Cette page est mise à disposition sous un contrat Creative Commons.

Documents pareils
Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

pka D UN INDICATEUR COLORE

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

Titre alcalimétrique et titre alcalimétrique complet

Rappels sur les couples oxydantsréducteurs

Exercices sur le thème II : Les savons

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

Suivi d une réaction lente par chromatographie

Les solutions. Chapitre 2 - Modèle. 1 Définitions sur les solutions. 2 Concentration massique d une solution. 3 Dilution d une solution

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

BTS BAT 1 Notions élémentaires de chimie 1

TP : Suivi d'une réaction par spectrophotométrie

SP. 3. Concentration molaire exercices. Savoir son cours. Concentrations : Classement. Concentration encore. Dilution :

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Exemples d utilisation de G2D à l oral de Centrale

ANALYSE SPECTRALE. monochromateur

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Chapitre 7 Les solutions colorées

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

Comment suivre l évolution d une transformation chimique? + S 2 O 8 = I SO 4

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

FICHE 1 Fiche à destination des enseignants

Chapitre 1 : Évolution COURS

A chaque couleur dans l'air correspond une longueur d'onde.

Physique : Thermodynamique

LABORATOIRES DE CHIMIE Techniques de dosage

Compter à Babylone. L écriture des nombres

Plate forme de modélisation en vue de la prédiction de la durée de vie des bétons vis-à-vis de la pénétration d agents agressifs

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE

Atelier : L énergie nucléaire en Astrophysique

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

Session 2011 PHYSIQUE-CHIMIE. Série S. Enseignement de Spécialité. Durée de l'épreuve: 3 heures 30 - Coefficient: 8

REACTIONS D OXYDATION ET DE REDUCTION

(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.»

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.

LA TYPOGRAPHIE (Norme ISO 31)

Probabilités sur un univers fini

TS 31 ATTAQUE DE FOURMIS!

Arithmétique binaire. Chapitre. 5.1 Notions Bit Mot

document proposé sur le site «Sciences Physiques en BTS» : BTS AVA 2015

Synthèse et propriétés des savons.

Algorithme. Table des matières

PHYSIQUE Discipline fondamentale

FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc)

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème /2015

BREVET D ÉTUDES PROFESSIONNELLES AGRICOLES SUJET

LES SUBSTITUTIONS NUCLÉOPHILES EN SÉRIE ALIPHATIQUE S N 1 ET S N 2

4. Conditionnement et conservation de l échantillon

Calcaire ou eau agressive en AEP : comment y remédier?

Enseignement secondaire

Effets électroniques-acidité/basicité

Chapitre 11: Réactions nucléaires, radioactivité et fission

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

CHAPITRE 2 : Structure électronique des molécules

β-galactosidase A.2.1) à 37 C, en tampon phosphate de sodium 0,1 mol/l ph 7 plus 2-mercaptoéthanol 1 mmol/l et MgCl 2 1 mmol/l (tampon P)

SECTEUR 4 - Métiers de la santé et de l hygiène

ProSimPlus HNO3 Résumé des nouvelles fonctionnalités, décembre 2008

CHAPITRE VIII : Les circuits avec résistances ohmiques

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

CHAPITRE VI : HYBRIDATION GEOMETRIE DES MOLECULES

Meine Flüssigkeit ist gefärbt*, comme disaient August Beer ( ) et Johann Heinrich Lambert ( )

Précision d un résultat et calculs d incertitudes

Premier principe : bilans d énergie

Fiche de révisions sur les acides et les bases

DOCM Solutions officielles = n 2 10.

Pour l épreuve d algèbre, les calculatrices sont interdites.

Centre Universitaire LA CITADELLE 220, avenue de l Université B.P DUNKERQUE CEDEX 1 GUIDE DES ETUDES LICENCE PROFESSIONNELLE

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

BACCALAURÉAT GÉNÉRAL PHYSIQUE-CHIMIE

ACIDES BASES. Chap.5 SPIESS

NOTICE DOUBLE DIPLÔME

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

Mesures et incertitudes

INTRODUCTION À L'ENZYMOLOGIE

EXERCİCE N 1 : «Synthèse de l éthanamide» (7 pts)

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

HRP H 2 O 2. O-nitro aniline (λmax = 490 nm) O-phénylène diamine NO 2 NH 2

DYNAMIQUE DE FORMATION DES ÉTOILES

FctsAffines.nb 1. Mathématiques, 1-ère année Edition Fonctions affines

Épreuve collaborative

Sujet. calculatrice: autorisée durée: 4 heures

Sommaire. Séquence 2. La pression des gaz. Séance 1. Séance 2. Séance 3 Peut-on comprimer de l eau? Séance 4 Je fais le point sur la séquence 2

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

PROGRAMME DE PHYSIQUE - CHIMIE EN CLASSE DE SECONDE GÉNÉRALE ET TECHNOLOGIQUE

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

Comprendre l Univers grâce aux messages de la lumière

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

SESSION 2013 ÉPREUVE À OPTION. (durée : 4 heures coefficient : 6 note éliminatoire 4 sur 20) CHIMIE

Fonctions homographiques

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

Transcription:

http://personnel.univ-reunion.fr/briere P.C.E.M.1 PHYSICOCHIMIE DES SOLUTIONS ACQUEUSES Cours de Thierry BRIERE LA REACTION CHIMIQUE Cette page est mise à disposition sous un contrat Creative Commons. Vous pouvez l utiliser à des fins pédagogiques et NON COMMERCIALES, sous certaines réserves dont la citation obligatoire du nom de son auteur et l adresse http://personnel.univ-reunion.fr/briere de son site d origine pour que vos étudiants puissent y accéder. Merci par avance de respecter ces consignes. Voir contrat T.Briere-Reaction chimique 1

P.C.E.M Physico-chimie des Solutions Aqueuses Cours de Thierry Briere QUELQUES NOTIONS DE BASE sur LA REACTION CHIMIQUE Site internet : http://personnel.univ-reunion.fr/briere T.Briere-Reaction chimique 2

Introduction Dans ce chapitre nous allons rappeler et résumer les différents faits concernant la notion de réaction chimique. Beaucoup de ces résultats furent établis dès la fin du XVIII siècles par les fondateurs de la Chimie moderne qui accéda ainsi au rang de science à part entière (contrairement à son ancêtre l Alchimie) au même titre que la physique. Citons entre autres Antoine de Lavoisier (1743-1794) Lois de conservation de la matière Joseph Louis Proust (1754-1826) Loi des proportions définies John Dalton (1766-1844) John DALTON Loi des proportions multiples et initiateur des théories atomistes LAVOISIER T.Briere-Reaction chimique 3

Réaction chimique Au cours d une réaction chimiques des corps appelés réactifs sont mis en contact. Ils réagissent entre eux et se transforment en de nouveaux corps appelés produits. A + B C + D Réactifs Produits Cette transformation est symbolisée par une flèche T.Briere-Reaction chimique 4

La réaction obéit à des lois d «arithmétique chimique» simples. Conservation des Atomes Au cours d une réaction chimique les divers atomes constitutifs des réactifs mis en présence ne sont jamais détruits. De la même manière les atomes constitutifs des produits ne sont jamais crées. Les atomes sont «indestructibles» au point de vue la réaction chimique. Le nombre d atomes de chaque élément chimique est donc rigoureusement conservé au cours de la transformation. En termes simples on doit trouver le même nombre d atome de chaque sorte des deux cotés de la flèche. T.Briere-Reaction chimique 5

Conservation de la masse Historiquement ce fut la première loi quantitative mise en évidence par Lavoisier. La masse des réactifs initialement mis en présence est conservée et se retrouve dans l état final. Conservation de la charge électrique LAVOISIER Au cours d une réaction chimique, les charges électriques peuvent se déplacer d un élément à un autres mais elle ne peuvent ni être crées ni être détruites. T.Briere-Reaction chimique 6

Pour tenir compte de ces lois fondamentales de conservation de la matière ont doit introduire des coefficient appelés COEFFICIENTS STOECHIOMETRIQUES. Ces coefficients sont souvent symbolisés par la lettre grecque Nu ( ν ). On écrit donc la réaction chimique sous la forme ν A A + ν B B ν C C + ν D D Réactifs Produits T.Briere-Reaction chimique 7

Le coefficient stoéchiométrique νi représente le nombre de mole du composé chimique i intervenant dans la réaction chimique. La détermination de ces coefficients est faite à partir des formules chimiques des réactifs et des produits de la réaction chimique considérée en appliquant les lois de conservation de la matière. La même réaction pourra être symbolisée par plusieurs écritures selon le jeu de coefficients choisit. Les coefficients sont proportionnels entre eux et on choisit généralement l écriture faisant intervenir les coefficients les plus petits possibles. Si le coefficient est 1 on ne le fait pas apparaître dans l écriture de la réaction T.Briere-Reaction chimique 8

Exemples Soit la réaction chimique transformant un mélange de Dihydrogène H 2 et de Diiode I 2 en acide Iodhydrique HI H A + I 2 B 2 2 HI C Réactifs Produit On peut introduire le coefficient stoéchiométrique 2 devant HI pour traduire la conservation du nombre d atomes d Hydrogène H et d Iode I. On peut tout aussi bien introduire des coefficients 1/2 devant H 2 et I 2. 1/2 H 2 + 1/2 I 2 HI T.Briere-Reaction chimique 9

Combustion du butane C 4 H 10 + 13/2 O 2 4 CO 2 + 5 H 2 O 4 C 10 H 4 C 5 * 2 = 10 H 13 / 2 * 2 = 13 O 4 * 2 + 5 = 13 O Attaque de l aluminium par l acide sulfurique 2 Al + 3 H 2 SO 4 2 Al 3+ 2- + 3 SO 4 + 3 H 2 Neutralité électrique (Pas de charges) Neutralité 3 charge + électrique et 2 charge = 6 - + et 6 - se neutralisent 2 Al 3 (SO 4) 6H 2 Al 3 (SO 4) 6H T.Briere-Reaction chimique 10

Utilisation des coefficient stoéchiométriques Il suffit d utiliser la proportionnalité qui existe entre les coefficients stoéchiométriques des réactifs et des produits pour prévoir les quantité de réactifs qui disparaissent et les quantité de produits qui se forment lors d une réaction. a b c d A + B C + D Quand a moles de A disparaissent, il disparaît b moles de B, il apparaît c moles de C et d moles de D Quand n A moles de A disparaissent : - il disparaît n B = [b n A /a ] moles de b, - il apparaît n C = [c n A /a] moles de C - il apparaît n D = [d n A /a] moles de D a A b c d CB D L outil mathématique principal du chimiste n C D =?: la REGLE DE TROIS n C D n = B n= A n * A c d * / b a/ a n A n B =? T.Briere-Reaction chimique 11

Réaction totale ou quantitative On dit qu une réaction est Totale ou Quantitative quand cette réaction n est possible que dans un seul sens. Si l on mélange les réactifs dans les proportions stoechiométriques ceux-ci réagissent totalement et disparaissent du milieu réactionnel. C est à dire que la transformation des réactifs en produits est totale et irréversible. En revanche, il ne se passe aucune réaction si on mélange les produits entre eux. La transformation se fait uniquement dans le sens REACTIFS PRODUITS a A + b B c C + d D T.Briere-Reaction chimique 12

Réaction inversible - Equilibre Chimique Dans ce cas la réaction n est pas totale. Si on mélange les réactifs en proportions stoéchiométriques, ils ne disparaissent pas totalement. Si on mélange les produits de la réaction entre eux, on s'aperçoit que ceux-ci se transforment pour donner les réactifs. Il s agit de la réaction inverse de la précédante. La transformation se fait simultanément dans les deux sens REACTIFS PRODUITS a A + b B c C + d D a A + b B = c C + d D T.Briere-Reaction chimique 13

PREVISION DE LA COMPOSITION DU MELANGE REACTIONNEL APRES REACTION On suppose que la stoéchiométrie de la réaction est connue et on cherche à prévoir quelle sera la composition finale du mélange si l on connaît les quantités de réactifs et de produits introduits initialement. Etat Initial a b c d A + B C + D n 0 B n 0 C n 0 D n 0 A Etat Final n A =? n B =? n C =? n D =? T.Briere-Reaction chimique 14

Cas d une réaction totale Dans le cas d une réaction totale il est très facile de prévoir quelle sera la composition du mélange réactionnel quand la réaction aura eu lieu. En effet, nous savons que les réactifs réagissent totalement et disparaissent lorsqu ils sont introduits en proportions stoéchiométriques. D autre part, nous savons que les réactifs ne réagissent pas. Nous venons de voir qu il était facile de calculer les quantités de réactifs disparus et de produit formés à partir des coefficients stoéchiométriques. On distinguera deux cas, selon que les réactifs ont été introduits ou non dans les proportions stoéchiométriques. T.Briere-Reaction chimique 15

1) Réactifs introduits en proportions stoéchiométriques : Relation entre n 0 A et n0 B n 0 B = n0 A* b/a ou n0 A = n0 B* a/b a A Les deux réactifs disparaissent totalement! Etat Final 0 0 n 0 C + c n0 A /a n0 D + d n0 A /a n A bb n B = n A* b/a Il se forme simultanément : Qui viennent s ajouter au c n 0 A /a mole de C nombre de mole initial de C et D et d n 0 A /a moles de D a A + b B c C + d D Etat Initial n 0 A n 0 B n 0 C n 0 D T.Briere-Reaction chimique 16

2) Réactifs introduits en proportions quelconques: Dans ce cas un des réactif est introduit en quantité insuffisante par rapport aux autres. Ce réactif est appelé réactif en défaut ou réactif limitant de la réaction. Les autres réactifs sont dits réactifs en excès. Le réactif en défaut va totalement disparaître lors de la réaction, les réactifs en excès ne disparaîtront pas totalement et resterons présents en fin de réaction. C est à partir des coefficients stoéchiométriques et du nombre initial de mole de chaque réactif introduit que l on déterminera quel est le réactif limitant de la réaction. T.Briere-Reaction chimique 17

Détermination du réactif en défaut a b c d A + B C + D Etat Initial n 0 A n 0 B Si proportions stoéchiométriques Relation entre n 0 A et n0 B n 0 B = n0 A* b/a ou n0 A = n0 B* a/b Si proportions quelconques : a A n A bb n B = n A* b/a n 0 B > n0 A* b/a ou n0 A < n0 B* a/b n 0 B < n0 A* b/a ou n0 A > n0 B* a/b A est en défaut et B est en excès B est en défaut et A est en excès T.Briere-Reaction chimique 18

Composition du mélange après réaction Si A en excès et B en défaut B disparaît totalement et il reste du A bb n 0 B a cc dda n 0 a/b c/b d/b B* * S il disparaît n 0 mole de B, il disparaît simultanément : B n0 B* a/b mole de A Il reste donc : n 0 - A (n0 B *a/b) mole de A S il disparaît n 0 B mole de B, il se forme simultanément : et n 0 B* d/b mole de D initialement présent qui viennent s ajouter au nombre de mole de C et D a b c d A + B C + D Etat Initial n 0 A n 0 < B n0 b/a A* n0 C n 0 D n 0 B* c/b mole de C Etat Final n 0 A - (n0 B *a/b) 0 n0 C + c n0 B /b n0 D + d n0 B /b T.Briere-Reaction chimique 19

Cas d une réaction non totale - Equilibre Chimique Toutes les règles de proportionnalité précédantes restent valables mais la réaction étant inversable, les réactifs ne disparaissent pas totalement. Il en reste toujours en fin de réaction en proportion plus ou moins grandes selon la réaction étudiée. Il en restera très peu si la réaction est presque totale ou beaucoup si la réaction ne se produit presque pas avec toutes les gradations possibles entre ces deux cas extrêmes Il existe une loi appelée «loi d action des masses» ou plus simplement «loi des équilibres chimiques» qui permettra tout de même de déterminer la composition du mélange réactionnel à l état d équilibre si l on connaît les quantités initiales introduite et une constante caractéristique de la réaction étudiée appelée sa constante d équilibre K. Avant d étudier plus en détail cette loi nous allons rappeler et définir quelques grandeurs indispensables à cette étude. T.Briere-Reaction chimique 20

Mélanges, Solutions, Solvants, Solutés Le plus souvent les substances chimiques ne sont pas utilisées à l état pur mais sous forme de mélanges plus ou moins complexes. On peut distinguer les mélanges homogènes dans lesquels on ne distingue qu une seule phase et les mélanges hétérogènes dans lesquels on peut distinguer plusieurs phases distinctes. Le cas le plus fréquent est celui ou le mélange homogène est composée essentiellement d une substance en très grande quantité dans laquelle on à dissous d autres substances en faibles quantités. le mélange obtenu est appelé une solution. les substances dissoutes sont appelées des solutés. la substance majoritaire est nommée solvant T.Briere-Reaction chimique 21

Concentration molaire On définit la concentration molaire ou Molarité d un soluté dissous dans un solvant comme étant le nombre de moles de soluté dissous dans un litre de solution. C(mole/L) = n (mole) / V (L) L unité de Molarité est la mole par litre notée officiellement mol.l -1 Pour alléger l écriture on écrit souvent la lettre majuscule M pour signifier mol.l -1. Cette écriture n est normalement pas correcte mais elle très courante et sera souvent employée ici. La concentration molaire d une substance est souvent symbolisée par des crochets [ ] encadrant sa formule. Le symbole [ A ] signifie donc : Molarité de la substance A T.Briere-Reaction chimique 22

Concentration massique On définit la concentration massique d un soluté dissous dans un solvant comme étant le nombre de gramme de soluté dissous dans un litre de solution. C(g/L) = m (g) / V (L) Relation entre concentration massique et Molarité On peut passer simplement d une expression à l autre en utilisant la masse molaire du soluté. C (g/l) = C(mol.L -1 ) * M (g.mol -1 ) T.Briere-Reaction chimique 23

Fraction molaire : Dans l étude des mélanges, on utilise fréquemment cette unité qui correspond au pourcentage en nombre de mole. Elle est souvent notée x i. Elle se calcule en divisant le nombre de mole ni de la substance i considérée par le nombre total n t mélange. xi = n i / n t = n i / Σ n i de moles dans le Par définition la somme des fractions molaires dans un mélange est toujours égale à l unité : Σxi = 1 Molalité : cette unité est assez peu utilisée dans les cas courants, elle correspond au nombre de mole de soluté par Kilogramme de solvant T.Briere-Reaction chimique 24

LOI D ACTION DES MASSES LOI DE GUDBERG ET WAAGE LOI DES EQUILIBRES CHIMIQUES La composition à l équilibre n est pas quelconque mais obéit à la loi suivante : K = Π a i νi Π symbolise le produit au sens mathématique de multiplication a i = activité de l espèce i à l équilibre νi = coefficient stoéchiométrique de l espèce i Avec par convention : νi < 0 pour les réactifs et νi > 0 pour les produits K est une constante caractéristique de l équilibre étudié et ne dépendant que de la température T.Briere-Reaction chimique 25

Exemples a A + b B c C + d D K = a -a a -b a c a d A * B * C * D K = Π a i νi réactifs : νi < 0 produits : νi > 0 K = (a C c * a D d )/ (a A a * a Bb ) 2 X + 3 Y W + 2 Z K = a X -2 * a Y -3 * a W * a Z 2 K = (a W * a Z 2 )/ (a X 2 * a Y3 ) T.Briere-Reaction chimique 26

L activité d un composé est une grandeur un peu difficile à définir simplement à ce stade élémentaire. Retenons pour l instant les règles suivantes : - pour les substances dissoutes (ou solutés), cette grandeur est assimilable à la concentration des espèces - pour le solvant présent en très grande quantité et qu on peut considérer comme quasiment pur, l activité est l unité - l activité des gaz est leur Pression Partielle Pi(exprimée en atmosphères) - l activité des substances liquides ou solides est leur fraction molaire dans leur phase. Les solides étant généralement purs dans leur phase leur activité est égale à l unité. a Soluté = [ Soluté ] a Solvant = 1 a gaz = P i = x i P a liquide = x i a Solide = x i = 1 (La notion d activité sera développée et précisée lors de l étude de la Thermodynamique Chimique) T.Briere-Reaction chimique 27

Il est donc important de connaître et de faire figurer dans l écriture de l équation bilan l état physique des réactifs et des produits. Cet état est souvent indiqué par une lettre minuscule en indice à droite de la formule du composé. A (l) = état liquide A (s) = état solide A (g) = état gazeux Pour les réactions se produisant en solution dans l eau, on le précise généralement en plaçant le symbole (aq) en indice à droite de la formule du soluté. A(aq) : Soluté dissous dans l eau Ce symbole sous entend que l eau est le solvant. C est l abréviation du mot aqueux (aqua = eau) T.Briere-Reaction chimique 28

A ( l ) + 2 B (l) C (s) + 2 D (l) K = a A -1 * a B -2 * a C * a 2 D K = x A -1 * x B -2 * x 2 D A liquide : a A = x A C solide : a C = 1 B liquide : a B = x B D liquide : a D = x D A (g ) + 3 B (s) C (s) + D (g) K = a A -1 * a B -3 * a C * a D A gaz : a A = P A B solide : a B = x B = 1 K = P A -1 * P D C solide : a C = x A = 1 D gaz : a D = P D 2 A (aq ) + B (aq) 2C (s) + D (aq) -2 2 A soluté : a K = a A * a B * a C * a A = [A] B soluté : a B = [B] D K = [A] -2 * [B]-1 * [D] C solide : a C = x A = 1 D Soluté : a D = [D] T.Briere-Reaction chimique 29

A + B Sens 1 Sens 2 C + D K =Π [Produits] / Π [Réactifs] K = ( [C] [D] )/ ( [A] [B] ) Supposons la réaction totale dans le sens 1, le réactif A ou B en défaut va totalement disparaître. Le dénominateur de la fraction sera nul et K sera donc infini. Inversement, supposons la réaction totale dans le sens 2, le réactif c ou d en défaut va totalement disparaître. Le numérateur de la fraction sera nul et K sera donc nul lui aussi. La valeur de la constante d équilibre K est une mesure de la quantitativité de la réaction. Plus la valeur de K est élevée et plus la réaction se fait dans le sens 1. Plus la valeur de K est petite et plus la réaction se fait dans le sens 2. T.Briere-Reaction chimique 30

On utilise très fréquemment une forme logarithmique pour exprimer plus aisément la constante d équilibre. pk R = - log K R Dans cette échelle, la réaction est d autant plus quantitative que son pk R est petit Pour fixer les idées, on considérera une réaction comme quasi totale si K R > 10 5 ou pk R < - 5 Inversement, on considérera qu une réaction n a pratiquement pas lieu et est négligeable si K R <10-5 ou pk R > 5 T.Briere-Reaction chimique 31

Exemple d application : On mélange 100 ml de solution 10-2 mol L -1 d un corps A et 20 ml de solution molaire d un corps B. Il se produit une réaction conduisant à la formation du composé soluble AB 4. On donne pk R = -5 pour cette réaction. Calculer les molarités des diverses espèces chimiques à l'équilibre. 1) Ecriture et équilibrage de la réaction A(aq) + 4 B(aq) AB 4( (aq) K R = [AB 4 ] [A] [B] 4 T.Briere-Reaction chimique 32

A(aq) + 4 B(aq) AB 4 (aq) Etat Initial n 0 A =10-3 n 0 B =2.10-2 On mélange 100 ml de solution 10-2 mol L -1 d un corps A e ml de solution molaire d un corps B. Il se produit une réaction conduisant à la formation composé AB 4. On donne pk R = -5 pour cette réaction. Calculer les molarités des diverses espèces chimique l'équilibre. n 0 AB4 = 0 Etat Final ( 10-3 - x ) ( 2.10-2 - 4x ) x Calcul des quantités initiales : n(mol) = C (mol.l -1 ) * V (L) n 0 A = 10-2 * 100 * 10-3 = 10-3 mole Expression des quantités finales : Posons qu il s est formé x mole de AB 4 Il a donc disparu x mole de A et 4x mole de B Il reste donc : ( 10-3 - x ) mole de A et ( 2.10-2 - 4x ) mole de B n 0 B = 1 * 20 * 10-3 = 2.10-2 mole T.Briere-Reaction chimique 33

Expression des concentrations C (mol.l -1 ) = n(mol) / V (L) [A]= ( 10-3 - x ) / V [B] = ( 2.10-2 - 4x ) / V [AB 4 ]= x / V Avec V = V total = 120 10-3 L K R = [AB 4 ] = x / V [A] [B] 4 (10-3 - x ) / V ( 2.10-2 - 4x ) 4 / V 4 K R = x V 4 (10-3 - x ) ( 2.10-2 - 4x ) 4 T.Briere-Reaction chimique 34

K R = x V 4 (10-3 - x ) ( 2.10-2 - 4x ) 4 Ici : pk R = -5 soit K R = 10 -pk R = 105 La résolution de cette équation dans laquelle x est la seule inconnue permettra de calculer les diverses concentrations à l équilibre. Il est toujours possible de résoudre une telle équation par calcul itératif ou en utilisant la fonction Solveur de sa calculatrice. Nous verrons qu il est souvent possible de simplifier le problème par utilisation d approximations raisonnables. T.Briere-Reaction chimique 35

Résolution par itérations successives Cliquez sur le bouton pour utiliser EXCEL Soient les résultats x 9,7020E-04 mol [AB 4 ] [A] [B] 8,0850E-03 mol.l -1 2,4833E-04 mol.l -1 1,3433E-01 mol.l -1 T.Briere-Reaction chimique 36

Simplification du problème Dans la plupart des cas on peut simplifier grandement le problème grâce a des approximations. Dans notre exemple la valeur élevée de K R permet de supposer la réaction totale dans le sens 1. Totale A + 4 B AB 4 Etat Initial n 0 A =10-3 n 0 B =2.10-2 n 0 AB4 = 0 Etat Final Défaut Excès 0 2.10-2 - 4.10-3 = 0,016 10-3 On peut donc très facilement calculer [B] et [AB 4] : [AB 4 ] = 10-3 /120.10-3 = 8,333.10-3 mol.l - 1 [B] = 0,016/120.10-3 = 0,133 mol.l - 1 T.Briere-Reaction chimique 37

[AB 4 ] = 10-3 /120.10-3 = 8,333.10-3 mol.l - 1 [B] = 0,016/120.10-3 = 0,133 mol.l - 1 Pour calculer [A] il suffit d utiliser la constante d équilibre K R = [AB 4 ] [A] = [A] [B] 4 K R [AB 4 ] [B] 4 [A] = 8,333.10-3 / (10 5. 0,133 4 ) = 2,633 10-4 T.Briere-Reaction chimique 38

Comparaison des résultats obtenus Sans approximation Avec approximation écart ( % ) [A] 2,633 10-4 2,483 10-4 5,6 % [B] 0,133 0,134 0,8 % [AB 4 ] 8,333.10-3 8,085 10-3 2,9 % Si on n a pas besoin d une très grande précision, les approximations conduisent par des calculs très simples à des résultats tout à fait acceptables. L approximation sera d autant meilleure que K est élevé. Ici avec K=10 5 on est à la limite de validité. T.Briere-Reaction chimique 39

Degré d avancement d une réaction On définit le degré d avancement (ou variable de De Donder) ξ d une réaction par la relation : ξ = (1/ν i ) (n i - n i0 ) Réactifs : νi <0 Produits : νi > 0 a A + b B c C + d D Etat Initial n 0 A n 0 B n 0 C n 0 D Etat Final n A n B n C n D ξ = ( 1/-a ) ( n A - n 0 A ) = ( 1/-b ) ( n B - n0 B ) = ( 1/c ) ( n C - n 0 C ) = ( 1/d ) ( n D - n0 D ) T.Briere-Reaction chimique 40

L utilisation de cette variable permet de simplifier les calculs en évitant l utilisation des règles de trois qui malgré leur simplicité apparente sont souvent sources d erreurs d inattention. Nous allons montrer son intérêt sur un exemple concret, mais les résultats obtenus seront bien sur généralisable à toute réaction chimique. ξ = (1/ν i ) (n i - n i0 ) Réactifs : νi <0 Produits : νi > 0 ν i ξ = (n i - n i0 ) n i = n i 0 + ν i ξ 2 A + 3 B 2 C + 2 D Etat Initial n 0 A n 0 B n 0 C n 0 D Etat Final n 0 A - 2 ξ n0 B - 3 ξ n0 C + 2 ξ n0 D + 2 ξ T.Briere-Reaction chimique 41

2 3 2 2 A + B C + Etat Initial n 0 D A n 0 B n 0 C n 0 D Etat Final n 0 A - x n0 B - 3 x/2 n0 C + x n0 D + x Calculons ξ pour chaque constituant ξ A = ( 1/-2 ) (n 0 A - x - n 0 A ) = x/2 ξ = x / 2 ξ B = ( 1/-3 ) (n 0 B - 3x /2 - n0 B ) = x/2 ξ C = ( 1/2 ) (n 0 C + x - n0 C ) = x/2 x = 2 ξ ξ C = ( 1/2 ) (n 0 D + x - n0 D ) = x/2 Quelque soit le constituant utilisé on obtient une expression identique! T.Briere-Reaction chimique 42

x = 2 ξ 2 A + 3 B 2 C + 2 D Etat Initial n 0 A n 0 B n 0 C n 0 D Etat Final n 0 A - x n0 B - 3 x/2 n0 C + x n0 D + x n 0 A - 2 ξ n0 B - 3 ξ n0 C + 2 ξ n0 D + 2 ξ Le nombre de mole de i à l équilibre est donc tout simplement donné par : n i = n 0 i + ν i ξ Cette relation simple est toujours applicable et permet d exprimer très facilement le nombre de mole de chaque corps à l équilibre. T.Briere-Reaction chimique 43

Le degré d avancement à la même valeur quel que soit le réactif ou le produit choisit pour le calculer. A cause de cette «invariabilité», il constitue un bon moyen de vérification des résultats obtenus. Il peut aussi être utilisé comme variable principale au lieu du nombre de mole. Cela simplifie souvent les calculs. Il est d autre part très utilisé en thermodynamique chimique ou en cinétique chimique. T.Briere-Reaction chimique 44

Degré de «dissociation» d un réactif On définit le degré de dissociation α d un réactif par comme le rapport du nombre de mole s étant dissocié sur le nombre de mole qui aurait du se dissocier si la réaction était totale. Le degré de dissociation est compris entre 0 et 1. 0 < α < 1 Il est souvent employé comme variable au lieu du nombre de mole car cela simplifie souvent les calculs. Remarque : On peut généraliser cette notion en utilisant les mots disparition et disparu au lieu de dissociation et dissocié ou même apparition et apparu dans le cas d un produit. T.Briere-Reaction chimique 45

Exemple : Dissociation d un acide faible Soit la réaction : AH aq + H 2 O = A - aq + H 3 O + aq On dissous C mole d acide faible AH dans un litre d eau. Calculer le coefficient de dissociation de l acide. On suppose C et K R connus. AH aq + H 2 O = A - aq + H 3 O + aq E.I C Excès 0 0 E.F C-x x x C - Cα Cα Cα C ( 1 - α ) Cα Cα α AH = x / C x = C * α AH n AH dissocié = x Si réaction totale AH en défaut devrait totalement disparaître T.Briere-Reaction chimique 46

AH aq + H 2 O = A - aq + H 3 O + aq E. I C Excès 0 0 E. F K = C ( 1 - α ) Cα Cα [A - ] [H 3 O + ] [AH] = C 2 α 2 / C ( 1 - α ) = C α 2 / ( 1 - α ) L eau Solvant n apparaît pas dans l expression de K son activité étant l unité. Ici le volume est supposé être de 1 L et molarités ou nombre de moles s expriment donc par le même nombre. Il ne reste qu a résoudre l équation du second degré K * ( 1-α )= C α 2 K - Kα = C α 2 C α 2 + Kα K = 0 Ce degré de dissociation sera souvent utilisé lors de l étude détaillée des Acides et des Bases. T.Briere-Reaction chimique 47

CONCLUSION L écriture de l équation bilan d une réaction chimique est toujours le premier travail du chimiste. Elle contient en elle même tous les renseignements nécessaires pour pouvoir prévoir les quantités de réactifs et de produits à l état final si la réaction est totale. Pour les réactions réversibles la connaissance de la constante d équilibre est aussi nécessaire pour déterminer la composition à l équilibre. La notion de proportionnalité est l outil mathématique le plus utilisé en chimie. Malgré son apparente simplicité, l expérience montre qu il est aussi la principale cause d erreur dans les exercices. Elle constitue la base fondamentale de la chimie sur laquelle sont s appuyer toutes les autres notions. Il est donc particulièrement important de bien la maîtriser. T.Briere-Reaction chimique 48