4. Essais enzymatiques

Documents pareils
5.5.5 Exemple d un essai immunologique

Méthodes de mesure des activités enzymatiques

TRAVAUX PRATIQUESDE BIOCHIMIE L1

ANALYSE SPECTRALE. monochromateur

Respiration Mitochondriale

AGREGATION DE BIOCHIMIE GENIE BIOLOGIQUE

Biologie Appliquée. Dosages Immunologiques TD9 Mai Stéphanie Sigaut INSERM U1141

HRP H 2 O 2. O-nitro aniline (λmax = 490 nm) O-phénylène diamine NO 2 NH 2

1. Principes de biochimie générale. A. Bioénergétique et dynamique. a) Intro: Les mitochondries passent leur temps à fabriquer de l énergie.

β-galactosidase A.2.1) à 37 C, en tampon phosphate de sodium 0,1 mol/l ph 7 plus 2-mercaptoéthanol 1 mmol/l et MgCl 2 1 mmol/l (tampon P)

LABORATOIRES DE CHIMIE Techniques de dosage

SESSION 2013 ÉPREUVE À OPTION. (durée : 4 heures coefficient : 6 note éliminatoire 4 sur 20) CHIMIE

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

Biochimie I. Extraction et quantification de l hexokinase dans Saccharomyces cerevisiae 1. Assistants : Tatjana Schwabe Marcy Taylor Gisèle Dewhurst

Les plantes et la lumière

Le ph, c est c compliqué! Gilbert Bilodeau, agr., M.Sc.

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

TP : Suivi d'une réaction par spectrophotométrie

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

Fiche de révisions sur les acides et les bases

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

INTRODUCTION À L'ENZYMOLOGIE

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Exemple de cahier de laboratoire : cas du sujet 2014

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

Mesures in situ et sur site

Sujet. calculatrice: autorisée durée: 4 heures

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

Nouvelles techniques d imagerie laser

TD DOSAGE DE PROTEINES ET ELECTROPHORESE : PARTIE THÉORIQUE BST1 SVT

FORMATION ASSURANCE QUALITE ET CONTROLES DES MEDICAMENTS QUALIFICATION DES EQUIPEMENTS EXEMPLE : SPECTROPHOTOMETRE UV/VISIBLE

Titre alcalimétrique et titre alcalimétrique complet

ANTICORPS POLYCLONAUX ANTI IMMUNOGLOBULINES

TS 31 ATTAQUE DE FOURMIS!

TEST ELISA (ENZYME-LINKED IMMUNOSORBENT ASSEY)

L immunoenzymologie. Technique puissante couramment utilisée e en recherche et en diagnostic cificité des anticorps pour leurs nes

Résonance Magnétique Nucléaire : RMN

Indicateur d'unité Voyant Marche/Arrêt

ChimGéné 1.3. Guide d utilisation. Auteur : Alain DEMOLLIENS Lycée Carnot - Dijon avec la collaboration de B. DIAWARA Ecole de Chimie de Paris

Rappels sur les couples oxydantsréducteurs

Vitesse d une réaction chimique

Critères pour les méthodes de quantification des résidus potentiellement allergéniques de protéines de collage dans le vin (OIV-Oeno )

C. Magdo, Altis Semiconductor (Corbeil-Essonne) > NOTE D APPLICATION N 2

pka D UN INDICATEUR COLORE

Comment suivre l évolution d une transformation chimique? + S 2 O 8 = I SO 4

Chapitre 02. La lumière des étoiles. Exercices :

Mise en pratique : Etude de spectres

4. Conditionnement et conservation de l échantillon

(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.»

Microscopie de fluorescence Etat de l art

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

EXERCİCE N 1 : «Synthèse de l éthanamide» (7 pts)

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

Séquence 5 Réaction chimique par échange de protons et contrôle de la qualité par dosage

A chaque couleur dans l'air correspond une longueur d'onde.

La spectrophotométrie

BACCALAURÉAT GÉNÉRAL PHYSIQUE-CHIMIE

Partie 1. Addition nucléophile suivie d élimination (A N + E) 1.1. Réactivité électrophile des acides carboxyliques et groupes dérivés

Physique : Thermodynamique

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

Fonctionnalisation de surfaces de carbone nanostructuré et son effet sur la réponse électrochimique

1.3 Recherche de contaminants au cours de la production de Saccharomyces boulardii

Spectrophotométrie. Spectrophotomètre CCD2. Réf : Version 1.0. Français p 2. Version : 4105

2 C est quoi la chimie?

Un spectromètre à fibre plus précis, plus résistant, plus pratique Concept et logiciel innovants

TD 9 Problème à deux corps

FICHE 1 Fiche à destination des enseignants

D ETECTEURS L UXMETRE SUR TIGE C OMPTEUR DE FRANGES A FIBRE OPTIQUE. Détecteurs

CONCOURS DE L INTERNAT EN PHARMACIE

TP n 1: Initiation au laboratoire

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

ACIDES BASES. Chap.5 SPIESS

A N A L Y S E U R E N L I G N E D A G V D E S B I C A R B O N A T E S D E L A L C A L I N I T E

TD de Biochimie 4 : Coloration.

BASES DE L ENTRAINEMENT PHYSIQUE EN PLONGEE

SPECTROSCOPIE D ABSORPTION DANS L UV- VISIBLE

1) Teneur en amidon/glucose. a) (Z F) 0,9, b) (Z G) 0,9, où:

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

Bioélectrodes enzymatiques pour des applications en biocapteurs et en biopiles

REACTIONS D OXYDATION ET DE REDUCTION

PICT DOSAGE DES ANTICOAGULANTS 1. PEFAKIT PICT. Dosage chronométrique. PEFAKIT PiCT. PEFAKIT PiCT Calibrateur HNF. PEFAKIT PiCT Contrôles HNF

Compléments - Chapitre 5 Spectroscopie

Bandes Critiques et Masquage

ELISA PeliClass human IgG subclass kit REF M1551

LD-P PRINCIPE ECHANTILLON. Coffret référence REVISION ANNUELLE Date. Date APPLICATION

Quel sirop choisir pour le nourrissement d hiver.

La reconnaissance moléculaire: la base du design rationnel Modélisation moléculaire: Introduction Hiver 2006

Correction ex feuille Etoiles-Spectres.

Tous les produits de la gamme SAF offrent des résistances :

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

101 Adoptée : 12 mai 1981

Chapitre II PHÉNOMÈNES RADIATIFS: PROPRIÉTÉS D EMISSION. f AB = mc 2 e 2. β 1 k(υ)dυ N

TPG 12 - Spectrophotométrie

TP 7 : oscillateur de torsion

PRINCIPE MICROSCOPIE CONFOCALE

Enseignement secondaire

CHAPITRE 3 LES TASQ COMME PLATEFORME POUR LA CATALYSE PSEUDO-ENZYMATIQUE

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

DES de Pathologie AFIAP

Transcription:

4. Essais enzymatiques Principe général d un essai enzymatique: enzyme analyte (substrat) produit(s) Des matrices biologiques peuvent contenir des espèces qui interfèrent avec une mesure directe de la concentration d analyte. Une méthode enzymatique permettrait de suivre une diminution (substrat) ou augmentation (produit) du signal (absorbance, fluorescence, courant) due à la conversion sélective de l analyte en produit(s), évitant ainsi une interférence analytique. 154 Exemple 4.1: consommation du substrat HN N H N H NH ε 293nm =1.22x10 4 M -1 cm -1 oxydase d'urate NH + 2 + 2H 2 + C 2 + H 2 2 H 2 NC HN N H Pour quantifier l acide urique, on mesure la diminution de A 293nm. Exemple 4.2: accumulation du produit phosphotransacétylase CoA-SH + CH 3 C-P 3 H CoA-S-CCH 3 + H 3 P 4 ε 232nm =4.5x10 3 M -1 cm -1 Pour quantifier la coenzyme A, on mesure l augmentation de A 232nm. 155

Pour certaines réactions enzymatiques, le changement de signal due à la consommation du substrat ou l accumulation du produit peut être utilisé. Le choix d espèce dépend des propriétés du substrat et du produit et de la technique de mesure employée; une comparaison des sensibilités et limites de détection s impose. Par exemple, si le substrat et produit sont tous les deux fluorescents et possèdent des absorptivités molaires et des rendements quantiques comparables, mais des longueurs d onde d excitation et d émission différentes, la quantification du produit est préférable puisqu une petite augmentation de la fluorescence est facilement mesurable sur un signal de fond quasi-nul. La décision devient plus compliquée dans le cas de la spectroscopie d absorption si le substrat et le produit possèdent des absorptivités molaires égales. Puisque des spectromètres d absorption mesurent la quantité de lumière transmisse par un échantillon, le plus grand signal (avec une précision plus petite) est obtenu à des concentrations faibles d analyte. Même si l on choisit normalement de mesurer l accumulation du produit en spectrophotométrie d absorption, il est important de comparer les courbes de calibration pour la consommation du substrat et l accumulation du produit afin d identifier la méthode optimale. 156 4.1 Mesures directes et couplées Certaines réactions enzymatiques peuvent être suivies directement (consommation du substrat ou accumulation du produit) avec une précision adéquate pour un essai enzymatique direct. Par contre, plusieurs enzymes catalysent des réactions impliquant des espèces qui ne sont pas facilement détectables. Dans ces situations, le produit est converti en une espèce détectable dans une réaction subséquente («réaction couplée» ou «réaction indicatrice»): E prim E ind Analyte Produit primaire Produit détecté La réaction indicatrice peut être de nature chimique ou enzymatique; le critère principal étant que la conversion du produit primaire en produit détecté doit être rapide et quantitative. 157

Exemple 4.3: NH 2 N N N N Ribose adénosine désaminase P HN N N + NH 3 N Ribose P AMP NH 3 + 2 H H N λ max =546 nm 158 Enzymes indicatrices Les déshydrogénases: déshydrogénase Substrat + NAD(P) + Substrat + NAD(P)H + H + (forme réduite) (forme oxydée) Les déshydrogénases sont utilisées lorsque la réaction enzymatique primaire produit une espèce qui peut servir comme substrat pour une réaction de déshydrogénase particulière. Cette espèce est convertie en sa forme oxydée dans la réaction indicatrice, où le NADH ou NADPH formé peut être détecté a 340 nm (ε 340nm =6.2x10 3 M -1 cm -1 ). (D après Mikkelsen & Cortòn, Bioanalytical Chemistry, 2004) 159

Les peroxydases: peroxydase Colorant + H 2 2 Colorant + H 2 (forme réduite) (forme oxydée) Des réactions indicatrices à base de peroxydase sont utiles pour suivre une réaction primaire produisant du peroxyde d hydrogène. Malgré la grande spécificité des peroxydases pour le H 2 2, elles réagissent avec une variété d espèces chromogènes qui sont incolores dans leur forme réduite, mais ont une forte absorption dans la forme oxydée (ex. 2,4-dichlorophénol, -dianisidine (3,3 - diméthoxybenzidine), benzidine (diamino-4,4 -biphényl), vert malachite). 160 Deux essais enzymatiques commerciaux pour le glucose dans le sérum sanguin utilisent la déshydrogénase et la peroxydase: CH 2 H oxydase CH 2 H de glucose H + 2 H + H 2 2 H H H H H β-d-glucose acide gluconique peroxydase H 2 2 + -dianisidine 2,2'-diméthoxybiphénylquinonediimine + 2H 2 ε 450nm =8.6x10 3 M -1 cm -1 β-d-glucose + ATP hexokinase glucose-6-phosphate (G6P) + ADP désydrogénase G6P + NADP + acide 6-phosphoglycérique + NADPH + H + ε 340nm = 6.2x10 3 M -1 cm -1 161

Analyte E primaire (V max ) prim Produit primaire (P1) + co-substrat (S2) Seules les concentrations de l analyte et du produit primaire devraient limiter les vitesses des réactions couplées. Un excès de tous les autres réactifs est utilisé. Pour une conversion linéaire du produit primaire en produit détecté, des faibles concentrations du produit primaire doivent être produites (i.e. région linéaire de la courbe de cinétique V o -[S]; [S]<0.1K m ) Dans des conditions optimales, la vitesse de la réaction indicatrice (V eff ) ind = vitesse de formation du produit primaire (V max ) prim. E indicatrice (V max ) ind ( V ) max prim = ( V ) eff ind = (1+ K m,p1 ( Vmax ) ind /[P1]) + ( K m,s2 /[S2]) Produit détecté Puisque K m,p1 est une caractéristique de E ind et [P1] est dictée par [analyte], les seules variables qui peuvent être contrôlées expérimentalement sont (V max ) ind ( α [E ind ]) et la concentration du co-substrat, [S2]. Un grand excès (100 fois ou plus) de E ind est employé, ainsi qu une concentration saturante du cosubstrat (ex. -dianisidine ou NADP + ). 162 4.2 Classification des méthodes enzymatiques Si [S] < 0.1K m, V o α [S] Si [S] > 10K m, V o α [E] condition pour la quantification du substrat condition pour la quantification d enzyme Types d essais enzymatiques: - essai cinétique - essai à temps fixe - essai à changement fixe 163

Essai cinétique Dans un essai cinétique, le changement de concentration du substrat ou produit est enregistré avec le temps ( signal en fonction du temps). La vitesse de réaction est celle de la vitesse initiale (V o ). Un graphique de V o -[S] est utilisé pour la quantification du substrat. Un graphique de V o -[E] est utilisé comme courbe d étalonnage pour la quantification de l enzyme. 164 Essai commercial pour la créatine kinase (CK) dans le sérum humain: - P CH 3 HN N C - + NH 2 - CH CK 3 + + ADP H3 N N C + ATP NH 2 + - ATP + glucose hexokinase ADP + G6P déshydrogénase G6P + NADP + 6-phosphogluconate + NADPH + H + Le sérum dilué est pré-incubé avec du glucose, de la hexokinase, du NADP + et de la déshydrogénase pour consommer toute la créatine phosphate et ADP présents dans le sérum sanguin. Lorsqu une valeur constante de A 340nm est obtenue, une solution concentrée de créatine phosphate et d ADP est ajoutée. L augmentation d A 340nm est enregistrée en fonction du temps. 165

V o (D après Mikkelsen & Cortòn, Bioanalytical Chemistry, 2004) 166 Essai à temps fixe Le changement de signal (correspondant à la consommation de S ou à la formation de P) se produisant sur une période de temps fixe et relativement longue est mesuré. Ces essais s appuient sur une conversion quantitative (ou quasiquantitative) du substrat en produit. Ils sont utilisés exclusivement pour la quantification du substrat. Une courbe d étalonnage linéaire du changement de signal en fonction de la concentration initiale du substrat est utilisée pour quantifier le substrat. Des essais à temps fixe ne requièrent pas que [S] < 0.1 K m, puisque une conversion essentiellement complète a lieu. 167

Essai commercial pour le cholestérol dans le sérum humain: esters du cholestérol + H 2 cholestérol estérase cholestérol + acide gras cholestérol oxydase cholestérol + 2 cholest-4-en-3-one + H 2 2 peroxydase H 2 2 + 4-aminoantipyrène + p-hydroxybenzènesulfonate colorant quinoneimine + 2H 2 λ max =500 nm Une courbe d étalonnage d A 500nm en fonction de [cholestérol] est utilisée pour la quantification. Un blanc contenant toutes les espèces et enzymes, à l exception du cholestérol, est préparé. La valeur de A 500nm du blanc est soustrait de toutes les autres valeurs d absorbances mesurées, permettant ainsi de corriger pour une oxydation du colorant qui n est pas due à la réaction analytique. 168 Essai à changement fixe Des essais à changement fixe sont relativement très peu utilisés. Ils sont utilisés pour la quantification d enzyme. Ces essais mesurent le temps requis pour générer une certaine concentration du produit ou pour qu une certaine quantité du substrat soit consommé. [Enzyme] α (temps) -1 et un graphique de 1/t en fonction de [E] est utilisé comme courbe d étalonnage. 169

4.3 Méthodes instrumentales 4.3.1 Absorbance: Méthode très pratique et populaire pour suivre des réactions enzymatiques due à sa simplicité et précision. La détection de la quantité de substrat consommée ou de produit formé est basée sur la loi de Beer-Lambert: A λ =ε λ bc. Les substrats naturels les plus fréquemment utilisés sont les coenzymes NAD(P) + /NADP(H) qui sont réversiblement réduits par plusieurs enzymes: NAD(P) + + H 2 NAD(P)H + H + λ max =275 nm λ max =340 nm 170 Si le substrat naturel de l enzyme ne possède pas des propriétés spectrales utiles, des analogues peuvent être utilisés: Exemple: quantification de la phosphatase alcaline dans le sérum sanguin phosphatase alcaline 2 N P - 2- + H 2 2 N H + HP 4 - ε 450nm =1.85x10 4 M -1 cm -1 Un échantillon dilué de sérum est incubé avec une concentration saturante de p-nitrophénylphosphate pendant 15 min avant de lire l absorbance à 405 nm. La limite de détection est de 4 x 10-12 M pour la phosphatase alcaline dans l échantillon non-dilué de sérum sanguin. 171

La sensibilité d un essai enzymatique basé sur des mesures de l absorbance dépend directement de l absorptivité molaire de l espèce détecté: A=εb C La limite de détection (la concentration minimale d analyte requise pour générer un signal qui est 2 à 3 fois plus grand que l écart type du blanc) dépend aussi de l absorptivité molaire de l espèce détectée. Pour les essais du glucose (section 4.1), si le bruit de fond à 340 nm est comparable à celui à 450 nm, des valeurs comparables de l absorbance seront mesurées pour le blanc. Dans ces conditions, une absorptivité molaire plus élevée donnera lieu à une limite de détection plus basse. La limite de détection de l essai basé sur la réaction indicatrice colorant-peroxydase est plus basse que celle de l essai avec la déshydrogénase par un facteur de 8600/6200=1.4. Les limites de détection des essais enzymatiques sont généralement de l ordre du µm pour la concentration du substrat. 172 4.3.2 Fluorescence: La fluorescence moléculaire donne des limites de détection (pour les produits des réactions enzymatiques) qui sont quelques ordres de grandeur plus basses que celles obtenues par des méthodes standard d absorbance. Pour une [analyte] faible, l intensité de la fluorescence est α à la [analyte] et l intensité dépend de l absorptivité molaire de l analyte à la longueur d onde d excitation et au rendement quantique de l analyte. n peut détecter des plus faibles concentrations d analyte par fluorimétrie (vs. spectrophotométrie d absorption) dûs aux principes instrumentaux impliqués. La détection par fluorescence est aussi intrinsèquement plus sélective que la détection par absorption puisque λ excitation et λ émission peuvent être choisies pour un produit particulier. 173

Problèmes possibles: - l extinction de fluorescence par d autres molécules qui absorbent autour de λ émission de l espèce détectée - l absorption à λ excitation par des espèces autre que l analyte Exemple: quantification de la protéase Astacus (une endopeptidase qui coupe les liens entre les résidus Arg et Ala). Substrat synthétique groupe dansylextincteur de fluorescence S NH Pro Lys Arg Ala Pro Trp Val coupure enzymatique fluorophore λ excitation =285 nm λ émission =360 nm Fluorescence à 360 nm augmente lors de la réaction enzymatique Ala Pro Trp Val 174 4.3.3 Électrochimie: Méthodes ampérométriques - le courant résultant d un potentiel appliqué à une électrode est mesuré. Substrat enzyme Produit (x) e - Produit (Red) électrode Le potentiel appliqué est d une amplitude suffisante pour complètement oxyder (à des potentiels positifs) ou réduire (à des potentiels négatifs) chaque molécule d analyte qui vient en contacte avec l électrode. Le courant produit sous contrôle de transport de masse (par diffusion ou agitation) est directement proportionnel à la concentration d analyte. 175

L ampérométrie est communément employée dans des essais enzymatiques où le peroxyde d hydrogène est un des produits: H 2 2 2H + + 2 + 2e - E appliqué = +0.70 V vs. E.C.S. Les électrons produits dans la réaction d oxydation donne lieu à un courant mesurable qui est directement proportionnelle à [H 2 2 ]. Méthodes potentiométriques - mesure d une différence de potentiel dont l amplitude est reliée à la [analyte] par une relation logarithmique (ex. électrodes sélectives aux ions) Exemple: Mesure de la consommation ou production de protons par une réaction enzymatique avec une électrode de verre (méthode de ph-stat - de l acide ou base est ajouté pour maintenir le ph à une certaine valeur) 176