Cahier de laboratoire Principes de Géochimie 6GCH110 Élémentaire cher Watson! L.Paul Bédard, ing. Ph.D.



Documents pareils
Chapitre 02. La lumière des étoiles. Exercices :

4. Conditionnement et conservation de l échantillon

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

TP n 1: Initiation au laboratoire

Matériel de laboratoire

33-Dosage des composés phénoliques

Application à l astrophysique ACTIVITE

Comprendre l Univers grâce aux messages de la lumière

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

Chapitre 11: Réactions nucléaires, radioactivité et fission

GUIDE DE BONNES PRATIQUES POUR LA COLLECTE DE PILES ET ACCUMULATEURS AU LUXEMBOURG

TECHNIQUES: Principes de la chromatographie

SP. 3. Concentration molaire exercices. Savoir son cours. Concentrations : Classement. Concentration encore. Dilution :

CODEX ŒNOLOGIQUE INTERNATIONAL. SUCRE DE RAISIN (MOUTS DE RAISIN CONCENTRES RECTIFIES) (Oeno 47/2000, Oeno 419A-2011, Oeno 419B-2012)

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

Atelier : L énergie nucléaire en Astrophysique

Un spectromètre à fibre plus précis, plus résistant, plus pratique Concept et logiciel innovants

(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.»

Détermination des métaux : méthode par spectrométrie de masse à source ionisante au plasma d argon

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

LABORATOIRES DE CHIMIE Techniques de dosage

EXERCICES SUPPLÉMENTAIRES

LA MESURE DE MASSE POUR LA DÉTERMINATION DE PÉRIODES RADIOACTIVES

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

C3. Produire de l électricité

BTS BAT 1 Notions élémentaires de chimie 1

L École nationale des pompiers du Québec. Dans le cadre de son programme de formation Pompier I

10 en agronomie. Domaine. Les engrais minéraux. Livret d autoformation ~ corrigés. technologique et professionnel

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Mesures et incertitudes

Choisir et utiliser un détecteur de gaz pour le travail en espace clos.

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

Calcaire ou eau agressive en AEP : comment y remédier?

Energie nucléaire. Quelques éléments de physique

Solutions pour le calibrage et l entretien Gamme complète d accessoires indispensables

FICHE DE DONNEES DE SECURITE

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

M A N U E L D I N S T R U C T I O N S

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

Correction ex feuille Etoiles-Spectres.

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE

Acides et bases. Acides et bases Page 1 sur 6

Parcours de visite, lycée Exposition: LA RADIOACTIVITÉ De Homer à oppenheimer

Capteur à CO2 en solution

Bleu comme un Schtroumpf Démarche d investigation

8/10/10. Les réactions nucléaires

Physique Chimie. Réaliser les tests de reconnaissance des ions Cl -,

Production mondiale d énergie

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

Chapitre 5 : Noyaux, masse et énergie

- MANIP 2 - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

ACCREDITATION CERTIFICATE. N rév. 5. Satisfait aux exigences de la norme NF EN ISO/CEI : 2005 Fulfils the requirements of the standard

GASMAN II MANUEL D UTILISATION

- I - Fonctionnement d'un détecteur γ de scintillation

L ÉNERGIE C EST QUOI?

Dosage des métaux lourds (As, Cd, Cr, Cu, Ni, Pb, Zn et Hg) dans les sols par ICP-MS

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

Rappels sur les couples oxydantsréducteurs

Commission juridique et technique

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème /2015

Visite à l ICV. En 2009, la création du GIE ICV-VVS permet de franchir un cap en regroupant toutes les ressources disponibles aux filiales ICV et VVS.

Portier Vidéo Surveillance

TPG 12 - Spectrophotométrie

Chapitre 7 Les solutions colorées

pka D UN INDICATEUR COLORE

TD-SEC MODE OPÉRATOIRE

La spectrophotométrie

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

LES DOUCHES ET LES BASSINS OCULAIRES D URGENCE

Fiche 19 La couleur des haricots verts et cuisson

Résonance Magnétique Nucléaire : RMN

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

La physique nucléaire et ses applications

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

Module 3 : L électricité

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION

INFUSIONS MC Marquises contrastantes en polycarbonate Mode d assemblage et d installation

FORMATION ASSURANCE QUALITE ET CONTROLES DES MEDICAMENTS QUALIFICATION DES EQUIPEMENTS EXEMPLE : SPECTROPHOTOMETRE UV/VISIBLE

ACIDES BASES. Chap.5 SPIESS

TP 3 diffusion à travers une membrane

FICHE 1 Fiche à destination des enseignants

MESURE DE LA TEMPERATURE

Comment expliquer ce qu est la NANOTECHNOLOGIE

ANALYSE SPECTRALE. monochromateur

DIFFRACTion des ondes

Haute Ecole de la Ville de Liège. Institut Supérieur d Enseignement Technologique.

eedd LA PLANETE N EST PAS UNE POUBELLE 1/7

IR Temp 210. Thermomètre infrarouge. Des techniques sur mesure

LE FILTRE A PARTICULES : SES PROBLEMATIQUES ET NOS SOLUTIONS

Biochimie I. Extraction et quantification de l hexokinase dans Saccharomyces cerevisiae 1. Assistants : Tatjana Schwabe Marcy Taylor Gisèle Dewhurst

CHROMATOGRAPHE BTEX GC 5000 BTX

A B C Eau Eau savonneuse Eau + détergent

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

10. Instruments optiques et Microscopes Photomètre/Cuve

Cahier n o 7. Mon ordinateur. Gestion et Entretien de l ordinateur

L échelle du ph est logarithmique, c està-dire

Transcription:

Cahier de laboratoire Principes de Géochimie 6GCH11 Élémentaire cher Watson! L.Paul Bédard, ing. Ph.D. 31 août 27

2

Table des matières 1 Les exigences 7 1.1 La sécurité.............................. 7 1.2 Le rapport.............................. 7 1.3 Le déroulement........................... 8 2 Les concepts de base 11 2.1 Introduction............................. 11 2.2 La précision............................. 11 2.3 La justesse.............................. 12 2.4 Les limites de détection....................... 13 2.4.1 Limite de détection inférieure ( x LLD )........... 14 2.4.2 Limite de détermination ( x LoD ).............. 14 2.4.3 Limite de quantitation ( x LoQ )............... 15 2.4.4 Les assurances qualité................... 15 2.5 Notation............................... 16 3 Le broyage 19 3.1 Introduction............................. 19 3.2 Concasseur à m choire (jaw crusher)................ 2 3.3 Broyeur à disque Bico (disc mill)................. 21 3.4 Broyeur shatterbox........................ 21 3.5 Le mortier-pilon........................... 22 3.6 La contamination et son effet.................... 22 4 La coloration des minéraux 25 4.1 Théorie............................... 25 4.1.1 En cas déversement..................... 26 4.2 Les feldspaths............................ 27 3

4 TABLE DES MATIÈRES 4.2.1 Préparation......................... 27 4.2.2 Manipulations....................... 27 5 La Perte au feu 29 5.1 Théorie............................... 29 5.2 Protocole.............................. 3 6 L analyse du soufre et du carbone 31 6.1 Théorie............................... 31 6.2 Protocole d analyse pour le S et C................. 31 7 L Absorption Atomique 35 7.1 Théorie............................... 35 7.1.1 Les interférences dans la flamme atomisante........ 41 7.1.2 Protocole pour une mise en solution à partir de fusion... 42 7.1.3 Protocole pour une mise en solution à l eau régal..... 44 7.1.4 Protocole pour la prépartion des solutions de référence.. 45 7.1.5 Protocole pour la lecture des échantillons à l appareil... 46 7.1.6 Calculs........................... 46 7.1.7 Exemple de calcul..................... 47 8 L activation neutronique 49 8.1 Théorie............................... 49 8.1.1 Introduction......................... 49 8.1.2 Méthode.......................... 49 8.1.3 Instrumentation....................... 51 8.2 Protocole.............................. 51 8.3 Le logiciel EPAA.......................... 54 8.3.1 Utilisation de EPAA.................... 54 9 Traitement des données 67 9.1 Contrôle de la qualité........................ 67 9.2 Interprétation............................ 68 A Échantillon de références 73 B Analytes manquants de vos échantillons 77 C Résultats de l échantillon PAL-4 79

TABLE DES MATIÈRES 5 D Chondrite 81 E Feuille de notes : mise en solution par fusion 83 F Feuille de notes : mise en solution à l eau régal 85 G Laboratoire : le broyage 87 H Laboratoire : PAF, S, C et coloration 89 I Laboratoire : mise en solution AA 91 J Laboratoire : Absorption Atomique 93 K Laboratoire : INAA (activation neutronique) 95 L Laboratoire : Traitement des données 97

6 TABLE DES MATIÈRES

Chapitre 1 Les exigences 1.1 La sécurité Le port de sarrau propre et de lunettes de sécurité est obligatoire. Il est interdit de manger, de boire et de fumer dans le laboratoire. La vaisselle et l espace de travail doivent être nettoyés après la séance. Le verre brisé doit être jeté dans la poubelle à cet effet. En cas de doute sur une manipulation demandez conseil au responsable. Certaines réactions peuvent être très violentes et/ou toxiques, soyez prudents. 1.2 Le rapport Votre rapport devra contenir une introduction incluant le pourquoi du laboratoire ; vos résultats analytiques tels que lus sur l appareil ; vos résultats calculés ; des exemples de calculs ; des calculs de précision et de justesse ; le traitement et interprétation des données une comparaison des méthodes avec leurs avantages et désavantages relatifs ; une discussion et une conclusion. 7

8 CHAPITRE 1. LES EXIGENCES TAB. 1.1 Échantillons à doser dans les laboratoire Éch. nom pétrographie type 1 PAL-1 mélagneiss inconnu 2 PAL-2 gabbronorite inconnu 3 PAL-3 leucogabbro inconnu 4 KPT-1 diorite contrôle de la qualité 5 KPT-1 diorite contrôle de la qualité 6 KPT-1 diorite contrôle de la qualité TAB. 1.2 Pétrographie des échantillons Pétrographie hyperstène plagioclase augite quartz pyrrhotine mélagneiss 6 % 3 % 1 % nd moins de 1 % gabbronorite 15 % 4 % 45 % nd moins de 1 % leucogabbro 1 % 7 % 2 % nd -1 % diorite nd 79 % 2 % 1 % 1-2 % 1.3 Le déroulement Le laboratoire se veut le plus réaliste possible. Chaque équipe a trois échantillons inconnus et un échantillon de référence (KPT-1 : une diorite) dont les résultats sont disponibles en annexe A. Ainsi en comparant les résultats de l échantillons de référence avec vos résultats il sera possible de déterminer si le protocole appliqué est validé ou non. Les échantillons proviennent du Lac Pallador un indice intéressant d or et de palladium dans le nord du Québec. Les échantillons proviennent des différentes parties de l intrusion. L indice est situé dans une intrusion mafique différenciée. Il faut identifier où se situe la minéralisation par rapport à la différenciation. Les trois roches de chaque équipe sont différentes, attention. Vous devrez doser vos échantillons vous-même, le responsable de laboratoire est là pour vous guider seulement. À la fin de chaque séance analytique, vous aurez un petit rapport d une page à remettre à la fin de la semaine. Ces derniers vous serviront à la rédaction finale de votre rapport.

1.3. LE DÉROULEMENT 9 TAB. 1.3 Analyses chimiques des minéraux Analyte hyperstène plagioclase augite quartz pyrrhotine SiO 2 %m/m 51.47 49.6 48.18 1 nd TiO 2 %m/m.29 nd.7 nd nd Al 2 O 3 %m/m 1.56 32.14 1.6 nd nd Fe 2 O 3 %m/m 22.9.27 27.54 nd 59.97 MnO %m/m.52 nd.53 nd nd MgO %m/m 21.68.2 3.53 nd nd CaO %m/m 1.45 15.38 18.9 nd nd Na 2 O %m/m.7 2.57.23 nd nd K 2 O %m/m.3.17.4 nd nd H 2 O%m/m.2.16 nd nd nd S %m/m nd nd nd nd 38.99 Ni %m/m nd nd nd nd.42 Total %m/m 99.99 99.95 1.7 1. 99.39 Vous devez vous assurer que vos résultats d échantillons de référence correspondent à ceux donnés en annexe avant de doser vos inconnus. Semaine Équipe 1 Équipe 2 Équipe 3 Équipe 4 27 AO 27 Broyage Mise en soln AA PAF, S et colo. pas de lab. 3 SE 27 PAF, S et colo. AA Broyage. Mise en soln AA 1 SE 27 INAA Broyage Mise en soln AA AA 17 SE 27 Pas de lab. PAF, S et colo. AA INAA 24 SE 27 Mise en soln AA INAA Pas de lab PAF, S et colo. 1 OC 27 Pas de lab. Pas de lab. INAA Broyage. 8 OC 27 AA Pas de lab. Pas de lab. Pas de lab. 15 OC 27 Traitement Traitement Traitement Traitement 22 OC 27 mi-session mi-session mi-session mi-session 2 NO 27 rapport final rapport final rapport final rapport final

1 CHAPITRE 1. LES EXIGENCES

Chapitre 2 Les concepts de base 2.1 Introduction Ces notions sont très importantes en analyses chimiques. Cette section veut entre autre répondre à la question : quelle est l incertitude sur cette analyse?. Il devient possible de connaître les limites des analyses et leur applicabilité à la résolution d une problématique. La notion d incertitudes calculées et de calcul d incertitude est très importante mais ne tient pas compte des incertitudes synergiques et des incertitudes qui s annulent. Il est préférable de s en tenir aux notions de justesse et de précision qui rendront compte de l ensemble de tous les phénomènes d incertitudes. 2.2 La précision La précision correspondant à la reproductibilité d une analyse soit comment un même échantillon analysé plus d une fois donnera un résultat similaire. Ces notions peuvent être comparées à du tir sur une cible. La précision étant la capacité à grouper ces tirs (Figure 2.1), ainsi les carrés et les ronds NE montrent PAS une grande précision contrairement au losanges et aux triangles. Cette notion est généralement mesuré par l écart-type relative (RSD) soit : RSD = Ecart type Moyenne 11

12 CHAPITRE 2. LES CONCEPTS DE BASE où l écart-type est : s = n i=1 (x i x) 2 n 1 ou encore par le rapport des deux valeurs sur 1 % s il y a trop peu de données. Il est généralement relativement facile d être précis. Il est important d être précis, lors d évaluation de gisement par exemple, autrement les teneurs des différentes section du gisement ne pourront pas être corrélés. précis OK NON OK NON juste OK OK NON NON FIG. 2.1 Analogie de la précision et de la justesse avec une cible de tir 2.3 La justesse La justesse quant à elle mesure combien les résultats sont près de la vrai valeur. Dans la comparaison avec une cible (Figure 2.1), il est clair que les triangles sont justes. En moyenne, les carrés sont également justes. Les losanges eux sont

2.4. LES LIMITES DE DÉTECTION 13 précis mais pas justes. Seuls les triangles blancs sont justes et précis. La justesse est très importante lorsqu il s agit de comparer des teneurs avec d autres données. Pour la classification chimique des roches, cette notion est très importante. Mais quelle est la justesse adéquate? Est-ce 1 % est acceptable ou plutôt 5 %? Qu en est-il? Instrumentalement il est plus aisé de déterminer les analytes abondants que ceux en trace. Comment définir une justesse acceptable pour un analyte présent à 6 % m/m, la silice (SiO 2 ), versus le platine (Pt) à moins de 1 ng/g? La première règle est d avoir une justesse (et une précision dans ce cas-ci) qui soit adapté au problème ( fitness for purpose ). Si le problème géologique consiste à démontrer que l évolution du système évolue de 1 à 125 µg/g la justesse exigée ne sera pas la même qu un autre problème où les variations vont de 1, 1 à 1 µg/g. Il existe également une régle empirique qui peut servir de guide : la fonction d Horwitz. Horwitz [6] avait noté que le coefficient de variance sur les résultats lors de test d efficacité de laboratoire augmentait avec la diminution de la teneur. Il en a produit la fonction (empirique) de Horwitz. Cette dernière a été modifiée pour s adapter à des échantillons géologiques [8]. R H =.2c.8495 où R H est l écart-type de la reproductibilité interlaboratoire à une concentration c d un analyte. Les deux paramètres s expriment en rapport de masse (sans unités ; par exemple 1 µg/g est 1 6 ). En géochimie, deux classes de résultats sont généralement considérées : recherche géologique (classe 1) et exploration géochimiques (classe 2). Ainsi un facteur d échelle a été créé pour ces deux classes soit le σ p où σ p = R H /2 pour la classe 1 (recherche) et σ p = R H pour la classe 1 (exploration) Le tableau 2.1 donne des valeurs typiques pour la fonction Horwitz qui sont reprises dans la figure 2.2. Certaines méthodes pour certains analytes démontrent des performances nettement supérieures à la fonction d Horwitz et vice versa. 2.4 Les limites de détection C est un terme galvaudé qui mérite que l on s y arrêtre. Que veux-t-on exprimer exactement? La plus petite teneur mesurable avec une certaine précision/justesse? Il est proposé que le terme limite de détection tel quel soit abandonné au profit de termes plus précis. Une réponse analytique d un appareil se

14 CHAPITRE 2. LES CONCEPTS DE BASE TAB. 2.1 Écart-types relatifs découlant des valeur cibles selon la fonction de Horwitz Concentration %RSD %RSD Classe 1 Classe 2 1 % m/m 1 2 1 % m/m 1.4 2.8 1 % m/m 2 4 1 µg g 1 2.8 5.7 1 µg g 1 4 8 1 µg g 1 5.7 11.3 1 µg g 1 8 16.1 µg g 1 11.3 22.6.1 µg g 1 16 32 compose du bruit de fond et du signal. Le bruit de fond est la variation analytique de l appareil lorsqu il n y a pas d échantillon ou encore entre deux pics dans une méthode spectroscopique (Figure 2.3). En mesurant ce bruit de fond, il aura une distribution normale (Figure 2.4). Comme pour les limites de détection il s agit de déterminer à partir de quelle teneur on peut se fier à l analyse, les limites de détection seront définies à partir de ce bruit de fond. 2.4.1 Limite de détection inférieure ( x LLD ) C est une limite inférieure qui ne permet pas de faire de mesure quantitatives. Généralement il est considéré que c est 3σ B (Figure 2.5) au dessus du bruit de fond moyen [1]. Le bruit de fond étant les variations de réponse d un appareil entre les pics analytiques. Ainsi, pour une distribution normale, il y a 99.87 % de probabilité que ce signal ne proviennent pas du bruit de fond. 2.4.2 Limite de détermination ( x LoD ) Cette limite correspond à la limite à laquelle un signal peut être utilisé pour faire des mesures quantitatives. Elle est représentée par une distribution ayant une moyenne x B + 6σ B au dessus du bruit de fond (Figure 2.5). L incertitude idéale est alors de 16.7 % relative (i.e. 1 σ)

2.4. LES LIMITES DE DÉTECTION 15 5% 4% 3% Classe 1 (recherche) 2% 1% % -1% -2% -3% Classe 2 (exploration).1 µg/g.1 µg/g 1 µg/g 1 µg/g 1 µg/g 1 µg/g 1 % m/m % RSD 1 % m/m 1 % m/m Teneur FIG. 2.2 Illustration de la fonction de Horwitz 2.4.3 Limite de quantitation ( x LoQ ) Le comité sur l amélioration de l environnement de l ACS [1] a recommendé une limite de détection appelé la limite de quantitation qui se situe à 1σ B audessus de la moyenne du bruit de fond. L incertitude idéale est de 1 % relatif. Cette limite est à utiliser pour les travaux de nature légale, commerciale, etc. 2.4.4 Les assurances qualité Pour s assurer que les résulats sont fiables, deux types de matériaux de référence sont utilisés soit ceux de contrôle de qualité et les certifiés. Il s agit en

16 CHAPITRE 2. LES CONCEPTS DE BASE bruit de fond Pic FIG. 2.3 Spectre montrant un pic et le bruit de fond (B) fait d échantillons dont les teneurs sont connues et qui servent à assurer la qualité des résulats. Les matériaux de référence de contrôle de qualité servent au contrôle journalier tandis que ceux certifiés servent caler les analyses. Un autre aspect important des matériaux de référence certifiés consiste à assurer une tracabilité. La tracabilité est une notion qui provient des étalons originaux tels que le mètre où il existait un mètre physique auquel il devait y avoir une chaine de liens continue jusqu à notre référence. Le concept moderne est qu il devrait être possible de remonter par une chaine continue (en tenant compte des incertitudes associées) jusqu au mètre ou à la mole. Un concept qui est techniquement intenable en géochimie. Il est généralement considéré que si la calibration contient un matériau de référence certifié pour le ou les analystes d intérêt, le résultat est tracable [9]. De plus, il y a les tests d efficacité (proficiency) [8] dans lesquels nous recevons un échantillon et devons donner les résultats à l aveugle i.e. les teneurs sont inconnues. Les résultats sont retournés en Angleterre pour comparaison avec environ 8 autres laboratoires. Il devient alors possible d évaluer la performance du laboratoire. Dans ce laboratoire vous utiliserez des matériaux de contrôle de qualité. 2.5 Notation Selon les principes de métrologie modernes et les recommendations pour le système SI [3], les données devraient toujours être présentés le plus près possible des unités de base soit le mêtre, le kilogramme, la mole et la seconde (les autres unités ne sont pas souvent utiles en géochimie ; par exemple la candela). Par exemple, le ppb doit être abandonné en faveur du ng/g (Tableau 2.2). C est

2.5. NOTATION 17 x B.13% 3σ B 99.74 % FIG. 2.4 Distribution du bruit de fond (B) lorsque mesuré seul une notation qui a de nombreux avantages dont celui de rendre les conversions et les calculs plus simples.

18 CHAPITRE 2. LES CONCEPTS DE BASE x B x LLD x LoD.13% 3σ B bruit de fond 3σ B analyses qualitatives analyses quantitatives FIG. 2.5 Relations entre le bruit de fond (B), la limite inférieure de détection (LLD) et la limite de détermination (LoD) TAB. 2.2 Notations acceptés en géochimie désuet accepté masse accepté solution % poids % m/m % v/v ppm µg/g mg L 1 ppb ng/g µg L 1 ppt pg/g ng L 1

Chapitre 3 Le broyage 3.1 Introduction L étape du broyage sert à réduire les échantillons en fragments ou en poudre afin d homogénéiser et de faciliter la mise en solution de ces échantillons pour des analyses géochimiques. Il existe trois types majeurs de broyeur : le broyeur à m choire (Jaw Crusher), le broyeur à disque Bico (disc mill) et le broyeur Shatterbox. L utilisation de ces broyeurs est séquentielle, c est à dire qu en général on utilisera le broyeur à m choire pour fragmenter notre échantillon, puis on utilisera le broyeur Bico pour réduire ces pépites en une poudre grossière et finalement le broyeur shatterbox réduira cette poudre grossière en poudre fine. Chaque broyeur implique une contamination des échantillons qui sera différente pour chacun. Le type de broyeur utilisé sera donc choisit en fonction de la contamination qu il provoque. Par exemple, on n utilisera pas un broyeur en alliage de fer-chrome si on veux mesurer le Cr dans un échantillon puisque lors du broyage de petites particules provenant du broyeur pourraient être ajoutées à l échantillon. Le degré de contamination est pour sa part relié à la durée du broyage. Une minute de shatterbox contaminera moins que deux minutes. Par contre, le nettoyage de l appareil entre chaque utilisation sera crucial. Il est donc très important de bien le nettoyer avant chaque utilisation puis de faire une pré-contamination avec une partie de l échantillons à broyer avant de commencer. Il est même recommandé de refaire ces étapes entre chaque échantillon si ceux-ci sont différents (exemple : entre un basalte et une rhyolite). Il est préférable de broyer les échantillons du plus mafique au plus felsique. De plus, il est très important de prendre en note l ordre des échantillons pour pouvoir expliquer, s il y a lieu, certains pro- 19

2 CHAPITRE 3. LE BROYAGE blèmes. La séquence de concassage ou de broyage se décrit comme suit : 1. établir l ordre de broyage ou de concassage des échantillons et en prendre note 2. nettoyage de parties de l appareil venant en contact avec l échantillon 3. conserver une plaquette témoin (important) 4. concassage ou broyage d une petite partie de l échantillon 5. jeter cette fraction concassée ou broyée (la pré-contamination) 6. concasser ou broyer l échantillon (partie à conserver pour l analyse) 7. recommencer 3.2 Concasseur à m choire (jaw crusher) Les m choires du concasseur utilisé sont faites d acier, il y a donc contamination en Fe métallique et aussi possiblement en Co, Cr, Cu, Mo et très faiblement Ni. Ce type de broyeur réduit l échantillon en des pépites d environs 8 mm. Utilisation : Les étapes qui suivent doivent être faites préalablement avec une partie de l échantillon afin de pré-contaminer l appareil. 1. Bien nettoyer la machine avant de l utiliser. Pour ce faire, enlever la m choire avant et la brosser. Souffler toutes les surfaces avec l air comprimée. Il y a beaucoup de petits orifices où la poussière et les pépites peuvent se cacher. Replacer la m choire. 2. Démarrer le broyeur. 3. Insérer les fragments d échantillons entre les deux m choires. Les fragments doivent être plus petits que 4 cm. Si la machine arrête, mettre le commutateur à off et enlever les morceaux coincés avec des pinces. Si les morceaux sont difficiles à enlever, déplacer à la main en sens inverse la roue d engrenage du concasseur. 4. Bien nettoyer la machine après utilisation. Pour ce faire, enlever la m choire avant et brosser. Souffler toutes les surfaces avec l air comprimée. Il y a beaucoup de petits trous où la poussière peut se cacher.

3.3. BROYEUR À DISQUE BICO (DISC MILL) 21 3.3 Broyeur à disque Bico (disc mill) Dans ce type de broyeur, les disques utilisés pour broyer sont en porcelaine, ils amènent donc une contamination en aluminium. Étant donné que ce broyeur amène une contamination supplémentaire, il est généralement réservé pour les broyages servant aux séparations minérales ou encore lorsque de grandes quantitées de poudre de roche sont nécessaires. Les échantillons sont réduits à une taille d environ.25 mm. Utilisation : Les étapes qui suivent doivent être faites préalablement avec une partie de un de nos échantillons afin de pré-contaminer l appareil. 1. Nettoyer l appareil avec l air comprimé avant l utilisation. S il reste des résidus de sulfures, sur les disques, broyer 1 g de quartz. Répéter jusqu à ce que les disques soient propres. 2. Ajuster la distance entre les disques à l aide de la vis à droite..5 mm est généralement juste pour la plupart des échantillons. 3. Démarrer le broyeur. Écouter attentivement pour identifier un bruit de type plaque frottant ; en effet les plaques du Bico ne doivent pas se toucher, autrement ils se s auto-détruiront. 4. Insérer les échantillons dans le broyeur ; ceux-ci doivent-être plus petits que 8 mm. Si la machine se bloque, fermer l interrupteur et ouvrir la machine. 5. Nettoyer l appareil avec l air comprimé après l utilisation. S il reste des résidus de sulfures, sur les disques, broyer 1g de quartz. Répéter jusqu à ce que les disques soient propres. 3.4 Broyeur shatterbox Le broyage au shatterbox est généralement la dernière étape puisque les échantillons en ressortent en poudre. Les types de shatterbox qui peuvent être utilisés sont ; 1) en céramique, 2) en acier chromifère et 3) en carbure de tungstène. Le type de contamination varie en fonction du shatterbox utilisé. Le shatterbox en céramique provoquera une contamination en aluminium, celui en acier chromifère impliquera une contamination en fer et en chrome alors que le shatterbox en carbure de tungstène amènera une contamination en tungstène, en cobalt et en terres rares lourdes (Yb, Lu). 1. Nettoyer le broyeur en broyant 1 à 2 grammes de quartz pendant environ 3 minutes. Jeter la poudre et enlever la poussière avec l air comprimé.

22 CHAPITRE 3. LE BROYAGE 2. Mettre 2 à 4 grammes de roche dont la taille est d environ 2 mm dans le shatterbox (taille maximum de 3 mm). 3. Faire fonctionner de 2 à 4 minutes. Tester la granulométrie : la poudre est adéquate lorsqu elle a la texture de la farine. Si la poudre n a pas la texture de la farine on continue le broyage. Parfois on peut avoir a broyer pendant 1 minutes. 4. Recharger le shatterbox avec 2 à 4 g d échantillon pour obtenir la quantité de poudre de roche nécessaire à vos analyses. 5. Nettoyer le broyeur en broyant 1 à 2 grammes de quartz pendant environ 3 minutes. Jeter la poudre et enlever la poussière avec l air comprimé. Cette étape doit être faite entre chaque échantillon. 3.5 Le mortier-pilon Les mortiers-pilons sont généralement fabriqués d agate, d alumine, de mullite, de carbure de bore ou de tungstène. Évidemment ils contaminent avec la substance qui les composent. L échantillon se broye avec de l alcool isopropylique (ou acétone sous hotte) pour minimiser les pertes. Par expérience il est reconnu qu un mortier-pilon en alumine donne des granulométrie de l ordre de 38 µm [4]. 3.6 La contamination et son effet Les différents outils créeront des contaminations en les éléments dont ils sont constitués. Mais peut-on quantifier cette contribution et spéculer sur sont effet? Le temps de broyage est un facteur important. Plus le temps sera long, plus forte sera la contamination. Ainsi pour un échantillon de quartz dans un shatterbox de carbure de W, la teneur en W aura augmenté de.3 après 1 minute,.4 après 2 minutes,.5 après 8 minutes et de.7 après 16 minutes [7]. Pour un shatterbox de métal inconnu, suspectez une contamination en Fe, Mn, Cr, Ni, Si, Mo et V [7]. L outil le plus sécuritaire est un mortier-pilon en agathe. Il faut tenir compte de la résistance au broyage des différents types d échantillons. Il est proposé que plus un échantillon est riche en quartz, plus la contamination sera importante [7]. L explication de cette notion doit être considéré avec un certain recul. En effet, la contamination en éléments de transition (utilisé pour la fabrication des shatterbox et autres broyeurs sera plus facile à identifier dans un échantillon riche

3.6. LA CONTAMINATION ET SON EFFET 23 TAB. 3.1 Caractéristiques des poudres de roches destinées à l analyse Méthode analytique granulométrie minimale quantité (g) INAA.5 mm 2 XRD (identification) 45 µm.1-1 XRD (quantification) 1-5 µm.1-1 XRF (éléments majeurs) 74 µm 2 XRF (éléments traces) 74 µm 6 AA, ICP-MS, ICP-AES 74 µm.2-1 en SiO 2 que dans un riche en FeO. La contamination inter-échantillon est généralement plus importante que la contamination par les appareils. Iwansson et Landstrom [7] proposent, par exemple, qu une contamination en Ta modifiera une classification pétrogénétique (Figure 3.1).

24 CHAPITRE 3. LE BROYAGE WPG Ta (µg/g) 1 5 4 3 2 1.5 Syn-COLG Échantillons contaminés + +.2 ORG.1 VAG.1.2.3 1 2 3 4 5 1 2 1 Yb (µg/g) FIG. 3.1 Effet d une contamination en Ta sur une classification des granitoôdes

Chapitre 4 La coloration des minéraux 4.1 Théorie Les colorations sont une technique d attaque suivi d une coloration chimique sur une phase minérale. Les colorations les plus courantes sont les feldspaths potassique (microcline), la dolomie et le plagioclase. Ces techniques utilisent souvent l acide fluoridrique (HF) qui est un des acides les plus dangeureux qui soit. L effet du HF peut ne pas être immédiat si la concentration est supérieure à 5 % : effet immédiat si la concentration est de 2 à 5 % : délai de 1-8 heures pour sentir l effet si la concentration est de 1 à 2 % : délai de 24 heures pour sentir l effet Le HF pénètre sous la peau pour attaquer les tissus sous-cutanés et les os Le HF attaque le verre, donc pas de bécher en verre ; le tefflon seulement Lors de la manipulation du HF vous devez : travailler sous une hotte fonctionnelle et approuvé pour cette t che porter un sarrau porter des gants de néoprène (tous les autres gants ont des résistances maximales de quelques minutes au HF) porter des lunettes de sécurité et une visière avoir près de soi du gel de gluconate de calcium à appliquer en cas d accident tout mélange avec de l eau donnera une forte réaction exothermique 25

26 CHAPITRE 4. LA COLORATION DES MINÉRAUX 4.1.1 En cas déversement Sur la peau 1. Restez calme 2. Lavez à grande eau sous la hotte 3. Demandez de l aide (criez s il le faut) 4. Faite appliquer du gluconate de calcium (avec des gants) sur la peau en contact avec le HF 5. Appelez l ambulance (911) 6. Avertissez que c est une br lure au HF et ce que vous avec fait comme traitement Dans la hotte 1. Restez calme 2. Fermez la fenêtre et évaluez l accident 3. Vérifier s il n y en a pas sur vous, en cas de doute faites comme si vous vous êtiez brulé au HF 4. Appliquez du carbonate de calcium (calcite, CaCO 3 ) ou de la chaux sur le HF 5. Ajoutez plus de neutralisant pour s assurer qu il n y a plus de réaction 6. Mesurez le ph pour s assurer que vous avez neutralisé le HF 7. Le fluorure de calcium (CaF 2 ) ainsi formé est manipulable Sur le plancher 1. Restez calme 2. Faites sortir les autres personnes rapidement 3. Sortez rapidement du local 4. Appelez la sécurité (515) 5. Assurez vous que personne ne pénêtre dans le local 6. Attendez que l équipe de sécurité de l UQAC prenne la situation en contrôle

4.2. LES FELDSPATHS 27 4.2 Les feldspaths 4.2.1 Préparation 1. HF concentré (approximativement 52 %) 2. une solution de cobaltinitrite de sodium saturé, dans l eau 3. (pour les plagioclases) une solution de.5 g de sel de potassium rhodizonique acide dans 2 ml d eau dans une bouteille de type compte-goutte ; cette solution doit être fraîche. 4. trois plats de plastique 5. des pinces pour manipuler les échantillons 6. le matériel de sécurité (sarrau, masque, gants, gluconate de calcium, lunette, hotte) 4.2.2 Manipulations 1. Placez un échantillon dans le HF pour 1 minute ou au-dessus du HF pour 3 minutes 2. Enlevez l échantillon et rincez le dans l eau 3. Aspergez le de BaCl 2 4. Rincez rapidement à l eau 5. Plongez l échantillon dans la solution de cobaltinitrite de sodium saturée pendant 1 minute 6. Rincez à l eau en évitant d arroser directement la surface colorée en jaune 7. Si vous voulez colorer les plagioclases : couvrez la surface de l échantillon de l agent rhodizonate, le plagioclase devrait rougir après quelques secondes.

28 CHAPITRE 4. LA COLORATION DES MINÉRAUX

Chapitre 5 La Perte au feu 5.1 Théorie La perte au feu (PAF ou LOI : Lost on Ignition en anglais) est une mesure souvent fournie par les laboratoires commerciaux comme une mesure des éléments volatiles (H 2 O, CO 2, etc.) dans un échantillon. L échantillon étant chauffé à 1 C pendant environ une heure ; il est estimé que les éléments volatiles quittent l échantillon. La différence de masse entre l entrée au four et sa sortie devrait correspondre à la fraction ayant quitté l échantillon. Un phénomène fait concurrence à la perte des éléments volatiles soit l oxydation du fer. Le fer ferrique se transforme en fer ferreux donnant un gain de masse. La réaction étant : 2Fe (2+) O + 1 2 O 2 Fe(3+) 2 O 3 Ainsi une perte au feu négative de.11 % pour chaque pourcentage de FeO dans l échantillon (par exemple : un échantillon contenant 1 % FeO gagnerait 1.13 %). Il y a encore un mais ; rien ne garantis que tous le FeO s oxydera. Il devient à peu près impossible de contrôler la réaction. De plus, certains alcalis, le fluor et le souffre peuvent se volatiliser. Le résultat obtenu par la PAF est une mesure grossière des éléments volatiles dont la justesse diminue avec la quatité de fer dans l échantillon. Une mesure supplémentaire peut-être faite soit la mesure de l eau hygroscopique ou adsorbée (H 2 O ). Cette dernière se mesure par la différentielle de masse après un passage de 2-3 heures à 15-11 C. 29

3 CHAPITRE 5. LA PERTE AU FEU 5.2 Protocole 1. Peser un creuset de porcelaine propre et vide 2. Peser environ 1 g d échantillon à une précision de.1 g dans un creuset de porcelaine 3. Faire un plan de la position des échantillon à envoyer au four 4. Déposer les échantillons au four à 1 C selon le plan 5. Attendre approximativement 6 minutes 6. Retirer les échantillons du four toujours en respectant le plan 7. Laisser refroidir 8. Peser de nouveau avec une précision de.1 g 9. PAF = {m échantillon+m creuset} AV ANT {méchantillon +m creuset} APR ÈS {méchantillon } AV ANT 1 1. Nettoyer vos creusets