Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)
|
|
|
- Sarah Boutin
- il y a 10 ans
- Total affichages :
Transcription
1 Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut ^etre utilise sans demonstration. Tous les documents sont autorises. La seconde partie est commune aux deux parcours (Paris 13 et Centrale), la premiere partie est uniquement pour la specialite MACS, mais les resultats numerotes dans la premiere partie peuvent ^etre utilises sans demonstration dans la seconde. Seuls les resultats enonces dans le texte de la premiere partie sont utilisables eventuellement dans la seconde partie. La partie 1 et la partie 2 sont a rediger sur deux copies separees, et la partie 1 sera relevee au bout de deux heures. Dans ce sujet, nous etudions l'equation d'advection-diusion. Elle intervient dans de nombreux domaines : mecanique des uides (equation de Navier-Stokes linearisee), environnement (equation des milieux poreux), mathematiques - nancieres (equation de Blaack et Scholes). 1 Partie 1 Dans cette partie, designe un domaine borne de IR d avec d = 1 ou d = 2, de frontiere susamment reguliere. Soit l'equation d'advection-diusion : " u + a ru = f u j = (1.1) On suppose f 2 L 2 (), " > et a(x) = (a 1 (x); :::; a d (x)) est un champ de vecteur dont toutes les composantes sont de classe C 1, uniformement bornees sur et tel que div(a) = en tout point de. On note kak L 1 = sup( x2 dx i=1 ja i (x)j 2 ) 1=2 et on notera u " la solution de (1.1) associee au coecient de diusion ". 1
2 1. (Etude theorique) On suppose dans cette partie que est un domaine regulier de classe C 2 de IR d. (a) Montrer que toute solution u " 2 H 2 () est aussi solution de la formulation variationnelle suivante : 8 >< >: Trouver u " 2 H 1 () 8v 2 H 1 () " ru " rv + (a ru " ) v = fv (1.2) Montrer reciproquement que toute solution u " de (1.2) qui appartient a H 2 () est aussi solution de (1.1). R (b) Montrer que la forme bilineaire b(u; v) = (a ru) v est antisymetrique sur H 1 (). En deduire que (1.2) admet une solution unique dans H 1 (). (c) Etablir l'estimation ku " k H 1 () C 1 kfk L 2 () ou l'on exprimera C 1 en fonction de la constante C P de Poincare du domaine (que l'on denira precisement sans la calculer) et de " >. (d) On rappelle que si v est la solution de la formulation variationnelle du probleme v = g dans avec condition aux limites v = sur et g 2 L 2 (), on a l'estimation de regularite kvk H 2 () C kgk L 2 () ou la constante C ne depend que du domaine. En deduire que la solution u " de (1.2) verie une estimation similaire de la forme ku " k H 2 () C 2 kfk L 2 () ou l'on exprimera C 2 en fonction de C P, C, kak L 1 et " >. (e) Montrer que les constantes C 1 et C 2 tendent vers +1 lorsque "!. 2. (Etude numerique) On supposera dans cette partie que est un domaine polyhedrique convexe de IR d et on admettra que tous les rsultats obtenus precedemment restent valables dans cette situation. On considere une suite (T h ) h> de maillages reguliers conformes de. On rappelle que { la suite h = max K2Th diam(k) tend vers. { il existe une constante C r telle que pour tout h > et K 2 T h, on a diam(k) C r (K) avec (K) rayon du cercle inscrit de K. On designe par V h l'espace d'elements nis P 1 Lagrange associe au maillage T h et on utilise la discretisation de (1.1) par la methode de Galerkin : 8 >< >: Trouver u ";h 2 V h 8v h 2 V h " ru ";h rv h + (a ru ";h ) v h = fv h (1.3) 2
3 (a) Montrer que (1.3) admet une solution unique u ";h qui verie l'estimation d'erreur ku " u ";h k H 1 () C 3 inf v h 2V h ku " v h k H 1 () ou l'on exprimera C 3 en fonction de C P, kak L 1 et " >. (b) Montrer que l'on a l'estimation inf v h 2V h ku " v h k H 1 () C 4 h ku " k H 2 () ou la constante C 4 ne depend que de C r. En deduire l'estimation d'erreur ku " u ";h k H 1 () C 5 h kfk L 2 () ou l'on exprimera C 5 en fonction de C 2, C 3 et C 4. (c) Montrer la constante C 5 tend vers +1 lorsque "!. Conclure. 3. (Discretisation en dimension 1) Dans cette partie, on se place en dimension 1, =]; L[ et f = a = 1, soit "u " + u " = 1 sur ]; L[ u " () = u " (L) = : (1.4) (a) Ecrire le schema obtenu par la discretisation en elements nis P 1 Lagrange sur un maillage rgulier. Montrer qu'il coincide avec un schema aux dierences nies ou le terme d'advection u " est discretise par une dierence centree. Comment cela se relie-t-il intuitivement avec les problemes numeriques precedents? (b) Une solution possible a ces problemes consiste a discretiser (1.1) par une formulation variationnelles du type 8 >< >: Trouver u ";h 2 V h 8v h 2 V h " ];L[ u ";h v h + ];L[ u ";h v h + h u ";h v h = fv h ];L[ ];L[ (1.5) avec h choisi de maniere adequate. Pour preciser le choix de h, on le cherche sous la forme h = h: Pour quelle valeur de, le schema coincide-t-il avec un schema aux dierences nies ou le terme d'advection u " est discretise par une dierence decentree amont dont on connait la stabilite dans la limite " tend vers? 3
4 2 Partie 2 Soit f 2 L 2 ([; L]). On considere l'equation dierentielle ordinaire qui est (1.1) en dimension 1, a etant une constante donc de divergence nulle(l > ) : "u + au = f(x); x 2]; L[; u 2 H 1 ([; L]) (2.6) (elle est donc munie des conditions aux limites u() = u(l) =. 1. (Generalites) On considere une fonctionnelle J(u) deux fois derivable sur H 1 ([; L]). R 1 (a) Calculer (J (tu); u)dt pour tout u. (b) On introduit c(u; v) = R L ( "u + au f)(x)v(x)dx. Montrer que u 2 H 1 ([; L]) solution de (2.6) si et seulement si 8v 2 H 1 ([; L]); c(u; v) = : (c) Calculer c(u; v) + c(v; u) pour tous u; v dans H 1 ([; L]). (d) On suppose qu'il existe J qui verie 8u; v 2 H 1 ([; 1]); (J (u); v) = c(u; v): Determiner J(u) pour tout u en utilisant deux questions precedentes et en deduire que J n'existe pas. Existe-t-il un probleme de minimisation sans contraintes sur H 1 ([; L]) tel que (2.6) soit l'equation d'euler associee? 2. Se ramener a un probleme quadratique. Dans ce paragraphe, on montre que, dans certaines conditions, l'equation avec un terme antisymetrique peut se ramener a une equation associee a un probleme symetrique. C'est cette analyse qui permet d'obtenir des resultats (en homogeneisation) sur la diusion moleculaire. (a) Trouver le changement de variable lineaire, et le changement de fonction inconnue et de terme source tels que (2.6) est equivalente a (1.4) sur un nouvel intervalle [; ~ L]. Cette relation ne sera pas utilisee par la suite. (b) Montrer que (2.6) est equivalente a "U + a2 4" U = f(x)e a 2" x = F (x) (2.7) ou on exprimera U en fonction de u. (c) Demontrer que U est solution du probleme de minimisation suivant sur H 1 ([; L]) : infj (U) ou J (V ) = 1 2 L ["(V ) 2 + a2 4" V 2 ]dx L F (x)v (x)dx: Montrer que ce probleme admet une unique solution U. 4
5 (d) Montrer que la fonctionnelle J est convexe sur H 1 ([; L]) et donner la meilleure constante ("; a). (e) Montrer que la fonctionnelle J est M Lipschitzienne et donner la meilleure constante M("; a). (f) Identier les limites lorsque " tend vers des deux constantes. (g) Montrer l'inegalite inf("; a2 4" )jju jj H 1 jjf jj L 2: Quelle est la limite lorsque " tend vers de la norme jju jj H 1? Quelle est la limite lorsque " tend vers de la norme jju jj L 2 (on pourra utiliser une inegalite celebre). 3. On considere dans cette section la fonctionnelle J. (a) Est-ce une fonctionnelle quadratique? (b) Montrer l'egalite J (V ) = J (U ) a(v U ; V U ) R ou ~a(v; W ) = (J L (U)V; W ) = ("V W + a2 4" V W )dx. Est ce que ~a depend de U? Comment appelle-t-on de telles fonctionnelles? (c) Montrer l'existence d'un unique K(V ) tel que 8w 2 H 1 ([; L]); ~a(v; W ) = (K(V ); W ) H 1 ou (:; :) H 1 designe le produit scalaire sur H 1. Montrer que K est un operateur lineaire. (d) Montrer l'egalite J(V ) = K(V U ): (e) Algorithme de gradient a pas optimal? 4. On considere maintenant un champ a(x; y); b(x; y) non constant veriant : il existe (x; y) de classe C 2 telle que a(x; y) x (x; y), b(x; y) y (x; y) et =. (a) Dans le cas ou (x; y) = x 2 y 2, montrer que ces hypotheses sont veriees (b) Montrer que ces hypotheses sont aussi veriees lorsque (x; y) = Re(x + iy) N. (c) Soit un ouvert borne regulier. On considere l'equation aux derivees partielles, pour f 2 L 2 () " u + (a(x; y)@ x u + b(x; y)@ y u) = f(x; y); u 2 H 1 () (2.8) ou a; b verie les hypotheses enoncees au debut de cette section. Montrer, en utilisant point par point les elements de 1, qu'il n'existe pas de fonctionnelle J(u) telle que (2.8) soit l'equation d'euler associee a J(u). 5
6 (d) Trouver une fonction U(x; y) = (x; y; a; ")u(x; y) telle que U(x; y) soit solution de l'equation aux derivees partielles " U + 1 4" jr j2 U = F (2.9) ou F sera a determiner en fonction de f et de. (e) Determiner la forme quadratique J 1 (U) dont l'equation d'euler associee est (2.9). On admet dans ce qui suit que est un ouvert borne regulier sur lequel l'inegalite de Poincare U 2 dx C ~ P (ru) 2 dx est vraie pour U 2 H 1 (). (f) Demontrer que J 1 admet un unique point de minimum, note U 1 sur H 1 (), muni de la norme ((u; u)) = R (ru)2 dx. 5. Analyse abstraite de l'algorithme de gradient optimal. Dans cette question, on etudie l'algorithme de gradient a pas optimal en dimension innie. On considere pour cela J (U) = 1 " (ru) 2 dx + 1 V (x)u 2 dx 2 2 ou V (x) = 1 4" jr j2 est continue bornee sur. On utilisera en permanence pour f et g dans H 1 () les identites de Green : f gdx = rf:rgdx = f gdx: (a) Montrer sans calculs que l'algorithme de gradient a pas optimal pour J 1 avec valeur initiale est le m^eme que l'algorithme de gradient a pas optimal pour J avec comme valeur initiale U 1, ou U 1 est l'unique solution de (2.9) dans H 1 (). (b) Montrer que 8W 2 H 1 (); (J (U); W ) = ((R; W )) ou R est l'unique solution dans H 1 () de R = " U + V (x)u: (c) En deduire que U! R = KU est un operateur bijectif de H 1 () sur H 1 (). (d) Montrer que J (U) = 1((KU; U)) = 1 ((R; U)). 2 2 (e) On introduit R 1 = KR. En rappelant le theoreme du polycopie (numero, et page) donner le pas n de l'etape n de l'algorithme de gradient a pas optimal 6
7 (f) Montrer les egalites ((KU; KU)) = ((R; KU)) = ((R; R)) = R Rdx ((KU; KU)) = " 2 (ru) 2 dx + " V (x)u 2 dx + V (x)rudx ((K 2 U; KU)) = ((R 1 ; R)) = " 2 (ru) 2 dx+" 3 V (x)u 2 +" 2 V (x)rudx+" V (x)r 2 : En utilisant l'egalite V (x) = 1 4" jr j2, montrer l'egalite (K 2 U; KU) = " 2 (KU; KU) jr j 2 R 2 dx: Donner le pas optimal. Estimer sa valeur en fonction de ". (g) Expliquer pourquoi, dans ce cas, calculer une etape de l'algorithme de gradient a pas optimal ou de gradient a pas constant est exactement de la m^eme diculte que de calculer la solution du probleme. 6. Discretisation du probleme sur des splines. On considere dans toute cette section que l'intervalle [; L] est decompose en segments de taille egale L N en nombre N. On admet l'existence de fonctions, appellees splines, de classe C 1 sur IR, ayant les proprietes suivantes : pour 1 j N 1, N j a pour support [ j 1 j+1 N L; N L], N j est de degre 2 au plus sur [ j 1 N L; j N L] et sur [ j j+1 N L; N L]. On note S N = f X j N j ; 1 j N 1g; SN = f X j N j e x 2" ; 1 j N 1g (a) Montrer que S N et S N sont inclus dans H 1 ([; L]). (b) Determiner les coecients de la matrice de masse a jp et les coecients du terme source b p tels que la solution de inf V 2S N J (V ) P soit l'element de S N donne par j N j tel que X 8j; a pj j = b p : (c) On reecrit, sur S N, la formulation variationnelle (1.5) de la premiere partie, dont on admettra qu'elle existe et que sa solution est unique. Montrer que si on note A jp = L ["( N j ) ( N p ) N j ( N p ) N p ( N j ) + 1 4" (N j N p )+( N j ) N p + 1 2" N j N p ]e x " dx 7
8 le probleme est equivalent a L 8v 2 S N ; ("u v + u v)dx = 8j; X p A jp p = L L f(x)e x 2" dx = b j : fvdx (2.1) On note A la matrice des A jp et A la matrice des a jp. Est ce que les systemes A~ = ~ b et A ~ = ~ b sont identiques? Equivalents? (d) Proposez une methode qui permettrait d'avoir a partir de (2.1) le systeme A~ = ~ b. 7. Solution explicite dans le cas 1d : En posant u(x) = A(x)e a " x + B(x), ou B (x) + A (x)e a " x =, determiner l'unique solution de (2.6). 8
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
Approximations variationelles des EDP Notes du Cours de M2
Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Une premiere approche des elements nis sur un exemple tres simple
EDP MTH Analyse 2215 EmmanuelFrenod numeri Premiere partie Une premiere approche s elements nis un exemple tres simple 1 Equation la chaleur dans barre 2 Resolution u00 f [0;1] par elements nis avec un
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
NOTATIONS PRÉLIMINAIRES
Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Compte rendu des TP matlab
Compte rendu des TP matlab Krell Stella, Minjeaud Sebastian 18 décembre 006 1 TP1, Discrétisation de problèmes elliptiques linéaires 1d Soient > 0, a R, b 0, c, d R et f C([0, 1], R). On cerce à approcer
EXERCICES - ANALYSE GÉNÉRALE
EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par
Différentiabilité ; Fonctions de plusieurs variables réelles
Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques
Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.
Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
Calcul différentiel sur R n Première partie
Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité
Calcul différentiel. Chapitre 1. 1.1 Différentiabilité
Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Les travaux doivent être remis sous forme papier.
Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique
La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
Introduction à la méthode des éléments finis
ÉCOLE NATIONALE SUPERIEURE DES MINES DE PARIS Introduction à la méthode des éléments finis Michel KERN 1 2004 2005 S3733 / S3735 1 Inria, Rocquencourt, BP 105, 78153 Le Chesnay, [email protected] 2
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Retournement Temporel
Retournement Temporel Rédigé par: HENG Sokly Encadrés par: Bernard ROUSSELET & Stéphane JUNCA 2 juin 28 Remerciements Je tiens tout d'abord à remercier mes responsables de mémoire, M.Bernard ROUSSELET
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Cours d analyse numérique SMI-S4
ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Optimisation des fonctions de plusieurs variables
Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables
Filtrage stochastique non linéaire par la théorie de représentation des martingales
Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de
Dualité dans les espaces de Lebesgue et mesures de Radon finies
Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
Théorèmes du Point Fixe et Applications aux Equations Diérentielles
Université de Nice-Sophia Antipolis Mémoire de Master 1 de Mathématiques Année 2006-2007 Théorèmes du Point Fixe et Applications aux Equations Diérentielles Auteurs : Clémence MINAZZO - Kelsey RIDER Responsable
Cours d Analyse 3 Fonctions de plusieurs variables
Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet [email protected]
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
Intégrales doubles et triples - M
Intégrales s et - [email protected] 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
Groupe symétrique. Chapitre II. 1 Définitions et généralités
Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications
Intégration et probabilités TD1 Espaces mesurés
Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?
Équations non linéaires
CHAPTER 1 Équations non linéaires On considère une partie U R d et une fonction f : U R d. On cherche à résoudre { x U 1..1) f x) = R d On distinguera les cas d = 1 et d > 1. 1.1. Dichotomie d = 1) 1.1.1.
Axiomatique de N, construction de Z
Axiomatique de N, construction de Z Table des matières 1 Axiomatique de N 2 1.1 Axiomatique ordinale.................................. 2 1.2 Propriété fondamentale : Le principe de récurrence.................
Chapitre VI Fonctions de plusieurs variables
Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions
Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2.
Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Techniques de correction pour les options barrières 25 janvier 2007 Exercice à rendre individuellement lors
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
Implémentation de Nouveaux Elements Finis dans Life et Applications
1 Département Informatique et Mathématiques Appliquées Année Universitaire 29-21 Rapport de stage Implémentation de Nouveaux Elements Finis dans Life et Applications Présenté par Abdoulaye Samake M1 Mathématiques
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
DYNAMIQUE DE FORMATION DES ÉTOILES
A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,
Amphi 3: Espaces complets - Applications linéaires continues
Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
1 Introduction et modèle mathématique
Optimisation parallèle et mathématiques financières Optimisation parallèle et mathématiques financières Pierre Spiteri 1 IRIT ENSEEIHT, UMR CNRS 5505 2 rue Charles Camichel, B.P. 7122 F-31 071 Toulouse,
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
Sur certaines séries entières particulières
ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane
Introduction à l analyse numérique : exemple du cloud computing
Introduction à l analyse numérique : exemple du cloud computing Tony FEVRIER Aujourd hui! Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
Leçon 01 Exercices d'entraînement
Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines
Le modèle de Black et Scholes
Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un
Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2
Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2
Exemple de sujet n 2 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 2 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
CONTRÔLE ET ÉQUATIONS AUX DÉRIVÉES PARTIELLES. par. Jean-Pierre Puel
CONTRÔLE ET ÉQUATIONS AUX DÉRIVÉES PARTIELLES par Jean-Pierre Puel 1. Introduction Pourquoi équations aux dérivées partielles et pourquoi contrôle? Les équations aux dérivées partielles, associées à certaines
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Mais comment on fait pour...
Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition
BACCALAURÉAT PROFESSIONNEL SUJET
SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)
OM 1 Outils mathématiques : fonction de plusieurs variables
Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
Économetrie non paramétrique I. Estimation d une densité
Économetrie non paramétrique I. Estimation d une densité Stéphane Adjemian Université d Évry Janvier 2004 1 1 Introduction 1.1 Pourquoi estimer une densité? Étudier la distribution des richesses... Proposer
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Chapitre 1 Régime transitoire dans les systèmes physiques
Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Problèmes de Mathématiques Filtres et ultrafiltres
Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire
Equations aux Dérivées Partielles
Equations aux Dérivées Partielles Tony Lelièvre 29-2 Après avoir considéré dans le capitre précédent des équations d évolution pour des fonctions ne dépendant que du paramètre temps, nous nous intéressons
