Module 3 La régulation de l'expression des gènes chez les procaryotes 1 Où trouver l'information complémentaire? MCB-10 et 11, GVII-9, 10, et 11. Les différents types cellulaires qui caractérisent un organisme possèdent tous le même génome, mais se distinguent par la spécificité de leur composition en protéines. Qu'est-ce qui détermine le type et la quantité de ces protéines dans une cellule particulière? Ou, chez un organisme unicellulaire, qu'est-ce qui détermine sa capacité de répondre aux modifications de son environnement? Dans ce chapitre, nous verrons comment la concentration de chaque protéine est contrôlée par la quantité de messagers correspondants transcrits, par son taux de traduction et par la stabilité tant du messager que de la protéine. Lorsque l'on considère les mécanismes de la régulation génique, une différence importante existe entre les organismes unicellulaires et multicellulaires. Chez les organismes unicellulaires, la régulation génique servira principalement à s'ajuster aux modifications de l'environnement, par exemple à la présence de nutriments et à l'optimisation de l'utilisation de la ressource. Chez les organismes pluricellulaires où l'on retrouve une complexité et une diversité de types cellulaires, l'emphase de la régulation génique sera principalement axée sur l'expression du programme génétique nécessaire au développement embryonnaire et à la différentiation cellulaire. Analyse génétique de l'opéron lactose Induction et répression des enzymes de l'opéron lactose L'analyse génétique de l'opéron lactose par François Jacob et Jacques Monod dans les années 1960 a permis d'émettre et de tester les hypothèses de base sur le contrôle de l'activité génique chez les bactéries. L'opéron est l'unité constituée d'un ensemble de gènes structuraux transcrits en un messager polycistronique ainsi que des régions régulatrices adjacentes qui influencent la transcription de ce messager. Dans le cas de l'opéron lactose, l'opéron inclut les régions POZYA (fig. 10.1 MCB, 10.3 GVII). L'opéron lactose (lac) est constitué de 3 gènes. Le gène Z code pour la β-galactosidase, une enzyme qui coupe le disaccharide lactose en glucose et en galactose. Le gène Y code pour la lactose perméase, une protéine transmembranaire qui permet de pomper le lactose à l'intérieur de la cellule. Enfin, le gène A code pour la thiogalactoside transacétylase, dont le rôle est encore obscur. Il est possible de tester aisément l'activité de la β galactosidase, de même que celle de la lactose perméase. Le 5-bromo-4-chloro-3-indolyl-β-D-galactoside, ou X-gal pour les intimes, est un substrat chromogénique qui, lorsqu'hydrolysé par la β-galactosidase, donne un précipité insoluble bleu. Pour tester l'action de la perméase, on peut utiliser du lactose radioactif dans le bouillon de culture et déterminer son incorporation dans les bactéries. Les bactéries E. coli cultivées dans un milieu contenant du glucose ne produiront qu'une très faible quantité des enzymes de l'opéron lac. Si les bactéries sont transférées dans un milieu contenant du lactose, l'activité de la β-gal et de la perméase augmentera de 1000 fois en 20 minutes! Cette augmentation d'activité est due à l'augmentation de la quantité des protéines correspondantes. À l'inverse, si ces bactéries sont de nouveau transférées dans un milieu contenant du glucose, l'activité de la β-gal, de même que celle de la perméase, diminuera rapidement dans les cellules. Il en va de même pour la transacétylase, dont la quantité de protéine sera induite ou réprimée selon la présence ou l'absence de l'inducteur, ici le lactose.
La régulation des 3 gènes est donc coordonnée. [Même si c'est la présence ou l'absence du lactose qui régule l'opéron, en réalité, le vrai inducteur intracellulaire est l'allolactose, un produit mineur de l'activité de la β-gal sur le lactose]. Certaines molécules possédant une structure similaire au lactose peuvent être utilisées pour induire la synthèse des enzymes de l'opéron. Une molécule particulièrement intéressante est l'iptg (isopropyl-β-d-thiogalactoside). L'IPTG diffuse librement à travers la cellule et n'est pas métabolisé par la β-galactosidase. Puisqu'il n'est pas métabolisé, sa concentration demeure élevée durant l'expérience. L'IPTG est ce qu'on appelle un inducteur gratuit. Mutagénèse et hypothèse sur la présence d'un répresseur, d'un site opérateur et d'un promoteur Les expériences de mutagénèse chimique ont permis de démontrer que, même en présence de glucose, ce qui normalement devrait réprimer l'expression de l'opéron lac, on pouvait obtenir des colonies bactériennes bleues en présence de X-gal. Il y avait donc expression constitutive des gènes de l'opéron lac. Par des expériences de recombinaison, la mutation avait été cartographiée dans la même région que les gènes de l'opéron lac. Jacob et Monod émirent donc l'hypothèse qu'il devait y avoir un répresseur (le produit du gène laci) qui devait normalement se lier à un site de l'opéron lac et empêcher la transcription des gènes. Le modèle prédit donc qu'il doit y avoir un site normalement occupé par le répresseur en absence de lactose et ce site a été nommé "opérateur". Une mutation au site opérateur qui empêcherait la liaison du répresseur aurait donc le même effet qu'une mutation sur le répresseur qui diminuerait ou abolirait son affinité pour le site opérateur. Lors des expériences de mutagénèse, la majorité des mutants retrouvés étaient de type lac I, car le gène est plus gros que la région de l'opérateur. Donc, une mutagénèse chimique introduisant des mutations ponctuelles aura plus de chances de frapper le gène lac I que le site opérateur (O). Mais comment distinguer entre les deux types de mutations puisque le résultat est le même, soit l'expression des gènes de l'opéron lactose? Mutagénèse chimique E. coli Milieu X-gal + glucose β-gal +++ perméase +++ a) mutation lac I b) mutation O c Opérateur constitutif I P O Z Y A Site opérateur normal I P O Z Y A Nous avons vu précédemment que les bactéries possédaient de l'information extrachromosomique sous forme de plasmides. Ces épresseur inactif épresseur actif ADN circulaires de petite taille comportent une origine de réplication qui leur permet de se multiplier à l'intérieur de la bactérie hôte. De façon à distinguer entre les mutations inactivant le répresseur (gène lac I) et celles affectant le site de l'opérateur (O), Jacob et Monod ont répété les expériences de mutagénèse, mais cette fois sur des bactéries possédant 2 copies de l'opéron lactose complet. Une copie portée par le chromosome bactérien et une copie portée par un plasmide inséré dans la bactérie. Le raisonnement derrière cette expérience était qu'il serait extrêmement improbable d'obtenir par mutagénèse, et ce dans une même bactérie, deux mutations qui affecteraient les 2 copies du gène lac I (le répresseur). Donc, seules les rares bactéries ayant une mutation dans le site opérateur pourraient être distinguées par la coloration bleue sur milieu X-gal. Utilisant cette approche, des mutants possédant un répresseur normal, mais exprimant la β-gal furent obtenus, ce qui démontra la présence du site opérateur. Ce type de mutation est appelé O c pour opérateur constitutif. Une autre mutation révéla la présence d'un site supplémentaire, le site du promoteur. La plupart des mutations qui empêchent l'activité β-galactosidase se trouvent naturellement à l'intérieur même du gène de la β-gal. 2 Site opérateur mutant
Ce sont des mutations ponctuelles qui aboliront l'activité soit par l'introduction d'un codon stop, soit par le remplacement d'un acide aminé du site actif, soit par une importante modification structurale. Il existe une autre classe de mutations beaucoup plus rares pouvant affecter l'activité de la β-gal: celle affectant le site du promoteur. Dans ce type de mutation, peu importe s'il y a présence de lactose ou d'iptg dans le milieu, il n'y aura pas d'induction des trois gènes de l'opéron lac. Ce type de mutation bloque l'accès à l'an polymérase et empêche donc la production de l'anm polycistronique de l'opéron lac. La régulation de l'opéron lac dépend de séquences d'adn agissant en cis et de facteurs protéiques agissant en trans L'approche utilisant des bactéries possédant deux copies de l'opéron lac permit de comprendre comment interagissaient les différentes mutations et permit de distinguer deux types de séquences d'adn: 1) des séquences d'adn codant pour des produits agissant en trans et 2) des séquences cis non-converties en d'autres formes et n'agissant qu'au niveau de l'adn lui-même. Toute séquence codant soit pour des protéines, soit des ANr, ou des ANt agit en trans car il s'agit d'un produit diffusible qui exerce son action ailleurs qu'à son lieu de synthèse. La notion de séquences cis implique que l'action n'est exercée qu'aux régions contiguës à cette séquence, donc physiquement liées à elle. De façon plus restreinte, ces expériences révélèrent le thème central et fondamental de la régulation génique, tant chez les procaryotes que chez les eucaryotes: la régulation de l'expression des gènes dépendra de l'interaction entre des séquences spécifiques d'adn agissant en cis et des facteurs protéiques, dits facteurs transcriptionnels, qui agiront en trans. Les exemples suivants, les fig. 10.3, 10.4 MCB, ainsi que 10.7 à 10.9 GVII démontrent l impact de différents types de mutation sur l expression de l opéron lactose. 3 I + P - O + Z+ Y + A+ - - - Sans IPTG β-gal perméase - IPTG + IPTG - IPTG + IPTG - - - - I + P - O + Z+ Y + A+ - - - Avec IPTG Mutant P - Dans le cas d une mutation affectant le site du promoteur, l AN pol est ici incapable de s y lier, il n y aura donc aucune transcription de l opéron. I + P + O c Z+ Y + A+ + + + Sans IPTG β-gal perméase - IPTG + IPTG - IPTG + IPTG + + + + I + P + O c Z+ Y + A+ + + + Avec IPTG Mutant O c Dans le cas d une mutation affectant le site de l opérateur, le répresseur Lac est ici incapable de s y lier, donc il y aura transcription constitutive de l opéron. I - P + O + Z+ Y + A+ + + + - Sans IPTG β-gal perméase - IPTG + IPTG - IPTG + IPTG + + + + I - P + O + Z+ Y + A+ + + + - Avec IPTG Mutant I - Dans le cas d une mutation affectant le domaine de liaison à l ADN du répresseur Lac, il y aura transcription constitutive de l opéron puisque le répresseur ne peut se lier à son site opérateur.
Voyons maintenant les interactions entre les différentes mutations dans une bactérie possédant deux copies de l opéron lactose, soit une portée sur le chromosome bactérien et une sous forme de plasmide. 4 Chromosome bactérien β-gal perméase - IPTG + IPTG - IPTG + IPTG + + + + Plasmide I + P + O c Z+ Y + A+ I + P + O + Z+ Y + A+ + + + - - - Opérateur O c et O + Sans IPTG Chromosome bactérien β-gal perméase - IPTG + IPTG - IPTG + IPTG - + - + Plasmide I - P + O + Z+ Y + A+ I + P + O + Z+ Y + A+ - - - - - - - épresseur I - et I + Sans IPTG Chromosome bactérien Plasmide I + P + O c Z+ Y + A+ I + P + O + Z+ Y + A+ + + + + + + Avec IPTG Chromosome bactérien Plasmide I - P + O + Z+ Y + A+ I + P + O + Z+ Y + A+ + + + + + + Avec IPTG - O c est dominant sur O + L Opérateur agit en cis Lac I + est dominant sur I - Lac I agit en trans Le répresseur produit par le gène mutant Lac I - est capable de lier l inducteur mais est incapable de se lier à l ADN du site opérateur. La mutation affecte son domaine d interaction avec l ADN. épresseur I s et I + β-gal perméase - IPTG + IPTG - IPTG + IPTG - - - - Chromosome bactérien Plasmide I s P + O + Z+ Y + A+ I + P + O + Z+ Y + A+ - - - - - - Sans IPTG Chromosome bactérien Plasmide I s P + O + Z+ Y + A+ I + P + O + Z+ Y + A+ - - - - - - Avec IPTG Le répresseur produit par le gène mutant Lac I s est incapable de lier l inducteur mais est capable de se lier à l ADN du site opérateur. La mutation affecte son domaine d interaction avec l inducteur. L inducteur est donc sans effet sur le répresseur I s Lac I s est dominant sur I + Lac I agit en trans
L'initiation de la transcription chez les bactéries 5 Le modèle proposé par Jacob et Monod prédit que la croissance des bactéries en présence de lactose induit la production d'anm lac en déréprimant la transcription au promoteur lac. Nous avons vu dans les exemples précédents que l'état de base de l'opéron lac était sous une forme réprimée (associé à un répresseur: le produit du gène lac I). En présence d'un inducteur, comme le lactose, le répresseur ne peut plus se lier au site opérateur et laisse le champ libre à l'an polymérase pour se lier au site du promoteur et initier la transcription. L'opéron lactose est un exemple de contrôle négatif de la transcription. La transcription implique la synthèse d'un brin d'an identique (sauf pour le changement de T U) à l'un des brins d'adn, que l'on appelle le brin codant. L'AN est produit à partir du brin complémentaire qui sert de matrice. La transcription débute lorsque l'an pol se lie à une région spéciale, le promoteur. L'unité transcriptionnelle débute au premier nucléotide incorporé dans l'an, le site d'initiation de la transcription, et s'arrête à un site de terminaison. Le site d'initiation de la transcription est numéroté +1. Par convention, ce qui se trouve en amont (en 5') du site +1, région qui inclut le promoteur, est numéroté de façon négative (par ex. la région -35). Fig. 9.2 GVII. Chez les eubactéries (comme E. coli) une seule AN pol effectue la transcription des ANm, ANt et ANr. Cette AN pol est constituée de 4 types de sous-unités. Sa composition globale est α 2 ββ'σ. Voir aussi la fig. 9.9 GVII. Sous-unité Gène Masse (kda) Fonction possible alpha (α) rpoa 40 assemblage de l'enzyme bêta (β) rpob 155 liaison des nucléotides bêta prime (β') rpoc 160 liaison à la matrice sigma (σ)* rpod 32-90 liaison au promoteur Des 3000 à 7000 AN pol présentes dans une cellule d'e. coli, la moitié sont activement impliquées dans la transcription de gènes. Les autres AN polymérases balaient (scan) le chromosome bactérien jusqu'à ce qu'elles rencontrent un promoteur pour s'y fixer. La transcription est la première et généralement la plus importante étape dans la régulation de l'expression d'un gène. Deux questions fondamentales se posent alors: 1) Comment l'an polymérase reconnaît-elle un site promoteur? * Il existe plusieurs facteurs σ qui détermineront la spécificité de la liaison aux séquences de divers promoteurs. 2) Comment les protéines régulatrices interagissent-elles avec l'an pol pour activer ou réprimer l'expression?
La transcription peut être divisée en 4 étapes: 6 La reconnaissance de la matrice d'adn débute avec la liaison de l'an pol à l'adn double-brin. Les brins d'adn sont ensuite séparés de façon à rendre le brin matrice accessible pour la synthèse de l'an. Une "bulle de transcription" est donc créée par le désenroulement et la séparation locale des brins d'adn. La séquence nécessaire à la liaison de l'an pol définit le site du promoteur chez les bactéries. L'initiation est la phase représentée par le début de la synthèse de l'an. L'AN pol demeure au site du promoteur lors de la synthèse des 9 premiers liens phosphodiester. À cette étape, il y a souvent arrêt et reprise de synthèse, relâchant de courts AN <9 nt. La phase d'initiation se termine lorsque la polymérase réussit à synthétiser un AN de plus de 9 nt. L'élongation est la phase durant laquelle l'an pol "glisse" sur l'adn et synthétise activement l'an complémentaire à partir du brin matrice d'adn. Au fur et à mesure que l'enzyme avance, elle sépare les brins d'adn, ce qui expose une nouvelle région simple brin. La synthèse de l'an sur cet ADNss forme un hybride AN-ADN transitoire dans la région déroulée. Derrière la polymérase, la double hélice d'adn se reforme. L'AN émerge du complexe de la polymérase sous une forme simple brin. La synthèse de l'an s'effectue à un taux d'environ 40 nt/sec à 37 C chez E. coli. La terminaison implique la reconnaissance d'un point au delà duquel Fig. 9.8 GVII aucun ribonucléotide ne doit être ajouté. La cessation de la synthèse de l'an dépend de la reconnaissance d'un site de terminaison. Durant ces différentes phases, l'an polymérase couvre un espace plus ou moins grand sur l'adn. Durant la phase d'initiation, l'holoenzyme (= l'enzyme complet = AN pol de structure α 2 ββ' + le facteur σ) couvre la région comprise entre -55 et +20. Seul l'holoenzyme peut initier la transcription. Puis, le facteur σ est relâché lorsque l'an atteint 9 nt, laissant l'an pol de structure α 2 ββ' poursuivre l'élongation. Au tout début de la phase d'élongation, l'an pol couvre la région de -35 à +20. Lorsque l'an pol est en phase d'élongation, elle ne couvre plus qu'une région 30 à 40 pb. Fig. 9.11 GVII.
Les sites de liaison de protéines dans l'opéron lac Comment peut-on déterminer les sites d'interactions protéine-adn? La technique dite d'empreinte à la DNase I (DNase I footprinting, fig. 10.6 MCB) et l'analyse de mutants ont permis de cerner les régions d'adn interagissant avec des protéines régulatrices. Prenons l'exemple de l'opéron lactose. Nous avons vu précédemment que plusieurs types de mutants avaient été générés par mutagénèse chimique. Ces séquences mutantes auront plus ou moins d'affinité pour les facteurs protéiques s'y liant, dépendant du type de mutation. En utilisant l'an pol purifiée et un fragment d'adn comprenant l'opéron lac ainsi que ses régions régulatrices, il est possible de déterminer la région couverte par la polymérase. En utilisant l'un ou l'autre des 2 brins marqués radioactivement avec du 32 P, il est même possible de déterminer quels nucléotides sur chacun des brins interagissent ou sont protégés par l'an pol ou par tout autre protéine s'y liant. Ainsi, l'an pol couvre la région allant de -55 à +20. Le répresseur lac (le produit du gène lac I) couvre la région allant de -5 à +25, incluant donc la région de l'opérateur. Dans le contexte d'un génome entier, par exemple les 4 x 10 6 pb du génome circulaire d'e. coli, comment l'an pol trouve-t-elle un site promoteur? L'analyse des séquences de plusieurs centaines d'opérons chez E. coli a permis d'identifier des séquences conservées, i.e. des séquences qui se retrouvent dans la majorité des promoteurs et qui sont le site d'interactions ADN-protéine. La séquence consensus représente la séquence idéale et elle est déterminée par l'alignement de multiples séquences conservées interagissant avec une même protéine, par exemple avec l'an polymérase (fig. 10.11 MCB). Deux régions particulièrement importantes ont ainsi été déterminées par la comparaison des séquences protégées par l'an polymérase. La région -35 et la région -10 (ou boîte de Pribnow). Pour les promoteurs forts reconnus par le facteurs σ70, la séquence consensus à -35 est T 82 T 84 G 78 A 65 C 54 A 45 T 40-50, alors que celle à -10 est T 80 A 95 T 45 A 60 A 50 T 96. La distance entre ces deux séquences est de plus bien conservée entre les différents promoteurs. Elle est généralement de 16 à 18 pb dans 90% des cas étudiés. Les promoteurs peuvent être classés comme étant forts ou faibles, selon le taux de transcription initié à partir d'eux. La force du promoteur dépend principalement de l'affinité de l'an polymérase pour les séquences régulatrices. Généralement, plus les séquences régulatrices seront identiques au consensus, plus le promoteur sera fort et plus le taux de transcription du gène sera élevé (fig. 10.11 MCB). 7
Différents facteurs σ reconnaissent différentes séquences consensus C'est le facteur σ qui reconnaît les séquences consensus et agit ainsi comme un facteur d'initiation. La substitution de différents facteurs σ dans l'holoenzyme permet de reconnaître des promoteurs différents possédant des séquences consensus différentes. Ceci permet entre autres choses d'initier la transcription à partir d'une seule polymérase dont la spécificité de la liaison à l'adn est contrôlée par le facteur σ associé. Le tableau suivant indique les principaux facteurs sigma chez E. coli et leur utilisation. Facteur Utilisation -35 Séparation -10 σ 70 générale TTGACA 16-18 pb TATAAT σ 32 choc thermique CCCTTGAA 13-15 pb CCCGATNT σ E flagelle CTAAA 15 pb GCCGATAA -24-12 σ 54 carence en azote CTGGNA 6 pb TTGCA Les opérons transcrits par l'an polymérase associée aux facteurs σ 70, σ 32 ou σ 28 sont régulés par des répresseurs et des activateurs qui se lient à des régions très proches de celles où l'an pol se lie. Dans la majorité de ces cas, les répresseurs se lient dans la région [-50, +30], alors que les activateurs se lient à la région [-65, -30]. Par contre, les opérons transcrits par une AN pol associée au facteur σ 54 sont uniquement régulés par des activateurs qui se lient généralement à la région [-160, -80], qui est à l'extérieur de la zone de contact avec l'an pol. Les activateurs dépendants de σ 54 peuvent activer la transcription même lorsque leur site de liaison se trouve éloigné à plus de 1 kb en amont du site d'initiation de la transcription. De tels sites de liaison sont appelés des "enhancers" ou séquences activatrices. Comment la protéine activatrice peut-elle influencer à distance la transcription? Nous avons vu dans les cas précédents des activateurs ou des répresseurs se positionnant près ou chevauchant le site de liaison de l'an pol. Il était donc plausible de penser qu'il y avait contact direct entre les protéines. La flexibilité de la double hélice d'adn nous permet d'envisager la présence de protéines distantes du site de liaison de l'an pol, mais qui, grâce au repliement de l'hélice d'adn, permettent de rapprocher dans l'espace un activateur lointain et une polymérase (DNA looping). Fig. 10.19 et 10.20 MCB. 8 La liaison du répresseur lac bloque l'initiation de la transcription La liaison du répresseur lac au site opérateur produit une empreinte allant de -5 à +25. Cette empreinte chevauche celle produite par l'an pol (entre -5 et +20) en absence du répresseur. On pourrait penser que le mode d'action du répresseur est tout simplement d'empêcher la liaison de l'an pol au promoteur. Fig. 10.9 MCB
En réalité, la présence du répresseur augmente l'affinité de l'an pol pour le promoteur! Ceci est dû à des interactions protéine-protéine entre le répresseur et la polymérase (coopérativité de liaison). Dans cette conformation, l'an pol, quoique liée à son site du promoteur, demeure sous une forme inactive, incapable d'initier la transcription. C'est ce qu'on appelle le complexe fermé. Sous l'effet de l'inducteur, le répresseur perdra de son affinité pour le site opérateur, se décrochera et permettra la formation d'un complexe ouvert qui initiera la transcription. Structure des répresseurs bactériens La majorité des répresseurs bactériens sont des polypeptides se liant à l'adn sous la forme d'un homodimère (2 sous-unités identiques). Dans le cas du répresseur lac, chaque homodimère se lie à une moitié du site opérateur. Le répresseur lac interagit donc au site opérateur sous la forme d'un tétramère. L'analyse des séquences de plusieurs sites opérateurs révèle qu'ils sont souvent formés de 2 courtes séquences répétées inversées (inverted repeats). L'exemple suivant est celui de l'opérateur lac: -10 +1 +10 +20 +30 1/2 Site 5'-ATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAA-3' 3'-TACAACACACCTTAACACTCGCCTATTGTTAAAGTGTGTCCTT-5' 1/2 Site 5'-TGTGTGGAATTGTGAGC-3' 5'-TGTGTGAAATTGTTATC-3' Une séquence répétée inversée, parfaite sauf pour 3 pb sur 17 pb au total. Pour plusieurs répresseurs bactériens, une hélice α de chacune des 2 sousunités, l'hélice de reconnaissance, interagira directement avec un sillon Interaction entre une hélice α d un répresseur et le sillon majeur de l ADN. majeur du site opérateur (fig. 10.13 MCB). Les atomes des chaînes latérales de ces hélices α établiront des liaisons hydrogène avec des bases spécifiques de la double hélice d'adn. La spécificité de l'interaction dépendra donc des acides aminés de l'hélice α et de la séquence d'adn. Dans le cas du répresseur lac, ce dernier se liera à l'opérateur en absence de lactose. Le cas contraire se présente pour le répresseur de l'opéron trp (tryptophane). En présence d'une concentration suffisante de Trp dans la cellule, la liaison du Trp au répresseur modifiera sa structure 4 et provoquera un changement au niveau des hélices de reconnaissance qui pourront alors interagir avec la séquence de l'opérateur trp et inhiber la biosynthèse des enzymes nécessaires à la production de Trp (fig. 10.14 MCB). Nous sommes donc en présence d'un contrôle allostérique, où la liaison d'une petite molécule au répresseur induit un changement conformationnel qui modifie l'affinité de la protéine pour son site normal d'interaction. Il en va de même pour le répresseur de l'opéron lac qui lui, ne peut plus se lier au site opérateur lorsque l'inducteur est présent. Distinction entre contrôle positif et contrôle négatif Nous avons vu jusqu'à présent des exemples de contrôle négatif de la régulation de l'expression. Les gènes sous contrôle négatif sont exprimés, sauf s'ils sont inhibés sous l'effet d'un répresseur. À l'opposé, l'expression des gènes sous contrôle positif ne sera effective que sous l'effet d'un activateur. Au lieu de nuire à la transcription, la protéine activatrice sera essentielle à la transcription. La fig. 10.20 GVII schématise les différentes façons d'obtenir un contrôle positif ou négatif de la répression et de l'induction. La régulation de l'expression d'un gène sous contrôle négatif passera par l'utilisation d'un répresseur à l'origine actif (induction) ou inactif (répression). 9
Dans l'induction, le répresseur actif à l'origine, donc dans un état inhibant ou réprimant la transcription, sera rendu inactif sous l'effet d'un inducteur. Contrôle négatif Contrôle positif 10 On dira aussi que le gène est déréprimé. C'est le cas classique de l'opéron lactose. Une autre façon d'obtenir un contrôle de type négatif sera d'avoir un répresseur à l'origine inactif qui, sous l'effet d'un corépresseur, devient actif et réprime la transcription. C'est le mode de répression utilisé, par exemple, par l'opéron tryptophane. La régulation de l'expression d'un gène sous contrôle positif passera par l'utilisation d'un activateur à l'origine inactif (induction) ou actif (répression). Dans l'induction, l'activateur inactif à l'origine, donc n'influençant pas encore la transcription, sera rendu actif suite à l'interaction avec l'inducteur. Sous l'effet de l'inducteur, il y aura donc activation de la transcription. Dans le mode impliquant la répression, l'activateur à l'origine actif, donc activant la transcription, sera rendu inactif sous l'effet d'un corépresseur. Induction épression épresseur actif éprimé Induit éprimé Induit Corépresseur épresseur inactif Un contrôle de la régulation tant positif que Fig. 10.20 GVII négatif pourra donc être obtenu en utilisant les interactions appropriées entre soit le répresseur ou l'activateur (la protéine activatrice), et une petite molécule, soit un inducteur, soit un corépresseur. L'induction de la transcription pourra donc passer par un contrôle de type négatif, lorsqu'on aura un répresseur libre, ou par un contrôle de type positif, lorsqu'on aura un activateur (inactif au départ) lié à un inducteur. La répression de la transcription pourra passer par l'activation d'un répresseur par un corépresseur (contrôle négatif) ou par l'inactivation d'un activateur par une petite molécule corépresseur. Induit Inducteur épresseur inactif épresseur actif éprimé Activateur inactif Activateur actif Induit Inducteur Corépresseur Activateur actif Activateur inactif éprimé Le contrôle positif de l'opéron lac Le glucose est le sucre préférentiellement métabolisé par E. coli. Lorsqu'il entre dans la bactérie, il est directement utilisé, sans induction de nouvelles enzymes. Si, dans un milieu, on retrouve du glucose et du lactose, de l'arabinose ou même du dégueulose (les bactéries bouffent à peu près n'importe quoi!), la bactérie n'induira pas la synthèse des gènes de l'opéron lac, même si le lactose est présent et ce, tant que le glucose n'aura pas été entièrement métabolisé. Il semble donc qu'un produit du catabolisme du glucose, un catabolite, empêche la synthèse des ANm correspondant à une variété d'enzymes métabolisant divers autres sucres, d'où l'origine de la répression catabolique (catabolite repression). Fig. 10.16 MCB
En fait, il ne s'agit pas d'un contrôle négatif passant par un répresseur, mais plutôt d'un contrôle positif. Lorsque E. coli est carencé en glucose, elle produit un nucléotide inhabituel, l'amp cyclique ou AMPc. L'AMPc se lie à une protéine appelée CAP pour catabolite activator protein. Cette protéine, lorsque liée à l'ampc, se lie à la région d'adn immédiatement en amont du site de liaison de l'an pol dans l'opéron lac. Le complexe AMPc- CAP exercerait son activité en touchant directement les sous-unités a de l'an pol. Il y aurait un effet coopératif de liaison entre CAP et l'an pol (fig. 10.17 MCB). La présence du facteur CAP permettrait un recrutement plus efficace de l'an pol et augmenterait ainsi le taux de transcription. La terminaison de la transcription chez les bactéries Nous avons déjà vu que les unités transcriptionnelles chez les procaryotes pouvaient être organisées sous forme polycistronique. L'absence de sites de terminaison entre les cistrons permet ce type d'expression. Par contre, puisque les unités transcriptionnelles sont très rapprochées, le contrôle indépendant des unités adjacentes n'est possible que s'il y a des mécanismes contrôlant la terminaison de la transcription des unités mono- ou polycistroniques. La terminaison n'est pas uniquement le mécanisme générant l'extrémité 3' d'un AN, mais une autre occasion de raffiner la régulation de l'expression d'un gène. Il existe deux principaux modes de terminaison chez les bactéries. L'un ne requiert aucune autre protéine que l'an polymérase. C'est la terminaison ho-indépendante. Le second mécanisme nécessite la présence d'un facteur de terminaison, le facteur ho (ρ), et la terminaison est dite ho-dépendante. La terminaison ho-indépendante ou intrinsèque Les terminateurs intrinsèques se distinguent par deux caractéristiques principales: 1) une série de T ( 6) et, précédant cette série, 2) une région riche en GC, capable de former une structure tige-boucle (stem-loop). L'AN produit aura donc à son extrémité 3' une série de U précédée de la région tige-boucle. Cette structure interagit avec l'an pol et provoque l'arrêt momentané de l'élongation (pause). La présence de la série de U fait en sorte que l'hybride AN-ADN formé lors de la transcription est facilement dissocié par la faiblesse particulière de cet hybride (U-A), ce qui permet le largage de la chaîne d'an. Un exemple de ce type de terminateur est illustré pour l'opéron trp (fig. 11.1 MCB). L'atténuation est aussi ho-indépendante Nous avons vu que le répresseur de l'opéron trp était régulé par le tryptophane lorsque ce dernier était en quantité suffisante dans la cellule. Cependant, cette répression n'est pas totale et un second mécanisme entre en jeu lorsque le trp est abondant; c'est l'atténuation. L'atténuation dépend de la structure secondaire de l'an au niveau d'une région appelée l'atténuateur, un terminateur intrinsèque localisé au début de l'unité transcriptionnelle. Dans le cas de l'opéron trp, l'atténuateur est situé dans la séquence de 162 pb qui précède l'aug initiateur des 5 premières enzymes codées par l'opéron trp. Cette région est appelée leader. Le leader possède aussi un codon d'initiation et code pour un court polypeptide (fig. 11.2 MCB). Lorsque le trp est abondant, seule une petite quantité d'an trp est synthétisée (répresseur lié). L'AN produit ne correspond qu'à la région leader, et non pas à l'an polycistronique complet ( 7kb). 11
L'atténuation cause un arrêt prématuré de l'élongation par la formation d'une structure secondaire particulière. La formation de cette structure dépend quant à elle de la vitesse de traduction du leader, cette dernière étant déterminée par la disponibilité des ANt chargés (ANt+aa) correspondant aux acides aminés codés par le leader, en particulier le tryptophane. Le leader peut être subdivisé en 4 régions. La séquence de la région 2 peut s'apparier avec celle de la région 1 ou 3, alors que la séquence de la région 3 peut s'apparier avec la région 2 et 4. Dès que la région 2 a été transcrite, elle s'apparie avec la région 1 déjà transcrite. La structure tige-boucle formée interagit alors avec l'an pol et provoque un arrêt (une pause) de l'élongation. Puisqu'il n'y a pas une série de U à la suite de cette structure, il n'y a pas terminaison. La polymérase peut donc poursuivre l'élongation. Cette pause aura par contre été suffisamment longue pour s'assurer qu'un ribosome aura initié la traduction (rappel: la traduction est cotranscriptionnelle chez les procaryotes). La région 1 du leader contient 2 codons UGG consécutifs codant pour le trp. Lorsque le trp est en quantité suffisante dans la cellule, le ribosome traduit le leader rapidement et défait la structure 2 entre les régions 1 et 2. Une fois synthétisées, les régions 3 et 4 peuvent alors s'apparier et, comme la structure tige-boucle dans ce cas est suivie d'une série de U, il y a terminaison de la transcription lorsque la concentration de trp est élevée dans la cellule. Lorsque la concentration en trp est insufisante, le ribosome s'arrête à chaque codon trp dans la région 1 du leader. Puisque le ribosome s'arrête à la région 1, il bloque l'appariement possible entre la région 1 et 2 et permet alors l'appariement entre les régions 2 et 3 dès qu'elles auront été synthétisées. Comme dans ce cas il n'y a pas de suite de U après la structure tige-boucle et que la région 3 s'apparie avec la région 2 et non la région 4, il n'y aura pas de terminaison. Fig. 11.3b MCB. La terminaison ho-dépendante La moitié des sites de terminaison chez E. coli nécessite le facteur protéique ho, une protéine de 46 kda possédant une activité ATPase et qui semble agir sous la forme d'un hexamère. Après liaison à l'an nouvellement synthétisé, ho glisserait sur ce dernier jusqu'à ce qu'il "rattrape" l'an pol qui se serait arrêtée à un terminateur. ho provoquerait alors la dénaturation de l'hybride AN-ADN et le largage de l'an (fig.9.29 GVII). La maturation des AN chez les procaryotes La maturation des ANm chez les bactéries est très rare. Ils sont traduits tels qu'ils ont été transcrits. Un cas exceptionnel est celui du phage T7 où certains AN polycistroniques sont clivés pour ainsi libérer des unités monocistroniques. 12
13 Sept opérons codent pour les ANr chez E. coli (rrna à rrng). Les ANr sont synthétisés sous la forme d'un long précurseur 30S qui devra être clivé pour donner naissance aux ANr 16S, 23S et 5S (fig. 12.50 GVI). L'enzyme responsable de la maturation de ces ANr est l'anase III (Nase III). Fig. 12.51 GVI. L ANase III reconnaît une région de structure secondaire formant une tige boucle de part et d autre des AN r et le clivage au niveau de cette tige permet de libérer un ANr mature. Les ANt sont aussi synthétisés sous la forme d'un précurseur et subissent une maturation tant en 5' qu'en 3'. Une seule enzyme la Nase P, est responsable de la maturation des extrémités 5' des ANt procaryotiques. La Nase P est une ribonucléoprotéine composée d'un AN de 375 nt ( 130 kda) et d'une partie protéique de 20 kda! Les deux composantes sont nécessaires à l'activité de l'enzyme, mais c'est l'an qui effectue la catalyse. Les mécanismes de la maturation de l'extrémité 3' sont moins bien connus. Chez les bactéries, il existe deux types de précurseurs d'ant. Les précurseurs de type I possèdent dans leurs séquences la séquence CCA que l'on retrouve à l'extrémité 3' de tous les ANt. Cette séquence sert alors de démarcation entre le précurseur et l'ant mature lors de la maturation de l'ant. Cette extrémité est générée par une ribonucléase (la Nase D) qui s'arrête à la séquence CCA. Dans les ANt de type II, la maturation implique l'action d'une ribonucléase et d'une ANt nucléotidyl transférase pour la synthèse de l'extrémité CCA.