CHAP 06-COURS Traitement du son

Documents pareils
ACOUSTIQUE 3 : ACOUSTIQUE MUSICALE ET PHYSIQUE DES SONS

Chapitre 2 Les ondes progressives périodiques

Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO <jiayin.gao@univ-paris3.fr> 20 mars 2014

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

Cours d Acoustique. Niveaux Sonores Puissance, Pression, Intensité

Transmission de données. A) Principaux éléments intervenant dans la transmission

Mode d emploi ALTO MONITOR PROCESSEUR D ÉCOUTE. Version 1.0 Juillet 2003 Français

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

A. N(p) B + C p. + D p2

Instruments de mesure

ELEC2753 Electrotechnique examen du 11/06/2012

I- Définitions des signaux.

Intensité sonore et niveau d intensité sonore

Baccalauréat technique de la musique et de la danse Métropole septembre 2008

Mesure. Multimètre écologique J2. Réf : Français p 1. Version : 0110

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

Méthodes de Caractérisation des Matériaux. Cours, annales

CHAPITRE IX : Les appareils de mesures électriques

Caractéristiques des ondes

Convertisseurs statiques d'énergie électrique

Ordonnance du DFJP sur les instruments de mesure audiométriques

Circuits RL et RC. Chapitre Inductance

CH IV) Courant alternatif Oscilloscope.

La chanson lumineuse ou Peut-on faire chanter la lumière?

Charges électriques - Courant électrique

Régler les paramètres de mesure en choisissant un intervalle de mesure 10µs et 200 mesures.

-1- SOUNDMAN. Fabrication et distribution. SOUNDMAN e.k. Bornimer Str Berlin (Allemagne) Tél & Fax (+49)

Multichronomètre SA10 Présentation générale

Chapitre 5 Émetteurs et récepteurs sonores

«Tous les sons sont-ils audibles»

I GENERALITES SUR LES MESURES

Enregistrement et transformation du son. S. Natkin Novembre 2001

Cours 9. Régimes du transistor MOS

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

Chapitre I La fonction transmission

Systèmes de transmission

T500 DUAlTACH. JAQUET T500 DualTach Instrument de mesure et de surveillance équipé de 2 entrées fréquence TACHYMETRE 2 CANAUX

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

TP Modulation Démodulation BPSK

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

Equipement. électronique

Objet : Alimentation pour ordinateur portable et autre. Alimentation Schéma 1

Electron S.R.L. - MERLINO - MILAN ITALIE Tel ( ) Fax Web electron@electron.it

Acquisition et conditionnement de l information Les capteurs

Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure.

Les résistances de point neutre

CHAPITRE V. Théorie de l échantillonnage et de la quantification

Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique adapté

Chapitre 1 Régime transitoire dans les systèmes physiques

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

M1107 : Initiation à la mesure du signal. T_MesSig

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

M HAMED EL GADDAB & MONGI SLIM

AMELIORATION DE LA FIABILITE D UN MOTEUR GRÂCE AU TEST STATIQUE ET DYNAMIQUE

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

Relais statiques SOLITRON MIDI, Commutation analogique, Multi Fonctions RJ1P

Solutions pour la mesure. de courant et d énergie

LYCEE TECHNIQUE PIERRE EMILE MARTIN BOURGES ETUDE D UN TRAITEMENT DE SURFACE

DETECTOR BICANAL FG2 1. DIMENSIONS ET CONNEXIONS ELECTRIQUES 2. GENERALITES. 24 VDC Alimentat. 24 Vcc. Contact Boucle Contact Boucle 1 6 7

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Chaine de transmission

MATIE RE DU COURS DE PHYSIQUE

2 g Net - 36 g emballé 2 tips silicone anallergique small + 2 medium + 2 filtres à membrane. 2 tailles d embouts

AP1.1 : Montages électroniques élémentaires. Électricité et électronique

08/07/2015

Chapitre 02. La lumière des étoiles. Exercices :

Champ électromagnétique?

Donner les limites de validité de la relation obtenue.

Production de documents audio-numériques

TD1 Signaux, énergie et puissance, signaux aléatoires

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN)

Les transistors à effet de champ.

Études et Réalisation Génie Électrique

électricité Pourquoi le courant, dans nos maison, est-il alternatif?

DI-1. Mode d'emploi. Direct Box

Audio pour HDSLR. «Comment obtenir un son professionnel en filmant avec un reflex numérique?»

A la découverte du Traitement. des signaux audio METISS. Inria Rennes - Bretagne Atlantique

CHAPITRE VIII : Les circuits avec résistances ohmiques

Les microphones. Les microphones sont des transducteurs : ils transforment l énergie mécanique véhiculée par une onde sonore, en énergie électrique.

sciences sup Cours et exercices corrigés IUT Licence électricité générale Analyse et synthèse des circuits 2 e édition Tahar Neffati

Scarlett Plug-in Suite

Références pour la commande

Le transistor bipolaire

Electrocinétique Livret élève

Scanner acoustique NoiseScanner

1. PRESENTATION DU PROJET

Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier

P2: Perception auditive

Infos. Indicateurs analogiques encastrables pour installation à courants forts. Série M W/P/ LSP BWQ BGQ TP TG WQ /0S WQ /2S FQ /2 W BI BIW DFQ

Le triac en commutation : Commande des relais statiques : Princ ipe électronique

Chapitre 2 : communications numériques.

Précision d un résultat et calculs d incertitudes

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)

Sciences physiques Stage n

Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B.

Transcription:

Thème : Son et musique CHAP 06-COURS Traitement du son Domaine : Traitement du son 1/10 1. COMMENT TRANSFORMER UN SON 1.1. Définition Le traitement du son est utilisé dans les domaines de la télécommunication et de la musique. Il assure le fonctionnement des serveurs vocaux, des commandes vocales et des filtrages d'antennes pour la téléphonie mobile. Il englobe l'enregistrement, la compression, le stockage, la diffusion de la musique, mais aussi la correction d'enregistrements dégradés ainsi que la synthèse de nouveaux sons. Toutes ces fonctions sont réalisées par des filtres électriques ou par des traitements numériques Remarques - Le bruit est un signal parasite indésirable qui vient s'ajouter au signal d'origine. - Un filtre est, en électricité, un dispositif permettant d'éliminer certaines fréquences d'un signal 1.2. Mesurer la valeur efficace d'une tension Pour mesurer la valeur efficace U eff d'une tension sinusoïdale centrée sur zéro, il faut : - Soit utiliser un voltmètre en mode AC, - Soit utiliser un oscilloscope ou un ordinateur muni d'une interface et d'un logiciel d'acquisition pour mesurer la valeur maximale U max atteinte par la tension sinusoïdale et utiliser la relation U max ܠ ܕ = eff U 2.LE SPECTRE D'UN SON - Le son produit par un instrument de musique comme une guitare est périodique, mais pas sinusoïdal. - En 1822, le mathématicien français Joseph FOURIER a montré que tout signal périodique de fréquence f, peut être décomposé en une somme de signaux sinusoïdaux de fréquences f n multiples de f 1 - Ces signaux sinusoïdaux sont appelés harmoniques. 2.1. Définition Le spectre en fréquences d'un son est la représentation graphique de l'amplitude de ses composantes sinusoïdales en fonction de la fréquence.

a) Exemple : fondamental et harmonique 2/10 - Le spectre en fréquences du son d'une guitare montre plusieurs pics de fréquences : 659 Hz, 1,32 khz, 198 khz et 2,64 khz. - Ces fréquences sont celles des harmoniques. - La fréquence la plus faible (f = 659 Hz) est celle du fondamental; c'est aussi la fréquence du son. - Toutes les fréquences du spectre fn sont des multiples de la fréquence du fondamental b) Hauteur d un son - La hauteur d'un son est égale à sa fréquence, qui est aussi celle de son fondamental. - Plus elle est élevée, plus le son est aigu; plus elle est basse, plus le son est grave. - La hauteur (fréquence) d'un son est mesurée par la fréquence du fondamental REMARQUE - Un son est qualifié de pur s'il est sinusoïdal. - Lorsqu une note a une fréquence double d une autre, on dit qu elle est à l octave c) Timbre - La même note jouée par deux instruments différents, par exemple flûte et clarinette, procure deux sensations sonores différentes. C'est ce qu'on appelle le timbre - Le timbre est la qualité du son qui permet de distinguer deux notes de même hauteur (fréquence) jouée par deux instruments différents. - Le timbre du son, lié au nombre et à l'amplitude des harmoniques. Mi 4 joué à la guitare Mi 4 joué à la flûte 2.2. Obtenir un spectre en fréquences Pour observer un spectre de qualité avec une bonne résolution, il est conseillé d'effectuer une acquisition avec 1 000 mesures pendant une durée représentant environ 100 périodes du signal analysé.

3. NIVEAU D INTENSITE SONORE 3/10 3.1. Intensité sonore : Pourquoi un son est-il plus ou moins fort? - L'intensité d'un son est la qualité qui donne la sensation qu'un son est plus ou moins fort. - L'intensité d'un son est liée à l'amplitude de la vibration sonore perçue. son faible son fort La sensation d'intensité sonore perçue par l'oreille dépend de la fréquence du son : la sensibilité de l'oreille humaine est maximale aux environs de 3 000 Hz. 3.2. Le niveau sonore et le décibel Le niveau sonore L, exprimé en décibels acoustiques (db) est défini par la relation suivante : L = 10.log( I I 0 ) I o : seuil d'audibilité de l'oreille humaine (10-12 W.m -2 ) I : est l'intensité sonore de la vibration acoustique (W.m -2 ) La notation «log» fait référence à la fonction logarithme décimal. - La mesure des niveaux sonores s'effectue avec un sonomètre.

- La figure ci-dessous vous présente la correspondance entre intensité sonore et niveau sonore. 4/10 Lieux Niveaux db 4. LES COMPOSANTS ELECTRONIQUES UTILISES POUR LE TRAITEMENT DU SON 4.1. Conducteur ohmique a) Définition C'est un composant électronique appelé également résistance qui permet d'augmenter volontairement la résistance (propriété physique) d'un circuit. Il est caractérisé par la proportionnalité entre l'intensité du courant qui le traverse et la tension ent re ses bornes b). Symbole U R i R i c) Loi d ohm U R = R.I I : Intensité du courant, en ampères (A) R : Résistance du conducteur ohmique, en ohm (Ω) U : La tension, en volts, entre ses bornes

La courbe représentative de la caractéristique d'une résistance est une droite passant par l'origine du repère. 5/10 4.2. Le condensateur a) Structure d'un condensateur Deux feuilles métalliques séparées par un film isolant forment un condensateur. Les feuilles métalliques constituent les armatures du condensateur et sont reliées à ses bornes. La surface des armatures peut être importante, ce qui nécessite de les enrouler pour que les dimensions du composant restent raisonnables. L'isolant (ou diélectrique) peut être de l'air comme dans les condensateurs variables ou un liquide (huile). Le plus souvent, l'isolant est un solide : papier paraffiné, mica, matières plastiques, céramiques, oxydes métalliques. Le condensateur est utilisé principalement pour : stabiliser une alimentation électrique (il se décharge lors des chutes de tension et se charge lors des pics de tension) ; traiter des signaux périodiques (filtrage ) ; séparer le courant alternatif du courant continu, ce dernier étant bloqué par le condensateur ; stocker de l'énergie, auquel cas on parle de supercondensateur.

6/10 b) Schéma d un condensateur et conventions U C : tension aux bornes du condensateur Rem : U C et i sont dans le sens opposés car le condensateur est un récepteur U c c) Principe de fonctionnement d'un condensateur À la fermeture du circuit représenté ci-contre, on constate qu'un courant circule dans le sens de la flèche puis s'annule rapidement. La présence d'un courant est paradoxale du fait de l'isolant entre les armatures du condensateur. Un mouvement de charges électriques a tout de même lieu dans le reste du circuit pendant quelques instants, puisqu'on observe un courant! Or ces charges ne peuvent pas traverser l'isolant. Les N électrons qui ont quitté le pôle négatif du générateur se sont accumulés sur l'armature B du condensateur. Pendant ce temps, un même nombre N d'électrons ont quitté l'armature A pour rejoindre le pôle positif du générateur. Les armatures A et B du condensateur portent donc à chaque instant des charges électriques opposées + q et -q qui sont la cause de la tension aux bornes du condensateur. d) Capacité d un condensateur - Elle est notée C, s exprime en FARAD (F) - Relation fondamentale : u c = u c : Tension aux bornes du condensateur (V) q : charge du condensateur (Coulomb, C) C : Capacité du condensateur (F) 4.3. La bobine ou inductance a) Définition - Pour former une bobine on enroule 1 fil de cuivre un très grand nombre de fois sur un support - L enroulement peut prendre différentes formes et différentes tailles

7/10 b) Symbole et convention récepteur i (L, r) u L L : Inductance de la bobine (Henry : H) r : Résistance interne de la bobine (Ohm : Ω) u L : tension aux bornes de la bobine (Volt V) Expérience c) Effet d une bobine sur le courant cf vidéo - Réalisons le montage schématisé ci-contre - Une des dérivations comporte un conducteur ohmique de résistance R, égale à r, résistance interne de la bobine et une lampe L 1, ; la deuxième dérivation comporte une lampe L 2, identique à L 1 et la bobine. Observations et conclusion - L 1 brille instantanément et L 2 s allume avec un temps de retard - Une fois les 2 lampes allumées, elles brillent avec le même éclat - C est un phénomène transitoire - Une bobine s oppose à l établissement ou à la rupture du courant

5. GENERALITES SUR LE FILTRAGE 8/10 5.1.Définition - Un filtre est un quadripôle linéaire (2 bornes d entrées, et 2 bornes de sorties), qui ne laisse passer que les signaux compris dans un domaine de fréquence limité, appelé la bande passante du filtre. - Un filtre modifie le spectre du signal d entrée. Il va donc déformer le signal. Il n y a pas de création d harmonique (si le filtre est linéaire), mais le filtre transmet, amplifie ou atténue certains harmoniques (ce qui met en évidence le phénomène de filtrage). 5.2. Fonction de transfert d un filtre (ou transmittance) - L étude d un filtre se fera en régime sinusoïdal avec la notation complexe. - La transmittance ou fonction de transfert d un filtre en régime sinusoïdal est, en notation complexe, le nombre complexe T égal au rapport : ܜܚܗܛ = T éܚܜܖ = é ᇲ Pour étudier un filtre, nous avons recours à deux représentations graphiques (dont un seul sera étudié cette année) constituant le diagramme de Bode : - Le module de la transmittance, en fonction de la fréquence (ou de la pulsation) : T(f) Rq : Etant donné que nous étudions le comportement des filtres sur des plages de fréquences, souvent très larges, l emploi du papier millimétré devient inadapté, c est pourquoi nous aurons recours à du papier semi-logarithmique.

5.3. Domaines d applications des filtres 9/10 Les filtres permettent - D éliminer des parasites, des bruits - De sélectionner une fréquence, ou une bande de fréquence. - Il existe des filtres de différentes natures: passe-bas ; passe-haut et passe bande. Applications - Passe-bas : Elimination des bruits parasites Haute Fréquence (pour Haut-Parleurr par exemple), - Passe-haut : pour les tweeters d un Haut-Parleur, table de mixage : - Passe-bande : medium d un Haut-Parleur, récepteur radio (pour accorder la fréquence sur la station émettrice) 5.4. Courbes et montage des différents filtres Passe bas Passe Haut Passe bande

10/10 5.5. Gain d un filtre : Intérêt de l utilisation du décibel (db) La transmittance d un filtre peut varier dans de très grandes proportions, et il faut pouvoir lire sur un graphique des valeurs très différentes, comme T=0,1, ou T=1000. Nous utilisons donc une échelle logarithmique et nous définissons, une grandeur, appelé gain. Si T, est le module de la transmittance d un filtre, alors on note G = 20 log T son gain. C est une grandeur sans dimension, ayant pour unité le décibel (db). Propriétés du logarithme décimal : - La division devient différence : log( ) = log(a) log(b) - La multiplication devient addition : log(a b) = log(a) + log(b) ಸ - La fonction inverse de log(x) est 10x soit ici : T = 10మబ Attention : Le «log» est la fonction «logarithme», il ne faut pas le confondre avec son compère, le logarithme népérien. 5.6. Bande passante et fréquence de coupure La bande passante à -3dB, est l intervalle de fréquences [f1 ; f2] pour lequel : - le gain G du filtre est compris entre GMax et GMax 3dB - ou bien, le module de la transmittance T est telle que T - par abus de langage on parle des fréquences de coupure à 3dB 5.7. Représentation de la fonction de transfert Elle dépend de la plage de fréquence concernée : - Si elle est étroite (Passe bande sélectif), on tracera le module de la fonction de transfert T et avec une échelle linéaire pour la fréquence f. - Si elle est étendue (Passe Bas, Passe Haut ) on tracera alors le gain G et avec une échelle logarithmique de fréquence (Diagramme de Bode)