTIQUETTES NUTRITIONNELLES

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

CHAPITRE 3 LES TASQ COMME PLATEFORME POUR LA CATALYSE PSEUDO-ENZYMATIQUE

1) Teneur en amidon/glucose. a) (Z F) 0,9, b) (Z G) 0,9, où:

Anémie et maladie rénale chronique. Phases 1-4

Sérodiagnostic de la polyarthrite rhumatoïde

TRAVAUX PRATIQUESDE BIOCHIMIE L1

Calcaire ou eau agressive en AEP : comment y remédier?

Tout sur le sucre Octobre 2012

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

10 en agronomie. Domaine. Les engrais minéraux. Livret d autoformation ~ corrigés. technologique et professionnel

TEST SUR LA CLASSIFICATION DES ANTIOXYDANTS. Répondez par oui ou non en cliquant sur la case correspondante :

Annales de Biologie Cellulaire QCM (niveau SVT 1 er année)

C3. Produire de l électricité

Synthèse et propriétés des savons.

CENTRE INTERNATIONAL D ETUDES SUPERIEURES EN SCIENCES AGRONOMIQUES MONTPELLIER SUPAGRO THESE. Pour obtenir le grade de

Biochimie I. Extraction et quantification de l hexokinase dans Saccharomyces cerevisiae 1. Assistants : Tatjana Schwabe Marcy Taylor Gisèle Dewhurst

TD de Biochimie 4 : Coloration.

TECHNIQUES: Principes de la chromatographie

présentée à l Institut National des Sciences Appliquées de Toulouse par Marlène COT

contributions Les multiples de la chimie dans la conception des tablettes et des Smartphones Jean-Charles Flores

Utilisation historique de nanomatériaux en pneus et possibilités de nouveaux développements

Végétaux Exemples d individus

Les isomères des molécules organiques

Bioélectrodes enzymatiques pour des applications en biocapteurs et en biopiles

ANALYSE SPECTRALE. monochromateur

Univers Vivant Révision. Notions STE

ATELIER SANTE PREVENTION N 2 : L ALIMENTATION

DOSSIER SCIENTIFIQUE DE L'IFN "LES GLUCIDES" SOMMAIRE

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

Présentation générale des principales sources d énergies fossiles.

FACULTE DE MEDECINE DE TOURS

HRP H 2 O 2. O-nitro aniline (λmax = 490 nm) O-phénylène diamine NO 2 NH 2

LES CORTICOÏDES EN MEDECINE VETERINAIRE

Site : mail : mennier@isnab.fr SUJET ES - session 2003 Page 1 68-(7(6VHVVLRQ

TEST ELISA (ENZYME-LINKED IMMUNOSORBENT ASSEY)

Chapitre 5 : Noyaux, masse et énergie

lire les Étiquettes et trouver les sucres cachés

MASSE, VOLUME ET QUANTITE DE MATIERE

LES SUBSTITUTIONS NUCLÉOPHILES EN SÉRIE ALIPHATIQUE S N 1 ET S N 2

LD-P PRINCIPE ECHANTILLON. Coffret référence REVISION ANNUELLE Date. Date APPLICATION

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

Exemple de cahier de laboratoire : cas du sujet 2014

Fiche documentaire FAIRE LES PRODUITS D USAGE DOMESTIQUE SANS DANGER POUR L AIR

Équivalence masse-énergie

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

Transcription:

1 ucours DE METABOLISME Chapitre 9 (Pr C. ZINSOU) 1 INTRODUCTION VOIE DES PENTOSES PHOSPHATES) (PRODUCTION DU POUVOIR REDUCTEUR ET DU RIBOSE) 2 - PRODUCTION DE NADPH,H + : POUVOIR REDUCTEUR PHASE 1 : LES REACTIONS D OXYDOREDUCTION 2.1 - Déshydrogénation du glucose 6-phosphate 2.2 Déshydrogénation décarboxylante du gluconate-6-phosphate PHASE.2 : ISOMERISATION DES PENTOSES 2.3 - Epimérisation du ribulose 5-Ł en xylulose 5-Ł 2.4 - Isomérisation du 3e ribulose 5-Ł en ribose 5-Ł PHASE 3 : INTERCONVERSION DES OSES 2.5 - Formation du sédoheptulose 7-Ł par transcétolation 2.6 - Formation du fructose 6-Ł par transaldolisation 2.7 - Formation d'un 2 e fructose 6-Ł par transcétolation 2.8 Isomérisation des fructose 6-Ł en glucose 6-Ł 2.9 Bilan de la voie 3 CONVERSION DU GLUCOSE EN RIBOSE 3.1 - Transcétolation entre un fructose 6-Ł et un glycéraldéhyde 3-Ł 3.2 - Formation du sédoheptulose 7-Ł par transaldolisation. 3.3 - Deuxième transcétolation 3.4 - Epimérisation du xylulose 5-Ł en ribulose-ł 3.5 - Isomérisation des 2 ribulose 5-Ł en 2 ribose 5-Ł 3.6 - Bilan 4 CONVERSION DU GLUCOSE EN RIBOSE AVEC FORMATION DE NADPH,H + 4.1- Déshydrogénation du glucose 6-Ł 4.2 - Déshydrogenation décarboxylante du gluconate 6-Ł 4.3 - Isomérisation du ribulose -Ł en ribose -Ł 4.4 - Bilan 5 - LE NADPH,H + : POTENTIEL REDUCTEUR DE LA CELLULE 5.1 NADPH,H+ : donneur des électrons dans les réductions biosynthétiques. 5.2 Réduction du peroxyde d hydrogène (H 2 O 2 ) et des peroxydes 5.3 Système cytochrome P-450 mono-oxygénase des microsomes du foie 5.4 La phagocytose 6 - ENZYMOPATHIES : DEFICIENCES EN GLUCOSE 6-Ł DH (G6PDH) 6.1 - Rôle de G6PDH dans les globules rouges 6.2 Déficiences en G6PDH muettes NB : Les illustrations et figures sont contenues dans le document de travail

2 1 INTRODUCTION Les glucides, par l'intermédiaire de la voie glycolytique, sont à l'origine de la formation de l'atp et de NADH,H +. Les électrons stockés sous forme de NADH,H + constituent la majeure partie de l'énergie métabolique. Elle est destinée à la fabrication de l'atp dans la phosphorylation oxydative. Les glucides sont aussi à l'origine de réactions d'oxydoréduction dont les électrons et les protons libérés sont stockés sous forme de NADPH,H +. Le pool de NADPH,H + représente le pouvoir réducteur dont la cellule a besoin dans les réactions de biosynthèse réductrices. La formation de NADPH,H + a lieu, dans les cellules, grâce à la voie des pentoses phosphates. Les autotrophes produisent du NADPH,H + aussi bien par la voie des pentoses phosphates que par la photosynthèse au cours du transport acyclique des électrons. Cette voie des pentoses phosphates n'engendre pas seulement du NADPH,H + mais aussi des pentoses, en particulier du ribose 5-Ł, constituant essentiel des coenzymes pyridiniques et flaviniques, du coenzyme A, de l'atp et des acides nucléiques. La voie des pentoses phosphates est nourri par le glucose 6-Ł. 2 - PRODUCTION DE NADPH,H + : POUVOIR REDUCTEUR Dans ce cas de figure la cellule produit essentiellement du NADPH,H + à partir du glucose. La séquence des réactions enzymatiques est décrite en 3 phases. Pour tenir compte de la stœchiométrie des réactions, nous partons de 3 molécules de glucose 6-Ł. PHASE 1 : LES REACTIONS D OXYDOREDUCTION Les réactions d oxydation qui se produisent au cours de cette phase sont les lieux de formation du pouvoir réducteur sous forme de NADPH,H +. Les électrons arrachés au glucose 6-Łe et au gluconate 6-Ł sont transférés sur NADP + au lieu de NAD +. Ils n ont aucune valeur énergétique mais seront utilisés dans les réactions d oxydoréduction réductrices catalysées par des réductases. 2.1 - DESHYDROGENATION DES GLUCOSE 6-Ł En présence de NADP + comme cofacteur et sous l'action de la glucose-6-ł déshydrogénase (G6PDH), le glucose 6-Ł est oxydé en gluconate 6-Ł: 3 Glucose 6-Ł + 3 NADP + < > 3 gluconate-6-ł + 3 NADPH,H + 2.2 DESHYDROGENATION DECARBOXYLANTE DU GLUCONATE 6-Ł Elle se fait sous l'action de la gluconate-6-ł déshydrogénase et avec NADP + comme cofacteur. C'est la 2 e réaction d'oxydoréduction qui entraîne l'oxydation de la fonction alcool du carbone 3 en fonction cétone. Cette dernière déstabilise la fonction carboxylique terminale. Il s ensuit une décarboxylation donnant le ribulose 5-Ł. 3 Ł-O-CH 2 -(CHOH) 4 -COOH +3 NADP + 3 Ł-O-CH 2 -(CHOH) 2 -CO-CH 2 OH + 3 CO 2 + 3 NADPH,H +

3 PHASE 2 : ISOMERISATIONS DES PENTOSES PHOSPHATES Les deux réactions de cette phase préparent à la suivante. 2.3 - EPIMERISATION DU RIBULOSE 5-Ł EN XYLULOSE 5-Ł La réaction est catalysée par une phosphopentose 3-épimérase. Deux des 3 ribulose 5-Ł sont transformés en xylulose 5-Ł. H OH 2 Ł-O-CH 2 -CHOH-C-CO-CH 2 -OH < > 2 Ł-O-CH 2 -CHOH-C-CO-CH 2 OH OH H Ribulose 5-Ł Xylulose 5-Ł 2.4 - ISOMERISATION DU 3 E RIBULOSE 5-Ł EN RIBOSE 5-Ł Elle se fait sous l'action de la ribose 5-phosphate isomérase. Ł-O-CH 2 -CHOH-CHOH-CO-CH 2 OH < > Ł-O-CH 2 -CHOH-CHOH-CHOH-CHO PHASE 3 : INTERCONVERSION DES OSES PHOSPHATES A la fin de la phase 2 les 18 carbones, entrés dans la voie sous forme de 3 glucose 6-Ł sont répartis dans 3 CO 2 dégagés après l oxydation des gluconate 6-Ł, un ribose 5-Ł et 2 xylulose 5-Ł. Dans la phase 3 se produisent 3 réactions, 2 de transcétolation et 1 de transaldolisation qui, par le jeu de transfert de carbones terminaux, permettent la reformation du glucose 6-Ł via le fructose 6-Ł. Toutes ces réactions sont réversibles. 2.5 - FORMATION DU SEDOHEPTULOSE 7-Ł PAR TRANSCETOLATION La réaction est catalysée par la transcétolase et fait intervenir le ribose-5-ł et l un des xylulose 5-Ł. Deux carbones terminaux du xylulose 5-Ł sont transférés à l extrémité du ribose 5-Ł. Ł-O-CH 2 -CHOH-CHOH-CO-CH 2 OH + Ł-O-CH 2 -CHOH-CHOH-CHOH-CHO < > Ł-O-CH 2 -(CHOH) 4 -CO-CH 2 OH + Ł-O-CH 2 -CHOH-CHO 2.6 - FORMATION DU FRUCTOSE 6-Ł PAR TRANSALDOLISATION Les produits de la réaction précédente deviennent les substrats de la transaldolase pour former un fructose 6-Ł et un érythrose 4-Ł. Trois carbones terminaux du sédoheptulose 7-Ł sont transférés sur le glycéraldéhyde 3-Ł suivant la réaction : Ł-O-CH 2 -(CHOH) 2 -CHOH-CHOH-CO-CH 2 OH + Ł-O-CH 2 -CHOH-CHO < > Ł-O-CH 2 -(CHOH) 3 -CO-CH 2 OH + Ł-O-CH 2 -CHOH-CHOH-CHO

4 2.7 - FORMATION D'UN SECOND FRUCTOSE 6-Ł PAR TRANSCETOLATION Les deux premiers carbones du xylulose 5-Ł restant sont transférés sur l'érythrose- 4-Ł pour former un deuxième fructose 6-Ł avec libération d'un glycéraldéhyde-3-ł. La réaction est catalysée par la transcétolase. Ł-O-CH 2 -CHOH-CHOH-CO-CH 2 OH + Ł-O-CH 2 -CHOH-CHOH-CHO < > Ł-O-CH 2 -(CHOH) 3 -CO-CH 2 OH + Ł-O-CH 2 -CHOH-CHO 2.8 - ISOMERISATION DES 2 FRUCTOSE 6-Ł EN GLUCOSE 6-Ł 2 fructose 6-Ł 2 glucose-6-ł 2.9 - BILAN DE LA VOIE Le bilan global de la séquence des réactions, orientée vers la production de NADPH,H + s écrit : 3 Glucose 6-Ł + 6 NADP + 2 Glucose 6-Ł + Glycéraldéhyde 3-Ł + 6 NADPH,H + + 3 CO 2. ou glucose-6-ł + 6 NADP + glycéraldéhyde 3-Ł + 3 CO 2 + 6 NADPH,H + ce qui signifie qu'à chaque tour un glucose est oxydé et il se forme : 3 CO 2, 1 glycéraldéhyde-3-ł et 6 NADPH,H +. Sachant que le glycéraldéhyde est la moitié d un glucose on en déduit que l oxydation complète d'un glucose fournit 12 NADPH,H +, ce qui donne. Glucose 6-Ł + 12 NADP + fi 6 CO 2 + 12 NADPH,H + + Pi L'ensemble de ces réactions constituent le mode 1 de fonctionnement de la voie des pentoses phosphates, destiné à produire essentiellement du pouvoir réducteur pour les biosynthèses..3 CONVERSION DU GLUCOSE EN RIBOSE Lorsque les besoins cellulaires en ribose sont élevés, le glucose est transformé essentiellement en ribose. Les substrats sont prélevés au niveau de la glycolyse sous forme de 2 fructose 6-Ł et de glycéraldéhyde 3-Ł. Seules les phases 2 et 3 fonctionnent mais en sens inverse puisque toutes les réactions de cette phase sont réversibles. 3.1 - REACTION DE TRANSCETOLATION ENTRE UN FRUCTOSE 6-Ł ET UN GLYCERALDEHYDE 3-Ł La réaction est catalysée par une transcétolase. Les deux carbones terminaux du fructose 6-Ł sont transférés à l extrémité du glycéraldéhyde 3-Ł : Fructose 6-Ł + glycéraldéhyde 3-Ł < > xylulose 5-Ł + érythrose 4-Ł 3.2 - FORMATION DU SEDOHEPTULOSE 7-Ł PAR TRANSALDOLISATION. Les 3 carbones terminaux du second fructose 6-Ł sont transférés à l extrémité de l érythrose 4-Ł. La réaction est catalysée par la transaldolase. Fructose 6-Ł + érythrose 4-Ł < > sédoheptulose 7-Ł + glycéraldéhyde 3-Ł.

5 3.3 - DEUXIEME REACTION DE TRANSCETOLATION Elle met en jeu les deux produits de la réaction précédente. Elle est encore catalysée par la transcétolase. Sédoheptulose-7-Ł + glycéraldéhyde 3-Ł < > xylulose 5-Ł + ribose 5-Ł 3.4 - EPIMERISATION DU XYLULOSE EN RIBULOSE Les deux xylulose 5-Ł formés sont isomérisés en ribulose 5-Ł. La réaction est catalysée par une phosphopentose 3-épimérase. 2 xylulose 5-Ł < > 2 ribulose 5-Ł 3.5 - ISOMERISARISATION DES 2 RIBULOSE5-PHOSPHATE EN 2 RIBOSE 5- PHOSPHATE L enzyme responsable est la phosphopentose isomérase 2 Ribulose 5-Ł < > 2 Ribose 5-Ł 3.6 BILAN 2 fructose 6-Ł + glycéraldéhyde 3-Ł 3 ribose 5-Ł Comme un glycéraldéhyde correspond à la moitié d'un glucose et un fructose à un glucose on en déduit en faisant abstraction des groupements phosphates ; 5 glucose 6 ribose Dans ce mode de fonctionnement 5 glucose sont transformés en 6 ribose. 4 CONVERSION DU GLUCOSE EN RIBOSE AVEC FORMATION DE NADPH,H + La voie des pentoses phosphates se réduit aux trois réactions suivantes : 4.1- DESHYDROGENATION DU GLUCOSE 6-Ł Le glucose est prélevé au niveau de la glycolyse. Il subit une déshydrogénation en présence de NADP +, catalysée par la glucose 6-phosphate déshydrogénase : Glucose 6-Ł + NADP + gluconate 6-Ł + NADPH,H + 4.2 - DESHYDROGENATION DECARBOXYLANTE DU 6-PHOSPHOGLUCONATE La réaction est catalysée par la gluconate 6-phosphate déshydrogénase : gluconate-6-ł + NADP + ribulose 5-Ł + CO 2 + NADPH,H + 4.3 - ISOMERISATION DU RIBULOSE 5-Ł EN RIBOSE 5-Ł La réaction est catalysée par la phosphopentose isomérase Ribulose 5-Ł < > Ribose 5-Ł

6 4.4 BILAN Glucose 6-Ł + 2 NADP + > Ribose 5-Ł + CO 2 + 2 NADPH,H + La cellule forme à partir du glucose un ribose 5-Ł et 2 NADPH,H + lorsqu elle a besoin à la fois du ribose et du pouvoir réducteur.. 5 - LE NADPH,H + : POTENTIEL REDUCTEUR DE LA CELLULE A l attention des étudiants de PCEM1 Le NADP + diffère de NAD + par la présence d un groupe phosphate supplémentaire sur le carbone C 2 du ribose. Cette petite différence dans sa structure lui permet d interagir spécifiquement avec certaines enzymes et de jouer des rôles importants. Dans le cytosol des hépatocytes le rapport NADP + /NADPH,H + est de 0.1, alors que celui de NAD + /NADH,H + est de 1000, ce qui confère un rôle d oxydant privilégié au NAD +. Voici quelques rôles du couple NADP + /NADPH,H + dans la cellule. 5.1 NADPH,H+ : POUVOIR REDUCTEUR DANS LES BIOSYNTHESES. Les électrons de NADPH,H + ne sont pas destinés à approvisionner la phosphorylation oxydative pour produire de l ATP mais ils sont utilisés dans les réactions de biosynthèse exigeant un potentiel de réduction puissant comme dans la synthèse des acides gras. Le couple est utilisé sous sa forme réduite et les enzymes qui l utilisent comme coenzymes prennent habituellement le nom de réductases au lieu de déshydrogénases. Il intervient dans la séquence de réactions de réductions biosynthétiques conduisant de la fonction carboxylique à la fonction alcool. Il intervient aussi pour fournir les électrons et les protons nécessaires à la réduction de la double liaison formée dans la voie de synthèse des acides gras. R-CH=CH-CH 2 -CO SCoA + NADPH,H + R-CH 2 -CH 2 -CH 2 -CO SCoA+ NADP + 5.2 REDUCTION DU PEROXYDE D HYDROGENE (H 2 O 2 ) ET DES PEROXYDES Ces composés sont formés continuellement au cours des réactions de réductions partielles de O 2. Ils sont très réactifs et peuvent causer des dommages importants dans l organisme. Les peroxydes sont impliqués dans plusieurs processus pathologiques à savoir cancer, maladies inflammatoires, vieillissement etc. La cellule dispose de plusieurs mécanismes de protection contre les effets de ces composés. - Enzymes de réduction des peroxydes (détoxication). L exemple est fourni par la décomposition du peroxyde d hydrogène par la glutathion peroxydase en présence du glutathion réduit (G-SH) qui donne les électrons et les protons nécessaires. Le glutathion oxydé (G-S-S-G) est réduit à son tour par les électrons de NADPH,H + en présence de glutathion réductase voir ci-dessous. NADP + 2 G-SH H 2O 2 Glutathion Réductase Glutathion Peroxydase NADPH,H + G-S-S-G 2 H 2O CH 2-SH HOOC-CH-CH 2-CH 2-CO-NH-CH-CO-NH-CH 2-COOH NH2 Glutamate Cystéine Glycocolle Figure : Mécanisme de réduction du peroxyde d hydrogène utilisant le glutathion Figure : Structure du glutathion

7 - Présence d antioxydants cellulaires comme l ascorbate (vit C), vitamine E, β- carotène capables de réduire ces composés. La consommation d aliments riches en ces composés peut assurer la prévention contre certains types de cancers (poumons, œsophage, estomac colon, etc.) et certaines maladies chroniques. 5.3 SYSTEME CYTOSOLIQUE P-450 MONO-OXYGENASE DU FOIE Ce système fonctionne dans le foie pour hydroxyler les noyaux aromatiques, certaines molécules aliphatiques et certains médicaments afin de les rendre solubles et faciliter leur excrétion par le rein (détoxication). Le NADPH,H + apporte les électrons de réduction nécessaires. La réaction globale catalysée est : RH + O 2 + NADPH,H + R-OH + NADP + + H 2 O Ce système est utilisé pour la synthèse de la tyrosine à partir de la phénylalanine. 5.4 LA PHAGOCYTOSE La phagocytose utilisée par les leucocytes pour l élimination des particules étrangères, micro-organismes et débris cellulaires nécessite du NADPH,H +. Après phagocytose les réactions suivantes interviennent : - La NADPH,H + oxydase située dans la membrane des leucocytes active l oxygène moléculaire en superoxyde (radical libre très oxydant). - Le superoxyde est converti en peroxyde d hydrogène par une superoxyde dismutase. - Ce dernier en présence de l ion chlorure est converti en acide hypochlorique (agent actif de l eau de Javel domestique) qui tue les microorganismes. L excès du peroxyde est neutralisé par la catalase ou la glutathion peroxydase. 6 - ENZYMOPATHIES : DEFICIENCES EN GLUCOSE 6-Ł DESHYDROGENASE A l attention des étudiants de PCEM1 La déficience en glucose 6-Ł déshydrogénase (G6PDH) est une maladie héritée. Elle se caractérise par une anémie hémolytique due à une incapacité à réduire les agents oxydants. Elle est commune et affecte près de 200 millions d individus dans le monde. Elle est en fait causée par une famille de déficiences dues à près de 400 mutations sur le gène codant pour l enzyme. 6.1 ROLE DE LA GLUCOSE 6-P DESHYDROGENASE DANS LES HEMATIES Les globules rouges n ont pas de noyau ni de ribosomes. Ils sont donc incapables de synthétiser la G6PDH qui catalyse la formation de NADPH,H +, nécessaire à la désactivation des radicaux libres. Bien que cette déficience affecte toutes les cellules, ces dernières ont une autre source de fabrication du NADPH,H + grâce à la malate déshydrogénase NADP + dépendante. Ce n est pas le cas dans les globules rouges qui sont donc très vulnérables lorsqu une mutation affecte l activité de G6PDH.

8 6.2 DEFICIENCES EN G6PDH MUETTES Les individus qui ont hérité de l une des nombreuses mutations affectant l activité de G6PDH ne présentent pas, tous, des manifestations cliniques. Cependant certains de ces individus peuvent présenter une anémie hémolytique : à la suite de traitement à base de médicaments oxydants appelés les AAA : Antibiotiques, Anti-malaria et Antipyrétiques excepté l aspirine. si le régime alimentaire est à base de consommation de fève (favisme). lors des infections. La réponse inflammatoire produit des radicaux libres dans les macrophages, qui diffusent dans les globules rouges et causent des dommages importants. Certaines mutations en G6PDH n affectent pas le site catalytique de l enzyme qui peut dans ce cas présenter une activité normale. Par contre d autres affectent les propriétés cinétiques de l enzyme résultant d une baisse de l activité ou de l affinité de l enzyme pour le glucose 6-phosphate ou pour le NADP +. La maladie est considérée comme grave lorsque l activité résiduelle de la G6PDH se situe en dessous de 10 %.