DM n 5 : Diffusion de particules et fluides en écoulement A rendre pour le Mercredi 19 Novembre Le devoir comprend trois exercices : Exercice 1 : Diffusion de particules (d après e3a 01). Exercice : Etude d une sténose (d après BCPST 010) Exercice 3 : Le ballon de football (Résolution de problème). 1 PSI, lycée de l Essouriau, 014/015
Exercice 1 : Diffusion de particules (d après e3a 01) PREMIERE PARTIE DIFFUSION LOI DE FICK Au sein d un milieu homogène, considérons un ensemble de particules dont la concentration n est pas uniforme. Ces particules peuvent être des molécules, des atomes ou des ions, des défauts ponctuels, des électrons libres, etc Dans l hypothèse d une diffusion unidirectionnelle, leur densité (ou concentration) particulaire n(x,t) dépend de leur position le long de la direction Ox. En 1885, dans le cadre de ses travaux sur les mélanges de gaz et de liquides, Adolf Fick proposa la loi phénoménologique de diffusion. Cette loi introduit le coefficient de diffusion (ou diffusivité) D et relie le vecteur densité volumique de particules particulaire n. j D au gradient de concentration A1. Rappeler la loi de Fick ; expliquer le caractère «phénoménologique» de cette loi. Justifier l existence d un flux de particules et son orientation relative vis à vis du gradient de concentration. La loi de Fick ne faisant apparaître que les variations spatiales de la concentration particulaire à un instant t, il convient de la compléter par une équation de bilan lorsque le flux de particules varie au cours du temps. Pour un cylindre infiniment long, de section S constante, parallèle à la direction Ox de la diffusion, un bilan de matière conduit à l équation de la diffusion: n n D. t x A. Par une analyse dimensionnelle, établir une relation qualitative exprimant la longueur caractéristique L du phénomène de diffusion en fonction de l ordre de grandeur de sa durée et du coefficient de diffusion D. En réalité, l écoulement des particules dans une direction donnée peut avoir deux origines : l une est la conduction induite par le gradient de concentration, l autre est la convection provoquée par l action d une force extérieure (dite force de transport) qui déplace les particules avec une vitesse moyenne v constante dirigée suivant l axe x. A3. Par analogie avec la définition du vecteur densité de courant de charge, exprimer simplement le vecteur densité volumique de particules j T pour la seule convection en fonction de v et n(x,t). Compléter la loi de Fick et établir la nouvelle équation de la diffusion dans le cas particulier où D et v sont indépendants de la densité de particules. Pour illustrer la diffusion, considérons la situation expérimentale du dopage d un semiconducteur d arséniure de gallium (AsGa) avec du silicium. A l instant t 0, N 0 atomes de silicium par unité de surface sont brusquement introduits en x 0, à la surface d une plaquette d AsGa considérée comme un milieu semi-infini. L analyse du régime instationnaire montre que le nombre d atomes de silicium N(x,t) par unité de volume à l abscisse x et à l instant t s écrit : K ax N(x,t) exp t t Tournez la page S.V.P.
A4. Etablir la relation entre a et D, pour que la répartition d atomes N(x,t) soit solution de l équation de diffusion établie en A1. Traduire la conservation du nombre d atomes introduits et, par le x changement de variable u se référant aux compléments mathématiques en fin d énoncé, Dt déterminer la valeur de K en fonction de N 0 et D. Le schéma ci-dessous (Figure 1) traduit le résultat du dopage de la plaquette d AsGa : l évolution de la distribution des atomes de silicium est tracée en fonction de l abscisse x, à différents instants. N(x,t) en 10 1 atomes/m 3 8 7 6 5 4 3 1 0 0 0,5 1,0 1,5,0 A5. Analyser la forme des courbes obtenues. Que vaut l aire sous chacune de ces courbes? Déterminer, à un instant t donné (en adoptant par exemple t 1h ), la profondeur d implantation L des atomes de silicium correspondant à une concentration moitié de la concentration en x 0 (il s agit de la demi-largeur à mi-hauteur). A6. Estimer l ordre de grandeur du coefficient de diffusion D. t 1h t h t 6 h t 0 h x (m) Figure 1 A7. Proposer une méthode graphique permettant de déterminer plus précisément le coefficient de diffusion D du silicium dans AsGa à partir des mesures expérimentales qui ont été faites (on ne réalisera pas cette méthode). DEUXIEME PARTIE DIFFUSION DES MOLECULES D UN COLORANT ENTRE DEUX SOLUTIONS Etudions la diffusion de molécules de colorant entre deux solutions aqueuses qui, à l instant initial, ne possèdent pas la même concentration volumique. Une cuve d épaisseur d et de grandes dimensions dans les deux autres orientations, est constituée de deux bacs de même volume remplis d une solution contenant des molécules d un même colorant et séparés par une mince cloison située en z 0. De part et d autre de ce plan de séparation, les concentrations sont uniformes et valent respectivement C 1 pour z 0 et C C pour z 0. (Figure ) 1 A l instant t 0, la cloison est brusquement retirée et les molécules diffusent, conduisant à une concentration C(z,t) en un point de cote z et à l instant t. à t 0 L équation de la diffusion, étudiée dans la partie précédente (A1), admet ici pour solution la fonction d erreur (détaillée en fin u z d énoncé) : erf(u) exp( s ) ds, avec u. 0 Dt O C 1 z 0 C z d Figure
3 D est le coefficient de diffusion des molécules de colorant dans la solution ; il est supposé indépendant de la concentration. On néglige l effet de la pesanteur. B1. Présumer, sans effectuer de calcul, de la concentration attendue à l interface des deux bacs, lorsque le phénomène de diffusion est achevé. Par continuité en z 0, la concentration dans chaque domaine peut être décrite par une expression du type C( z, t) A erf ( u) B, A et B étant des constantes. B. Donner les conditions aux limites en z + et z -. B3. Déterminer les constantes A et B à partir des conditions aux limites, puis écrire la loi de répartition de concentration C(z,t). B4. Tracer l allure du profil de concentration C(z,t) à trois instants successifs : t 0, t 1 puis t t. Commenter ces tracés. 1 COMPLEMENTS MATHEMATIQUES erf x x exp s ds Définition de la fonction erreur (error function) : Propriétés de erf(x) : erf x erf x erf 0 0 erfcx 1 erf x exps ds d erf x exp x dx Représentation de la fonction erreur : x 0 erf 1 Intégrale d Euler : 0 exp s ds
Exercice : étude d une sténose (d après BCPST 010) Dans tout l exercice on considère un écoulement incompressible, homogène et stationnaire. 1. On considère un cylindre de rayon R et de longueur L traversé par un fluide de viscosité dynamique η et de masse volumique µ. Etablir la loi de Hagen-Poiseuille reliant le débit Q à la différence de pression aux extrémitrés du cylindre. Par analogie électrocinétique on fera apparaître la résistance hydraulique R H à exprimer en fonction des paramètres du problème. Quelles sont les hypothèses sous lesquelles cette loi est valide? On étudie la circulation du sang dans un vaisseau sanguin sain modélisé par un tronçon cylindrique de longueur l et de rayon constant r o parcouru par le sang avec une vitesse débitante v = 0, 1m.s 1. Le sang a pour viscosité dynamique η = 10 3 Pl et pour masse volumique mu = 10 3 kg.m 3.. Déterminer l ordre de grandeur du rayon du vaisseau sanguin à partir à partir duquel on peut considérer l écoulement du sang comme laminaire. Le tiers central de ce vaisseau sanguin est le siège d une sténose. Dans cette portion centrale, le rayon intermédiaire R o est plus petit que le rayon r o du vaisseau non altéré. Le tronçon de longueur l est alors partagé en trois portions de même longueur l 3 et de résistances hydrauliques respectivement notées R 1, R et R 3. La figure ci-dessous représente la coupe diamétrale du vaisseau atteint d une sténose. Dans toite la suite la différence de pression P est supposée constante, le générateur cardiaque fournissant toujours la même énergie. 3. Exprimer R 1, R et R 3 en fonction de R H, résistance hydraulique du vaisseau sain, et des rayons R o et r o. 4. Déterminer la résistance hydraulique du vaisseau sténosé et exprimer le résultat sous la forme R Hs = αr H, où α est un coefficeint de proportionnalité à expliciter en fonction de R o et r o. 5. Q s est le nouveau débit volumique sanguin dans le vaisseau atteint de sténose. Préciser l expression de Q s en fonction de Q et des rayons R o et r o puis en fonction de Q et α. Comparer Q et Q s, quelle peut être la conséquence physiologique de ce résultat? Un pontage est réalisé afin de réparer une artère sclérosée. Le pontage consiste à contourner l obstacle à l aide d une tubulure mise en parralèle sur la totalité du tronçon. R Hp est la résistance hydraulique du pontage de longueur l. La figure suivante représente la coupe diamétrale du pontage. 5 PSI, lycée de l Essouriau, 014/015
6. Etablir l expression de la résistance hydraulique équivalente de l artère pontée en fonction de R H, α et R Hp. 7. Déterminer la valeur de R Hp permettant de rétablir le débit volumique sanguin à sa valeur en l absence de sténose. Exprimer dans ce cas R Hp en fonction de R H et α. 8. Déterminer l expression du rayon r p de la tubulure du pontage permettant de rétablir le débit volumique sanguin à sa valeur en l absence de sténose, en fonction de R o et r o. 6 PSI, lycée de l Essouriau, 014/015
Exercice 3 : ballon de football (résolution de problème) Dans une enceinte contenant de l air, on lache un ballon de football de masse m = 500g d une hauteur de 7 mètres. Par vélocimétrie laser on mesure sa vitesse à différents instants t i, tels que t i+1 t i = 30ms. Les mesures sont relevées dans le graphe suivant : On donne le coefficient de traînée d une sphère en fonction du nombre de Reynolds : Déterminer le diamètre du ballon de football. La réponse à cette question nécessite de l initiative. Le candidat est invité à consigner ses pistes de recherche, à y consacrer un temps suffisant. La qualité de la démarche choisie et son explicitation seront évaluées tout autant que le résultat final. 7 PSI, lycée de l Essouriau, 014/015
Méthode générale pour résoudre un problème : La méthode suivante n est pas un plan de rédaction mais un plan de réflexion, la liste des éléments proposés n est pas exhaustive. Tous les éléments de réflexion ne doivent pas nécessairement apparaître dans la solution rédigée sur votre copie. 1. S appropier le problème : Faire un schéma du modèle, identifier les grandeurs pertinentes et leur attribuer un symbole, voire les évaluer quantitativement si cela est possible, relier le problème à une situtation connue.... Etablir une stratégie de résolution : décomposer le problème en problèmes plus simples, commencer par une version simplifiée, expliciter la modélisation choisie, déterminer et énoncer les lois physiques utiles... 3. Metter en œuvre la stratégie : mener la démarche jusqu au bout afin de répondre à la question posée, mener efficacement les calculs analytiques et numériques... 4. Avoir un regard critique sur les résultats obtenus : s assurer que l on a bien répondu à la question posée, vérifier la pertinence du résultat en comparant avec des ordres de grandeurs connus, comparer le résultat obtenu avec le résultat d une autre approche (expérimentale par exemple), étudier des cas limites simples dont la solution est plus facilement vérifiable. 5. Communiquer votre raisonnement : rédiger la solution en expliquant le raisonnement et les résultats, présenter les étapes de son travail de manière synthétique, organisée, cohérente et compréhensible. 8 PSI, lycée de l Essouriau, 014/015