Chapitre 2 PROPRIETES ET CARACTERISATION DES PARTICULES DE L ATOME

Documents pareils
Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

À propos d ITER. 1- Principe de la fusion thermonucléaire

MATIE RE DU COURS DE PHYSIQUE

Chapitre 15 - Champs et forces

DIFFRACTion des ondes

P17- REACTIONS NUCLEAIRES

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Chapitre 02. La lumière des étoiles. Exercices :

CONCOURS COMMUN 2010 PHYSIQUE

Premier principe de la thermodynamique - conservation de l énergie

CHAPITRE IX : Les appareils de mesures électriques

Radioactivité et chimie nucléaire

Chapitre I- Le champ électrostatique. I.1.1- Phénomènes électrostatiques : notion de charge électrique

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

Quantité de mouvement et moment cinétique

par Alain Bonnier, D.Sc.

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

Chapitre 1 Cinématique du point matériel

PHYSIQUE Discipline fondamentale

Introduction à la physique nucléaire et aux réacteurs nucléaires

Chapitre 11: Réactions nucléaires, radioactivité et fission

Les rayons X. Olivier Ernst

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

Électricité. 1 Interaction électrique et modèle de l atome

TD 9 Problème à deux corps

Interactions des rayonnements avec la matière

EXERCICES SUPPLÉMENTAIRES

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

La Fusion Nucléaire (Tokamak) Nicolas Carrard Jonathan Carrier Guillomet 12 novembre 2009

1.1 Détermination du rapport charge/masse de l électron (méthode de Thomson et Kaufmann)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Cours 1. Bases physiques de l électronique

FICHE 1 Fiche à destination des enseignants 1S 16 Y a-t-il quelqu un pour sauver le principe de conservation de l énergie?

Professeur Eva PEBAY-PEYROULA

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 2012 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND

Comment suivre l évolution d une transformation chimique? + S 2 O 8 = I SO 4

PHY113 : Cours de Radioactivité

OPTIQUE GEOMETRIQUE POLYCOPIE DE COURS

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

BTS BAT 1 Notions élémentaires de chimie 1

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

Propriétés électriques de la matière

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -

Complément: Sources naturelles de rayonnement

Résonance Magnétique Nucléaire : RMN

Amphi 3: Espaces complets - Applications linéaires continues

Application à l astrophysique ACTIVITE

Parcours de visite, lycée Exposition: LA RADIOACTIVITÉ De Homer à oppenheimer

LAMPES FLUORESCENTES BASSE CONSOMMATION A CATHODE FROIDE CCFL

La physique nucléaire et ses applications

Chapitre 2 : Caractéristiques du mouvement d un solide

La gravitation universelle

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

PERFORMANCES D UNE POMPE TURBOMOLECULAIRE

3. Conditionnement P (B)

FUSION PAR CONFINEMENT MAGNÉTIQUE

Etudier le diagramme température-pression, en particulier le point triple de l azote.

Université de Caen. Relativité générale. C. LONGUEMARE Applications version mars 2014

Calcul intégral élémentaire en plusieurs variables

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

Comment réaliser physiquement un ordinateur quantique. Yves LEROYER

LA MESURE DE MASSE POUR LA DÉTERMINATION DE PÉRIODES RADIOACTIVES

Introduction. Installation de SPIRAL

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières

Les tensions 3 CHAPITRE

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

DYNAMIQUE DE FORMATION DES ÉTOILES

Cours de Mécanique du point matériel

5. Les conducteurs électriques

La fusion nucléaire. Le confinement magnétique GYMNASE AUGUSTE PICCARD. Baillod Antoine 3M7 29/10/2012. Sous la direction de Laurent Locatelli

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

C4: Réactions nucléaires, radioactivité et fission

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir?

Cours et Exercices de Mécanique :

Michel Henry Nicolas Delorme

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites

A propos du sens conventionnel de circulation du courant électrique dans un circuit.

NOTICE DOUBLE DIPLÔME

Électricité statique. Introduction. Quelques étapes historiques importantes

Comprendre l Univers grâce aux messages de la lumière

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

INTRODUCTION A LA FUSION THERMONUCLEAIRE

3 Charges électriques

Repérage d un point - Vitesse et

I - Quelques propriétés des étoiles à neutrons

Energie nucléaire. Quelques éléments de physique

La gravure. *lagravureparvoiehumide *lagravuresèche

Équivalence masse-énergie

Champ électromagnétique?

Chapitre 10 : Mécanique des fluides

Chapitre 0 Introduction à la cinématique

Chapitre 1: Facteurs d'échelle

Stabilité et Réactivité Nucléaire

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

Transcription:

Chapitre 2 PROPRIETES ET CARACTERISATION DES PARTICULES DE L ATOME J. J. Thomson (physicien anglais), R. Millikan,, physicien américain E.Rutherford J.Chadwick Millikan, Robert Andrews Sir Joseph Thomson Joseph John Thomson (1856-1940), ( physicien anglais, recoit le prix Nbel de physique en 1906 pour sa decouverte de l electron. Robert Andrews Millikan (1868-1953), physicien américain, Prix Nobel de physique en 1923 pour la détermination de la charge de l électron. 23

LES ELECTRONS 1- Mise en évidence des électrons (Crooks 1879) Dans un tube cathodique, sous une pression du gaz (air + néon) à 10-6 atm, le verre devient fluorescent sous l effet des rayons cathodiques (annexe 1). L image d un objet placé à l intérieur apparaît sur l écran du tube, en noir. Le reste est fluorescent. L ombre indique que ces particules se déplacent en ligne droite. Placée diamétralement opposée à l objet lui-même, Crooks déduit que ces électrons se déplacent rectilignement. Dans une deuxième expérience, un petit cylindre est placé dans la direction de ces particules. Après fermeture du circuit on a observé le déplacement du cylindre dans la même direction et dans le même sens. Crooks conclua alors que ces dernières ont une énergie cinétique et donc une masse. - + Figure 11 : Expérience pour la mise en évidence de l énergie cinétique de l électron 2- Détermination de e/m de l électron (Thomson 1915) Le rapport e/m est une mesure quantitative, effectuée par Thomson. La méthode utilisée ne permet de donner qu une valeur approximative exprimée par la distance AB, une distance apparente sur l écran, due au déplacement du point A au point B. Ce phénomène est apparu Après application du champ magnétique à ces particules à leur sortie du Condensateur. N S - + Figure 12 : Expérience de J.Thomson 24

3- Déviation de l électron dans un champ électrique Soit un faisceau d électrons dans un champ électrique, crée par deux plaques d un condensateur, distantes de «d» et de longueur «l». La force appliquée aux électrons est f = - qe ( f = -ee pour un électron). Le bilan de forces appliquées à un électron pendant le mouvement dans le condensateur sera : Σ F = m γ f = m γ ; e E = m γ γ = e E / m Si on décompose le mouvement à l entrée du condensateur, on aura un mouvement uniformément varié selon y et uniforme selon x. + + + + + + + + + + + + + + y Fe E x Figure 13 : Influence du champ électrique sur les électrons γ = γ y + γ x γ x = 0 (uniforme) ; γ y = + e E/m d autre part, γ y = d 2 y / dt 2 alors d 2 y / dt 2 = Ee / m et d 2 x / dt 2 = 0 y 0 = 0 Y = ½ (+Ee / m) t 2 et dx / dt = v 0, X = V 0 t x 0 = 0 V 0y = 0 v 0 = v 0x, mouvement uniforme à l entrée du condensateur (v y = 0), prises à l ordonnée à l origine. Nous obtenons deux équations. 25

y = + ½ ee / m t 2 et dx / dt = v 0 X = v 0 t t = x / v 0 En remplace l expression du temps (t = x / v 0 ) dans y et x par λ la déviation apparente à la sortie du condensateur. y est l expression de la déviation de l électron le long du condensateur. Elle permet de donner sa valeur à la sortie de celui-ci (quand x = λ ). Y = + ½ ee / m. λ 2 / v 0 2 4- Déviation de l électron dans un champ magnétique Une charge qui se déplace dans un champ d induction magnétique B, est soumise à la force magnétique F m = q (v B), comme un produit vectoriel de v et B, de module : F m = qvb sin α α est l angle formé par les vecteurs vitesse et champ d induction (v et B). La direction de F m est donnée par la règle des trois doigts de la main droite (le pouce indique F, l index la vitesse et le 3 ème doits indique B). La force magnétique appliquée à un seul électron est F = evb sin α, si l induction magnétique est orthogonale à la vitesse des particules (électrons), c.à.d que α = 90, alors sin α est égal à 1 et par suite F m = evb (valeur maximale de son module). Le bilan de forces agissant sur l électron est : Σ F = m γ la force dynamique est centripète, le mouvement de l électron est soumis à l accélération normale (γ = v 2 / R) evb = m.v 2 / R. B V Fm Figure 14 : Influence du champ magnétique sur les électrons d où e / m = v / B.R et aussi R = mv / e.b R = étant le rayon de la trajectoire. 26

Si on combine les deux champs (magnétique et électrique) de façon qu ils soient égaux et opposés, c est à dire que leurs forces soient égales. En ce moment, le faisceau est droit. F e = F m alors, v = E/B evb = e E Le rapport e/m sera égal à : e/m = 2ye/B 2 l 2 e/m est trouvé égal à : 1,759 10 11 coulomb/kg. Ce rapport ne dépend pas de la nature des cathodes utilisées. 5- détermination de la charge de l électron. Expérience de Millikan Millikan faisa une expérience basée sur le déplacement des gouttelettes d huile dans une chambre d air. Ionisé par les rayons x, il permet de charger les gouttelettes qui se trouvent à l intérieur. L expérience est effectuée en deux étapes. a) En absence des Rx, une gouttelette n est soumise qu à deux forces la pesanteur p et celle de la poussée d archimède p,. Au cours de son déplacement une troisième force intervient, la force de frottement de Stocks. P = mg = 4/3 π r 3 ρ g (ρ est la masse volumique de l huile) p, = m, g = 4/3 π r 3 ρ g (ρ est la masse volumique de l air) r est le rayon de la gouttelette et g l accélération de la pesanteur. ƒ = σ π ŋ r ƒ est la force de stocks ŋ est la viscosité de l air v est la vitesse de déplacement Considérons le bilan des forces en prenant comme vitesse, la valeur maximale. + - P + P' + ƒ = mγ = 0 v (prise comme valeur constante) γ = dv/dt = 0 P- P' ƒ = 0 après projection. P = P' + ƒ ou encore p - P' = ƒ 4/3 π r 3 (ρ - ρ ) g = 6 π ŋ r v r 2 = 9 ŋ v / 2 (ρ - ρ )g Huile pulvérisée sous pression Rx figure15 : dispositif de Millikan 27

si nous négligeons la poussée d Archimède, le rayon de la gouttelette a pour expression : r 2 = 9 ŋ v / 2 ρ g Air P' ƒ r sens du mouvement P Figure 16 : Déplacement de la goutte d huile sous l effet de la pesanteur. b) En présence des Rx, les gouttelettes sont cette fois- ci chargées et donc influencées par le champ électrique. La vitesse de déplacement est fonction de l intensité champ. Les gouttelettes sont dirigées vers le pôle positif. En jouant sur l intensité du champ, on peut alors pratiquement les immobiliser. Dans ce cas le bilan de force devient : P + P' + ƒ = ƒ e Pour une valeur de E, la goutte est en équilibre, la force de Stocks s annule quand la gouttelette s immobilise (ƒ s = 0 ). Après projection, le bilan de forces s écrit : P' ƒ s P = ƒ e 4/3 π r 3 ρ g - 4/3 π r 3 ρ g = qe La charge que prend la gouttelette a pour expression q = 4/3 π r 3 g (ρ 0 ρ) / E La charge prise par les particules, q est trouvée un multiple de 1,602.10-19 coulomb, considérée comme la charge élémentaire. En fonction du volume de la goutte, q peut être égale à 2 e, 3 e, 4 e, A partir du rapport e/m et de la + + + + + + + + + + + + + + charge de l e, on déduit la masse de la charge élémentaire (électron). e/m = 1,759.10 11 coulomb /kg e = 1,602.10-19 coulomb. Alors m = e /1,759.10 11 = 1,602.10-19 / 1,579.10 11 = 9,1.10-31 kg = 5,5.10-4 uma E f s P' Rx f e Sens du P mouvement f s Figure 17 : Déplacement de la goutte d huile 28

Cette valeur correspond à la masse de l électron au repos. Pour des vitesses considérables, cette valeur devrait être corrigée selon la loi relativiste. m = m 0 v 1 c 2 2 Ces caractéristiques sont jusqu à ce jour approuvées, l électron demeure un constituant de la matière. Une mole de charge, e N = Q = 96484,56 coulombs qui représente un Faraday. DETERMINATION DES MASSES DES NUCLEIDES (SPECTROMETRE DE MASSE) La méthode la plus pratique est la mesure du rapport e / m de l atome ionisé. Soit q la charge de l ion produit, ayant pour masse m (on prend q pour charge au lieu de e pour une multiplicité de charges éventuelles), ce rapport est donné par q / m. Il est mesuré à l aide du spectromètre de masse qui se base essentiellement sur : - Une déviation de l ion (particule chargée) dans un champ électrique de force F e F e = q E - Une déviation de l ion dans un champ magnétique de force F m = q (v B), donnant lieu à une trajectoire circulaire de rayon R = mv / qb - D un analyseur - D un détecteur A titre d exemple, nous citerons l exemple du spectromètre de Bainbridge. Spectromètre de Bainbridge Le spectromètre de Bainbridge se compose de : - Une source d ions - Un filtre de vitesse - Un analyseur - Un détecteur La source d ions sont des électrons ionisants orientés vers un flux de matière atomisée la transforme en ions. Les ions ainsi produits sont accélérés puis sélectionnés dans le filtre de vitesse. Deux forces orthogonales et opposées sont appliquées au faisceau dans le filtre ; la force électrique F e et la force magnétique F m. La force magnétique sert à redresser le faisceau d ions dévié par l action de la force électrique. Le faisceau sortant est monocinétique (partie II). A la sortie du sélecteur en f 3, le faisceau est dévié de nouveau par un autre champ magnétique décrivant une trajectoire circulaire de rayon, R = mv / qb En fonction de la masse m des particules (m 1, m 2, m 3, ), des trajectoires sont décrites dans l analyseur (partie III) de rayon R 1, R 2, R 3 etc Les ions ainsi sélectionnés subissent un impact sur une plaque photographique ou enregistrés par un détecteur (partie IV). Dans le tableau ci-dessous, nous donnons quelques exemples de masses de noyaux déterminées par spectromètre de masse. 29

I Faisceau de matière atomisée particules ionisantes F 1 F 2 + E - I- Chambre d ionisation II- Filtre de vitesse III-Analyseur IV- Detecteur II B F3 IV B III Figure18 : Schéma de spectromètre de masse de type Baimbridge NUCLEIDE MASSE (uma) 1 1 H 1,00783 1 2 H 2,01410 6 13 C 13,00335 6 14 C 14,00324 Tableau 1 : masses expérimentales des isotopes * Ce chapitre n est pas traité en détail dans le système LMD. 30