Cours d électrocinétique EC1-Lois en régime quasi-stationnaire

Documents pareils
CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2

Circuits RL et RC. Chapitre Inductance

ELEC2753 Electrotechnique examen du 11/06/2012

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

CHAPITRE VIII : Les circuits avec résistances ohmiques

Charges électriques - Courant électrique

Séquence 14 : puissance et énergie électrique Cours niveau troisième

MATIE RE DU COURS DE PHYSIQUE

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F

Le transistor bipolaire

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B.

Les puissances La notion de puissance La puissance c est l énergie pendant une seconde CHAPITRE

Objet : Alimentation pour ordinateur portable et autre. Alimentation Schéma 1

Chapitre 1 Régime transitoire dans les systèmes physiques

Donner les limites de validité de la relation obtenue.

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

Mesure. Multimètre écologique J2. Réf : Français p 1. Version : 0110

Cours 9. Régimes du transistor MOS

Méthodes de Caractérisation des Matériaux. Cours, annales

Electrocinétique Livret élève

Chapitre 7: Énergie et puissance électrique. Lequel de vous deux est le plus puissant? L'énergie dépensée par les deux est-elle différente?

M HAMED EL GADDAB & MONGI SLIM

La charge électrique C6. La charge électrique

Génie Industriel et Maintenance

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Théorie : Introduction

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

1 000 W ; W ; W ; W. La chambre que je dois équiper a pour dimensions : longueur : 6 m largeur : 4 m hauteur : 2,50 m.

CH 11: PUIssance et Énergie électrique

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

sciences sup Cours et exercices corrigés IUT Licence électricité générale Analyse et synthèse des circuits 2 e édition Tahar Neffati

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Electricité Générale

Vous avez dit... LED??? DOCLED V2 Page 1 / 14

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

Physique, chapitre 8 : La tension alternative

Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires

Chapitre 11 Bilans thermiques

MESURE DE LA PUISSANCE

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

!!! atome = électriquement neutre. Science et technologie de l'environnement CHAPITRE 5 ÉLECTRICITÉ ET MAGNÉTISME

CHAPITRE IX : Les appareils de mesures électriques

Études et Réalisation Génie Électrique

Notice d Utilisation du logiciel Finite Element Method Magnetics version 3.4 auteur: David Meeker

Chapitre 4 : Le transistor Bipolaire

Module 3 : L électricité

PRINCIPE, REGULATION et RECHERCHE de PANNES

Les Mesures Électriques

I- Définitions des signaux.

EP A1 (19) (11) EP A1 (12) DEMANDE DE BREVET EUROPEEN. (43) Date de publication: Bulletin 2011/26

Les dangers de l électricité

LES MONTAGES D AMPLIFICATION: ANALYSE ET SYNTHESE

SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite

Electrotechnique. Fabrice Sincère ; version

Lecture recommandée (en anglais) Activité d écriture facultative. Références

Electricité : caractéristiques et point de fonctionnement d un circuit

«LES ALTERNATEURS DE VOITURES»

Electricité. Electrostatique

Convertisseurs statiques d'énergie électrique

Chapitre 02. La lumière des étoiles. Exercices :

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Fonctions homographiques

Défi 1 Qu est-ce que l électricité statique?

Vannes PN16 progressives avec corps en acier inox et

OFPPT ROYAUME DU MAROC RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES ANALYSE DE CIRCUITS A COURANT CONTINU MODULE N : 5 ELECTROTECHNIQUE SECTEUR :

PROBLEME(12) Première partie : Peinture des murs et du plafond.

Lycée SCHWEITZER MULHOUSE PC* 2012/ 2013 TRAVAUX PRATIQUES DE PHYSIQUE LIVRET 2

CH IV) Courant alternatif Oscilloscope.

Sciences physiques Stage n

Les tensions 3 CHAPITRE

NOTICE DOUBLE DIPLÔME

Les transistors à effet de champ.

La polarisation des transistors

Synthèse des convertisseurs statiques DC/AC pour les systèmes photovoltaïques

Energie et conversions d énergie

Compatibilité Électromagnétique

Le transistor bipolaire. Page N 6 Tranlin

aux différences est appelé équation aux différences d ordre n en forme normale.

Le circuit électrique

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)

Licence Professionnelle de Génie Industriel Université Paris VI-Jussieu ; CFA Mecavenir Année Cours de Génie Electrique G.

La température du filament mesurée et mémorisée par ce thermomètre Infra-Rouge(IR) est de 285 C. EST-CE POSSIBLE?

T500 DUAlTACH. JAQUET T500 DualTach Instrument de mesure et de surveillance équipé de 2 entrées fréquence TACHYMETRE 2 CANAUX

Elec II Le courant alternatif et la tension alternative

STI2D : Enseignements Technologiques Transversaux

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

Conseils en Ingénierie mécanique

PRODUCTION DE L ENERGIE ELECTRIQUE

Champ électromagnétique?

Conception. de systèmes électroniques. analogiques

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

1 Savoirs fondamentaux

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

Transcription:

Cours d électrocinétique EC1-Lois en régime quasi-stationnaire Table des matières 1 Introduction 2 2 Qu est-ce que l électrocinétique? 2 3 Rappels sur les grandeurs intensité et tension 2 3.1 Intensité du courant... 2 3.1.1 Sens conventionnel... 2 3.1.2 Définition... 2 3.2 Tension... 3 3.2.1 Définition et mesure... 3 3.2.2 Convention... 3 4 ARQS 3 4.1 Régimes continus ou variables... 3 4.2 Approximation des régimes quasi-stationnaires (ARQS)... 3 4.2.1 Définition... 3 4.2.2 Validité... 3 5 Loi des nœuds et loi des mailles 4 5.1 Loi des mailles... 4 5.2 Loi des noeuds... 4 6 Puissance, générateur, récepteur 5 7 Caractéristique d un dipôle 5 8 Dipôle actif ou passif 5 9 Les conducteurs ohmiques 6 9.1 Loi d Ohm... 6 9.2 E et Joule... 6 9.3 Association de conducteurs ohmiques... 6 9.3.1 Association en série : montage diviseur de tension... 6 9.3.2 Association en parallèle : montage diviseur de courant... 7 10 Théorème de Millman 7 1

Electrocinétique EC1-Lois en ARQS 1. Introduction 11 Les générateurs 8 11.1 Générateur de tension idéal... 8 11.2 Générateur de courant idéal... 8 11.3 Association de générateurs... 9 11.4 Modélisation linéaire des générateurs réels... 9 11.4.1 Modèle de Thévenin... 9 11.4.2 Modèle de Norton... 9 11.4.3 Passage d un modèle à l autre... 10 12 Intérêt des modèles de Thévenin et Norton 10 12.1 Méthode des mailles... 10 12.2 Méthode des nœuds... 10 1 Introduction Ce chapitre sera l occasion de définir les bases de l électrocinétique, de revoir les grandeurs physiques comme la tension et le courant, ainsi que les lois qui les concernent dans un circuit quelconque. 2 Qu est-ce que l électrocinétique? L électrocinétique est l étude du mouvement d ensemble des porteurs de charge dans un circuit que l on appelle courant électrique. Les charges se déplacent sous l e et d un champ électrique extérieur. 3 Rappels sur les grandeurs intensité et tension 3.1 Intensité du courant 3.1.1 Sens conventionnel On a attribué un sens conventionnel au courant électrique qu il convient de respecter : le courant électrique est compté positivement lorsqu il va dans le même sens que celui dans lequel se déplaceraient des charges positives soumis à un champ extérieur. Figure 1 Intensitédu courant 3.1.2 Définition Comme nous l avons déjà vu, l intensité du courant est la quantité de charges q qui traverse une section S du conducteur pendant un temps t. Son unité est l ampère (A), 1A correspond à 1C.s 1. 2

Electrocinétique EC1-Lois en ARQS 3.2 Tension 3.2 Tension 3.2.1 Définition et mesure La tension est une di érence de potentiel électrique entre deux points d un circuit et se mesure avec un voltmètre qui la donne en Volt (V). Il n existe pas d appareil pour mesurer le potentiel électrique en un point, on ne fait que mesurer des di érence de potentiels : pour cela, on fixe arbitrairement le point de potentiel nul appelé la masse. Comme on l a vu en électrostatique, le potentiel électrique n est défini qu à une constante près. 3.2.2 Convention Comme pour l intensité du courant, on choisit un sens conventionnel pour la tension : on note U AB = V (A) V (B) la tension entre les points A et B d un circuit par une flèche dirigée de A vers B. U AB est positive si V (A) >V(B). Figure 2 Tension et di érence de potentiels aux bornes d un dipôle 4 Régimes continus ou variables, approximation des régimes quasi-stationnaires (ARQS) 4.1 Régimes continus ou variables On parle de régime continu lorsque les grandeurs électriques, notamment l intensité et la tension ne dépendent pas du temps. On parle de régime variable si ces grandeurs varient dans le temps, ce qui peut avoir plusieurs causes : cas du régime transitoire de la charge ou décharge d un condensateur, cas d un régime forcé imposé par un GBF. 4.2 Approximation des régimes quasi-stationnaires (ARQS) 4.2.1 Définition Cette approximation consiste à dire que quel que soit le régime, l intensité du courant est la même en tout point d une branche de circuit. 4.2.2 Validité Cette approximation est valable pour un régime variable si le temps caractéristique de sa variation ( pour la charge ou décharge d un condensateur, T pour un signal sinusoïdal imposé par un GBF) est grand devant le temps de propagation de l intensité. Cette approximation sera possible si les dimensions du circuit ne sont pas trop grandes, car l intensité se propageant à une vitesse proche de celle de la lumière, le temps de propagation est L c ce qui fait 10 8 s pour un circuit d 1 mètre de longueur. Les régimes variables étudiés ont des temps caractéristiques bien plus grand (ex : régime transitoire de la décharge d un condensateur de capacité 1 µf dans une résistance de 500 : 3

Electrocinétique EC1-Lois en ARQS 5. Loi des nœuds et loi des mailles 5 =5 RC =2.510 3 ms >> 10 8 s). Dans tout ce qui suit, on considérera les conditions de l ARQS réalisées. 5 Loi des nœuds et loi des mailles Avant d écrire ces lois, définissons quelques notions relatives au circuit électrique : Une branche est constituée d une association en série d un ou plusieurs dipôles (fils, résistance, bobine,...) : dans le circuit ci-contre, AB est une branche, BC également,... Un nœud est un point du circuit où se retrouvent plusieurs branches : le nœud B réunit les branches AB, BC et BE. Une maille est une série de branches qui part d un nœud pour revenir au même nœud : on définit la maille ABCD ou BEFC ou AEFD... 5.1 Loi des mailles Figure 3 Un circuit électrique quelconque La somme des tensions à l intérieur d une maille est nulle. Sur la maille ABCD, on a : U AB + U BC + U CD + U DA =0 (1) En e et : V A V B + V B V C + V C V D + V D V A =0 (2) Figure 4 Loi des mailles 5.2 Loi des noeuds Cette loi traduit la conservation de la charge électrique. La somme des courants qui arrivent sur un nœud est égale à la somme des courants qui en repart : I 1 = I 2 + I 3 (3) Figure 5 Loi des noeuds 4

Electrocinétique EC1-Lois en ARQS 6. Puissance, générateur, récepteur 6 Puissance reçue, conventions générateur et récepteur Soit un dipôle dans la configuration ci-contre. La puissance reçue par ce dipôle est définie par : P = U I (4) Cette puissance est positive dans le cas d un dipôle récepteur. Figure 6 Puissance reçue par un dipôle Ainsi, la configuration présentée ci-contre est appelée convention récepteur : les sens de I et U sont opposés. Figure 7 Convention récepteur Alors, si la puissance reçue est négative, c est que le dipôle fournit de l énergie. C est un générateur et on utilisera la convention générateur : I et U sont dans le même sens. Figure 8 Convention générateur 7 Caractéristique d un dipôle Lorsque l on souhaite tracer la caractéristique d un dipôle, on s intéresse à la fonction u=f(i) (caractéristique tension-courant). Si cette fonction est une droite, on parle de dipôle linéaire. 8 Dipôle actif ou passif Un dipôle passif est un dipôle qui convertit toute l énergie électrique qu il reçoit en énergie thermique (conducteur ohmique, diode,...). Sa caractéristique passera forcément par l origine. Un dipôle actif fournit à l extérieur de l énergie thermique et une autre forme d énergie : Un générateur fournira de l énergie thermique et de l énergie électrique ; Un récepteur comme un moteur fournit de l énergie thermique et de l énergie mécanique à partir d énergie électrique. La caractéristique de ces dipôles ne passe pas par l origine. 5

Electrocinétique EC1-Lois en ARQS 9. Les conducteurs ohmiques 9 Les conducteurs ohmiques 9.1 Loi d Ohm Un conducteur ohmique est un dipôle dont la caractéristique est une droite passant par l origine. Il répond donc à la loi d Ohm qui s écrit : u = Ri (5) Avec u, la tension en Volt(V), i, l intensité en ampère (A) et R la résistance du conducteur ohmique exprimée en Ohm ( ). Figure 9 Caractéristique d un conducteur ohmique 9.2 E et Joule On appelle e et Joule la dissipation de l énergie électrique reçue par énergie thermique dans un dipôle. Le conducteur ohmique dissipe sous forme de chaleur la puissance : 9.3 Association de conducteurs ohmiques 9.3.1 Association en série : montage diviseur de tension P = Ri 2 (6) Lorsque l on associe plusieurs conducteurs ohmiques en série, leurs résistances s ajoutent : La résistance globale est appelée "résistance équivalente". Pour la situation ci-contre, on a : R eq = + + R 3 (7) Figure 10 Association de conducteurs ohmiques en série Dans cette association en série de conducteurs, on peut utiliser la propriété "diviseur de tension". Elle consiste à exprimer la tension aux bornes d un conducteur en fonction de sa résistance, de la résistance équivalente et de la tension aux bornes de l ensemble. Voici un exemple : 6

Electrocinétique EC1-Lois en ARQS 10. Théorème de Millman U R1 = + E = R eq E (8) U R2 = + E = R eq E (9) U R1 et U R2 ne sont qu une fraction de la tension E, le montage s appelle un diviseur de tension. Figure 11 Diviseur de tension 9.3.2 Association en parallèle : montage diviseur de courant Lorsque l on associe plusieurs conducteurs ohmiques en parallèle, leurs conductances définies par G = 1 R s ajoutent : Pour la situation ci-contre, on a : 1 R eq = 1 + 1 + 1 R 3 (10) G eq = G 1 + G 2 + G 3 (11) Figure 12 Association de conducteurs ohmiques en parallèle Dans cette configuration en parallèle, on peut utiliser le diviseur de courant : I 1 = G 1 G 1 + G 2 I = G 1 G eq I = + I (12) En e et, pour deux résistances en parallèle, on a R eq = 1 G eq = +, donc : I 1 = G 1 G eq I = 1 + = + I (13) I 1 n est qu une fraction de l intensité I, le montage s appelle un diviseur de courant. Figure 13 Diviseur de courant 10 Théorème de Millman Ce théorème exprime la loi des noeuds en terme de potentiels électriques : 7

Electrocinétique EC1-Lois en ARQS 11. Les générateurs Si on applique la loi d Ohm à chaque dipôle, on a : I 1 = U 1 = V A V B (14) I 2 = U 2 = V C V B (15) I 3 = U 3 R 3 = V D V B R 3 (16) On applique ensuite la loi des noeuds : I 1 + I 2 + I 3 =0 (17) V A V B + V C V B Et le théorème de Millman s écrit : V B 3 1 + 1 + 1 R 3 4 + V D V B R 3 =0 (18) = V A + V C + V D R 3 (19) Figure 14 Théorème de Millman 11 Les générateurs 11.1 Générateur de tension idéal Un générateur de tension idéal est un générateur qui délivre une tension constante quel que soit l intensité débitée. La tension délivrée est appelée force électromotrice, elle est notée E et s exprime en Volt (V). 11.2 Générateur de courant idéal Figure 15 Caractéristique d un générateur de tension idéal Un générateur de courant idéal est un générateur qui délivre une intensité constante quel que soit la tension à ses bornes. Le courant délivré est appelé courant électromoteur, il est notée et s exprime en Ampère (A). Figure 16 Caractéristique d un générateur de courant idéal 8

Electrocinétique EC1-Lois en ARQS 11.3 Association de générateurs 11.3 Association de générateurs L association en série de deux générateurs de tension idéaux de fém E 1 et E 2 est équivalente à un générateur de tension idéal qui délivre la force électromotrice E 1 + E 2. L association en parallèle de deux générateurs de courant idéaux de cém 1 et 2 est équivalente à un générateur de courant idéal qui délivre le courant électromoteur 1 + 2. 11.4 Modélisation linéaire des générateurs réels Même si la caractéristique générale d un générateur n est pas une droite, les conditions d utilisation des générateurs montrent que l on peut localement considérer leur caractéristique comme étant linéaire. 11.4.1 Modèle de Thévenin Définition Tout générateur réel peut être modélisé par un générateur idéal de tension de fém E en série avec une résistance r appelée résistance interne du générateur et exprimée en Ohm ( ). Sa caractéristique a pour équation : u = E r i (20) Figure 17 Modèle de Thévenin d un générateur réel Association Si deux générateurs de Thévenin (E 1,r 1 )et (E 2,r 2 ) sont associés en série, l ensemble est équivalent à un générateur de Thévenin de fém E 1 + E 2 et de résistance interne r 1 + r 2. 11.4.2 Modèle de Norton Définition Tout générateur réel peut être modélisé par un générateur idéal de courant de cém en parallèle avec une résistance r appelée résistance interne du générateur et exprimée en Ohm ( ). On peut aussi introduire g, conductance interne du générateur exprimée en Siemens (S). Sa caractéristique a pour équation : i = g u = u r (21) 9

Electrocinétique EC1-Lois en ARQS 12. Intérêt des modèles de Thévenin et Norton Figure 18 Modèle de Norton d un générateur réel Attention ici, c est une caractéristique intensité-tension qui est représentée. Association Si deux générateurs de Norton identiques ( 1,g 1 )et( 2,g 2 ) sont associés en parallèle, l ensemble est équivalent à un générateur de Norton de cém 1 + 2 et de conductance interne g 1 + g 2. 11.4.3 Passage d un modèle à l autre Les modèles de Thévenin et de Norton sont équivalents, on peut passer de l un à l autre à l aide de la relation : E = r (22) 12 Intérêt des modèles de Thévenin et Norton La transformation Thévenin-Norton permet de mettre en œuvre la méthode des nœuds et la méthode des mailles qui permettent de calculer toutes les tensions entre les nœuds du circuit ou toutes les intensités dans les branches de celui-ci. 12.1 Méthode des mailles On cherche à calculer les intensités dans les branches. Dans cette méthode, on transforme tous les générateurs en modèle de Thévenin, puis on mène les calculs en appliquant à bon escient la loi des mailles et la loi des nœuds vues précédemment. 12.2 Méthode des nœuds Celle-ci permet de calculer les tensions entre les nœuds du circuit. Il faudra pour l appliquer transformer tous les générateurs en modèle de Norton, puis appliquer la loi des nœuds et la loi des mailles à bon escient. Bien souvent c est un mélange de la méthode des nœuds et de la méthode des mailles qui permet de résoudre le problème posé. 10