CHAPITRE VI PERIODICITE COURS DU PROFESSEUR TANGOUR BAHOUEDDINE

Documents pareils
BTS BAT 1 Notions élémentaires de chimie 1

Molécules et Liaison chimique

Application à l astrophysique ACTIVITE

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

CHAPITRE 2 : Structure électronique des molécules

Viandes, poissons et crustacés

CHAPITRE VI : HYBRIDATION GEOMETRIE DES MOLECULES

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Chapitre 02. La lumière des étoiles. Exercices :

LES SUBSTITUTIONS NUCLÉOPHILES EN SÉRIE ALIPHATIQUE S N 1 ET S N 2

Physique Chimie. Réaliser les tests de reconnaissance des ions Cl -,

Équivalence masse-énergie

ACIDES BASES. Chap.5 SPIESS

Chapitre 5 : Noyaux, masse et énergie

Commission juridique et technique

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

De la physico-chimie à la radiobiologie: nouveaux acquis (I)

Rappels sur les couples oxydantsréducteurs

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Transformations nucléaires

La physique nucléaire et ses applications

Effets électroniques-acidité/basicité

Atelier : L énergie nucléaire en Astrophysique

Professeur Eva PEBAY-PEYROULA

P17- REACTIONS NUCLEAIRES

Plan du chapitre «Milieux diélectriques»

La gravure. *lagravureparvoiehumide *lagravuresèche

1 ère Partie : Concepts de Base

EXERCICES SUPPLÉMENTAIRES

Enseignement secondaire

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

Transformations nucléaires

Résonance Magnétique Nucléaire : RMN

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

LES ELEMENTS CHIMIQUES

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

Chapitre 11: Réactions nucléaires, radioactivité et fission

Lycée français La Pérouse TS. L énergie nucléaire CH P6. Exos BAC

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

TECHNIQUES: Principes de la chromatographie

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

C4: Réactions nucléaires, radioactivité et fission

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

1.2 Coordinence. Notion de liaison de coordinence : Cas de NH 3. et NH 4+ , 3 liaisons covalentes + 1 liaison de coordinence.

C3. Produire de l électricité

Le ph, c est c compliqué! Gilbert Bilodeau, agr., M.Sc.

Microscopies Électroniques

3 Charges électriques

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

ANALYSE SPECTRALE. monochromateur

TD 9 Problème à deux corps

Interactions des rayonnements avec la matière

8/10/10. Les réactions nucléaires

MODELE DE PRESENTATION DU PROJET

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème /2015

- I - Fonctionnement d'un détecteur γ de scintillation

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION

Cours d Analyse. Fonctions de plusieurs variables

Décrets, arrêtés, circulaires

Chap 2 : Noyaux, masse, énergie.

Semi-conducteurs. 1 Montage expérimental. Expérience n 29

Principe de fonctionnement des batteries au lithium

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Généralités. Chapitre 1

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

Transport des gaz dans le sang

Transport des gaz dans le sang

EP A2 (19) (11) EP A2 (12) DEMANDE DE BREVET EUROPEEN. (43) Date de publication: Bulletin 2009/22

Structure quantique cohérente et incohérente de l eau liquide

MESURE DE LA TEMPERATURE

Panorama de l astronomie

Metrohm. ph-mètre 780 ph-/ionomètre 781. Un nouveau concept qui fait référence. Analyse des ions

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

Compléments - Chapitre 5 Spectroscopie

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

T4 Pourquoi éteindre les phares d une voiture quand le moteur est arrêté? Comment fabriquer une pile? un accumulateur?

Réduction des consommations d hydrocarbures par pré-traitement physique

Titre alcalimétrique et titre alcalimétrique complet

C2 - DOSAGE ACIDE FAIBLE - BASE FORTE

REACTIONS D OXYDATION ET DE REDUCTION

a. Fusion et énergie de liaison des noyaux b. La barrière Coulombienne c. Effet tunnel & pic de Gamov

INTRODUCTION À L'ENZYMOLOGIE

Transmission des données de la surveillance de l exposition interne au système SISERI Description du format de fichier

LABORATOIRES DE CHIMIE Techniques de dosage

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

nucléaire 11 > L astrophysique w Science des étoiles et du cosmos

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

Fonctions de deux variables. Mai 2011

Ecole d été des spectroscopies d électrons.

Défi 1 Qu est-ce que l électricité statique?

Une entreprise innovante

M1 - MP057. Microscopie Électronique en Transmission Diffraction Imagerie

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2

Transcription:

CHAPITRE VI PERIODICITE COURS DU PROFESSEUR TANGOUR BAHOUEDDINE 1

Le modèle de SLATER et charge efficace Z* Attraction et répulsion Modèle de Slater +Z* Attraction «corrigée» Les autres électrons font écran entre le noyau et l électron étudié La charge réelle Z est remplacée par une charge hypothétique Z* 2

Valeurs de Z* pour un électron de valence des éléments des blocs s et p ( pour voir et à ne pas mémoriser) H 1 He 1,7 Li 1,3 Be 1,95 B 2,6 C 3,25 N 3,9 O 4,55 F 5,2 Ne 5,85 Na 2,2 Mg 2,85 Al 3,5 Si 4,15 P 4,8 S 5,45 Cl 6,1 Ar 6,75 K Ca Ga Ge As Se Br Kr 2,2 2,85 5 5,65 6,3 6,95 7,6 8,25 Rb 2,2 Sr 2,85 In 5 Sn 5,65 Sb 6,3 Te 6,95 I 7,6 Xe 3 8,25

Variation de Z* Sur une ligne de la classification, Z* augmente régulièrement de la gauche vers la droite Pour passer d un élément au suivant, on ajoute un proton dans le noyau et un électron sur la couche de Valence. Z augmente de 1 (ajout d un proton) Z* augmente de 0,65 Li Be B C N O F Ne 1,3 1,95 2,6 3,25 3,9 4,55 5,2 5,85 + 0,65 4

Sur une même colonne Z* augmente légèrement, puis devient constant quand on se déplace de haut en bas. H Li Na K Rb 1 1,3 2,2 2,2 2,2 Cette variation étant très faible, on pourra en première approximation la négliger. + 0,65 ~ cte Z* Sens d augmentation de Z* dans la classification 5

Energies d ionisation Il s agit des énergies associées aux réactions suivantes : A A + + e- Première Ionisation : E.I 1 A + A 2 + + e - Deuxième Ionisation : E.I 2 A 2 + A 3 + + e - A 2 + A 3 + e - Troisième Ionisation : E.I 3 A ( Z -1) + A z+ + e - zième Ionisation : E.I z Ces énergies sont toujours positives car il faut fournir de l énergie pour arracher l électron à l attraction, du noyau et par convention l énergie fournies est déclarée positive. 6

Energies de Première Ionisation des éléments avec Z<40 Li Be B C N O F Ne Na Mg Al Si P Si Cl 5,4 9,3 8,3 11,3 14,5 13,6 17,4 21,6 5,1 7,6 6 8,2 10,5 10,4 13 Ar 15,8 K Ca Ga Ge As Se Br Kr Rb Sr In Sn Sb Te I Xe 4,3 6,1 6 7,9 9,8 9,8 11,8 14 4,2 5,7 5,8 7,3 8,6 9 10,5 12,1 25 20 15 10 5 0 0 Li Be N B C Energies de Première Ionisation ( en ev) F O Ne Na Mg P Al Cl Si S Ar K As Se Ca Ge Ga Kr Br Sb Sn Sr In Rb Xe I Te 5 10 15 20 25 30 35 7

Variation de E.I 1 Le graphique précédant montre que globalement : - dans une ligne E.I 1 augmente de gauche à droite - dans une colonne E.I 1 diminue légèrement de haut en bas L évolution sur une ligne présente des «accidents» que nous étudierons un peu plus tard. E.I 1 Sens d augmentation de E.I 1 dans la classification 8

Pour retenir facilement ce résultat, on considère souvent que c est la valeur de Z* qui fixe la valeur de E.I 1. En effet si Z* est grand, l électron est soumis à une forte attraction du noyau et est donc difficile à arracher d ou une forte valeur de E.I 1. Inversement, si Z* est petit l électron est faiblement attiré par le noyau, donc facile à arracher et E.I 1 est faible. Dans une colonne, comme Z* varie peu, c est la présence des électrons de cœur qui interprète la diminution de EI1 quand Z augmente car le nombre des électrons de cœur augmente et oblige les électrons de valence de s éloigner du noyau donc de faciliter leur extraction. 9

Anomalies Elément E.I 1 (ev) Li 5,4 Be 9,3 B 8,3 C 11,3 N 14,5 O 13,6 F 17,4 Ne 21,6 25 20 15 5 0 Ne N F Be C O B Li 0 1 2 4 5 6 7 8 9 On constate des «accidents» dans la courbe d évolution des valeurs des énergies d ionisation sur une ligne de la classification Ainsi Be et N ont des énergies de première ionisation anormalement élevées. Inversement, B et O ont des énergies de première ionisation anormalement basses. Des «accidents» du même type mais moins spectaculaires se produisent pour les autres lignes de la classification. 10

Ces «accidents» s expliquent si l on examine les configurations électroniques des atomes et ions concernés. Nous savons que les atomes ou ions possédant une sous couche totalement remplie ou à 1/2 remplie présentent une grande stabilité. Si c est l atome neutre qui est très stable, l énergie d ionisation sera anormalement élevée, inversement si c est l ion formé qui est très stable, l énergie d ionisation sera anormalement basse. Be Be + stable N Difficile E.I N + stable Difficile E.I B B + Facile E.I O O + Facile E.I stable stable 11

Les 10 premières énergies d ionisation successives des éléments : Li à Na E.I 1 E.I 2 E.I 3 E.I 4 E.I 5 E.I 6 E.I 7 E.I 8 E.I 9 E.I 10 Li 5,4 75,6 122,5 Be 9,3 18,2 153,9 217,7 B 8,3 25,2 37,9 259,4 340,2 C 11,3 24,4 47,9 64,5 392 489 N 14,5 29,6 47,5 77,5 97,9 552,1 667 O 13,6 35,1 54,9 77,4 113,9 138,1 739,3 871,4 F 17,4 35 62,1 87,1 114,2 157,2 185,2 954 1104 Ne 21,6 41 63,5 97,1 126,2 157,9 207,3 239,1 1196 1362 Na 5,1 47,3 71,6 98,9 138,4 172,2 208,5 264,2 300 1465 Un brusque saut est observé pour l ion dont la configuration correspond à celle d un gaz rare (changement de couche) 12

Les électrons partent dans l ordre inverse de leur énergie. Cette énergie est d abord fonction du nombre quantique principal n. Exemple du Zinc Z = 30 : 4s 2 3d 10 Les électrons 4 s seront arrachés les premiers. 13

Ce résultat est du reste valable pour tous les éléments du bloc d, qui tous, perdront d'abord leurs deux électron s avant d éventuellement perdre un ou plusieurs de leurs électrons d.. Exemple du fer Z = 26 = 18 + 8 (Ar) 3d 6 4 s 2 Fe Fe Fe 2+ 3+ 2+ Une couche demi remplie engendre une grande stabilité 14

Si on porte sur un graphique les valeurs des énergies successives d ionisation en fonction de leur numéro. On retrouve les notions de couches et de sous-couches. En effet, un changement de couche se manifeste par un saut important. Un changement de sous couche se manifeste par un saut plus petit. On retrouve ainsi le fait que l énergie des électrons dépend à la fois de leur couche de façon importante et dans une moindre mesure de leur sous couche. Valeur de E.I grand saut = changement de couche Petit saut = changement de sous-couche Numéro de l ionisation 15

600 500 400 300 200 100 0 Azote 1s 2 2s 2 2p 3 Électron 1s La sixième ionisation est difficile N 5+ possède la structure d'un gaz rare et est donc très stable (facile à former et difficile à détruire) Les 5 premières ionisations sont faciles électrons 2p électrons 2s 0 1 2 3 4 5 6 16

400 350 300 250 200 150 100 50 0 Carbone 1s 2 2s 2 2p 2 La cinquième ionisation est difficile électron 1s C 4+ a la structure d'un gaz rare et est donc très stable (facile à former et difficile à détruire) Les 4 premières ionisations sont faciles électrons 2p électrons 2s 0 1 2 3 4 5 17

400 300 200 E.I Carbone Silicium 1 11,22 8,12 2 24,27 16,27 3 47,65 33,35 4 64,22 44,93 5 390,1 156,6 65 55 45 35 p Parallélisme pour deux éléments du même groupe s 100 25 0 0 1 2 3 4 5 6 Carbone Silicium 15 5-5 0 1 2 3 4 5 Carbone Silicium 18

Énergie d attachement électronique/ Affinité électronique L énergie d attachement correspond à la réaction de fixation d un électron à l atome neutre pour obtenir un anion. A + e - A - Cette énergie d attachement électronique est généralement négative. Il y a dégagement d énergie. Dans les tables, pour éviter d écrire un signe moins, on donne l opposé de cette énergie d attachement électronique. Cette grandeur tabulée est appelée Affinité Electronique E. A 19

Si les énergies d ionisation successives sont des grandeurs facilement mesurables expérimentalement, il n en est pas de même pour les énergies successives d attachement électronique. Seule la première est connue, et pas pour tous les éléments. L électroaffinité varie sensiblement comme l énergie de première ionisation. En effet un atome, qui fixe facilement un électron (EA élevée) en perd difficilement un (EI 1 élevé) Halogènes. Inversement un atome qui fixe difficilement un électron (EA faible) le perdra facilement (EI 1 faible) (Alcalins) On observe des anomalies du même genre que celles observées pour les E.I 1. Des valeurs nulles ou très faibles correspondent toujours à des sous-couches remplies totalement ou à moitié. 20

Affinités électroniques des éléments (en ev) Li 0,62 Be 0 B 0,28 C 1,26 N 0 O 1,46 F 3,4 Ne 0 Na 0,55 Mg 0 Al 0,44 Si 1,39 P 0,75 Si 2,08 Cl 3,62 Ar 0 K 0,5 Ca 0 Ga 0,3 Ge 1,23 As 0,81 Se 2,02 Br 3,37 Kr 0 Rb 0,49 Sr 0 In 0,3 Sn 1,11 Sb 1,07 Te 1,97 I 3,06 Xe 0 affinités électroniques ( en ev) 4 Cl 3,5 F Br 3 I 2,5 2 S Se Te 1,5 C O Si Ge Sb 1 Li Sn Na P K Rb As 0,5 Al B Ga In Xe 0 0 5 10 15 20 25 30 35 Be N Ne Mg Ar Ca Kr Sr 21

Z* E.A Sens d augmentation de E.A 1 dans la classification L électroaffinité varie comme l énergie d ionisation, en sens inverse du rayon atomique 22

Li 0,62 Be 0 B 0,28 C 1,26 N 0 O 1,46 F 3,4 Ne 0 «Anomalies» Li F C O B Be N Ne 0 0 1 2 6 7 8 9 Be Be - stable Difficile E.A N N - stable Difficile E.A C C - stable Facile E.A F F - stable 23 Facile E.A

LE RAYON ATOMIQUE Il existe plusieurs définitions différentes de ce rayon atomique, la définition la plus concrète est celle du rayon de covalence des atomes. Le rayon de covalence d un atome est une donnée obtenue à partir de la longueur de la liaison qui est mesurable expérimentalement. Par définition, le rayon de covalence de l atome A sera la moitié de cette longueur de liaison. R A R A d A-A 24

2-1: Rayons de Covalence des premiers éléments Li 1,23 Be 0,9 B 0,82 C 0,77 N 0,75 O 0,73 F 0,72 Na 1,54 Mg 1,36 Al 1,18 Si 1,11 P 1,06 S 1,02 Cl 0,99 K 2,03 Ca 1,74 Ga 1,26 Ge 1,22 As 1,2 Se 1,16 Br 1,14 Rb 2,16 Sr 1,91 In 1,44 Sn 1,41 Sb 1,4 Te 1,36 I 1,33 Cs 2,35 Ba 1,98 Tl 1,47 Pb 1,46 Bi 1,46 Po 1,46 At 1,45 2,5 2,3 2,1 1,9 1,7 1,5 1,3 1,1 0,9 0,7 0,5 Li Na Rayons de Covalence (en Å) F K Cl Br Rb 0 5 10 15 20 25 30 35 40 Le graphique montre que sur une ligne du tableau périodique, le rayon de covalence diminue quand on se déplace de gauche à droite I Cs At 25

Variation du Rayon atomique Sur une ligne n est constant et Z* augmente de gauche à droite, l attraction par le cœur augmente, les électrosn se rapprochent du noyau et le rayon atomique va donc bien diminuer de gauche à droite Sur une colonne, Z* est sensiblement constant mais le nombre d électrons de cœur croit du haut vers le bas et ils occupent un espace de plus en plus volumineux. Le rayon atomique va augmenter. R Sens d augmentation de R dans la classification 26

Electronégativité L électronégativité caractérise la tendance qu a un atome à attirer à lui les électrons des liaisons chimiques qui l entourent. C est une notion intuitive très utilisée par les chimistes, pour prévoir certaines propriétés atomiques ou moléculaire. Il n existe pas de définition unique de l électronégativité. Plusieurs échelles différentes sont utilisées pour mesurer cette tendance des atomes à attirer plus ou moins fortement les électrons. L électronégativité s exprimera sans unité. (Sinon selon l échelle utilisée on peut obtenir une unité différente.) 27

6-1: Echelle de Mulliken Originellement, Mulliken avait défini l électronégativité comme étant la moyenne entre l énergie de première ionisation et l électroaffinité de l élément. Un atome très électronégatif attire fortement les électrons, il sera donc difficile de lui en arracher un (E.I. 1 élevé) et inversement facile de lui en rajouter un (E.A élevé). Pour que cette échelle donne des valeurs du même ordre de grandeur que celle de Pauling on a modifié le coefficient 1/2 de toute façon arbitraire. X M = 0,21 (E.I 1 + E.A) 28

6-3: Echelle de Pauling Cette échelle est toujours la plus employée par les chimistes. Elle est basée sur des propriétés moléculaires car elle utilise les valeurs expérimentales des énergies de liaisons. Soient les réactions d équations: Carl Linus PAULING (R 1 ) : A - A (g) A (g) + A (g) 0 r H 10 = E AA (R 2 ) : B - B (g) B (g) + B (g) (R 3 ) : A - B (g) A (g) + B (g) r H 20 = E BB r H 30 = E AB Les enthalpies des réactions R 1, R 2 et R 3 correspondent aux définitions des énergies de liaisons A-A, B-B et A-B. (R4) : A - A(g) + B - B (g) 2 A - B(g) 29

La réaction R 4 peut être obtenue par combinaison linéaire des réactions R 1, R 2 et R 3 R 4 = R 1 + R 2-2 * R 3 (R 1 ) : A - A (g) A (g) + A (g) (R 2 ) : B - B (g) B (g) + B (g) (R 3 ) : A - B (g) A (g) + B (g) (R 4 ) : A - A (g) + B - B (g) 2 A - B (g) A - A (g) + B - B (g) + 2 A (g) + 2 B (g) A (g) + A (g) + B (g) + B (g) + 2 A - B (g) A - A (g) + B - B (g) 2 A - B (g) Soit pour les enthalpies la relation équivalente : r H 0 4 = R1 H 0 + R2 H 0-2 R3 H 0 r H 40 = E AA + E BB - 2 E AB Si r H 4 0 =0 alors on a : 30

Dans la pratique cette relation n est pas vérifiée. L énergie des liaisons hétéronucléaires E AB est supérieure à la moyennes des énergies de liaisons homonucléaires. Pauling à posé que l écart entre la valeur réelle de E AB et sa valeur calculée était proportionnelle au carré de l écart des électronégativité de A et B k = 1 si les énergies sont exprimées en ev k = 96,5 si les énergies sont exprimées en KJ mol -1 31

L écart des électronégativité entre A et B est donc calculable si E AA, E BB et E AB sont connues Dans la pratique on utilise souvent la moyenne géométrique au lieu de la moyenne arithmétique. Moyenne arithmétique Moyenne géométrique la plus souvent utilisée 32

Pour pouvoir ensuite déterminer séparément X A et X B on doit se fixer une référence. Pauling à choisit l atome de Fluor comme référence, son électronégativité est posée comme étant égale à 4. X F = 4 (F est l élément le plus électronégatif) On peut ensuite calculer de proche en proche l électronégativité de tous les atomes. Actuellement la référence retenue est l atome d Hydrogène avec X H = 2,2 33

Exemples de calculs d électronégativités Référence : X H = 2,2 Utilisation de la moyenne arithmétique Energies de liaisons Calcul de X F H - H 436 H - F 563 F- F 157 O - O 143 O - F 212 O - H 463 (X F - X H ) 2 = 2,762 Il y a à priori 2 solutions (X F - X H ) = ± 1,66 Pour choisir il faudrait savoir lequel des deux éléments est le plus électronégatif! 34

On pose X H = 2,2 (référence choisie) Si X F > X H X F = 2,2 + 1,66 = 3,9 Si X F < X H X F = 2,2-1,66 = 0,54 Pour choisir entre ces deux solutions, des considérations chimiques seront utilisées. On sait que HF acide faible se dissocie dans l eau en donnant des ions H + et F - Le signe des charges nous indique que X F > X H F prend le doublet de la liaison F - H lors de sa rupture. X F = 3,9 est donc la solution cherchée Rappel : F est l élément le plus électronégatif. 35

Calcul de X O 1 méthode : utilisation des énergies des liaisons H- H, O - O et O - H H - H 436 H - F 563 O - H 463 O - O 143 O - F 212 F - F 157 (X O - X H ) 2 = 1,798 Il y a à priori 2 solutions (X O - X H ) = ± 1,34 Pour choisir il faudrait savoir lequel des deux éléments est le plus électronégatif! 36

On pose X H = 2,2 (référence choisie) Si X O > X H X O = 2,2 + 1,34 = 3,5 Si X O < X H X O = 2,2-1,34 = 0,9 Pour choisir entre ces deux solutions, des considérations chimiques seront utilisées. On sait que l eau se dissocie en ions H + et OH - Le signe des charges nous indique que X O > X H O prend le doublet de la liaison O - H lors de sa rupture. X O = 3,5 est donc la solution cherchée 37

Calcul de X O 2 méthode : utilisation des énergies des liaisons F- F, O- O et O- F H - H 436 H - F 563 O - H 463 O - O 143 O - F 212 F - F 157 (X O - X F ) 2 = 0,642 Il y a à priori 2 solutions (X O - X F ) = ± 0,802 Pour choisir il faudrait savoir lequel des deux éléments est le plus électronégatif! 38

On pose X F = 3,9 (valeur calculée précédemment) Si X O > X F X O = 3,9 + 0,8 = 4,7 Si X O < X F X O = 3,9-0,8 = 3,1 F étant l élément le plus électronégatif de la classification nous garderons la deuxième solution : X O = 3,1 Remarque : Cette deuxième méthode indirecte donne un résultat légèrement différent de la méthode directe : 3,1 au lieu de 3,5. Ces 2 valeurs sont néanmoins assez proches (12% d écart). On aurait pu calculer X O à partir d autres données et obtenir des résultats différents Les tables donnent des valeurs moyennes obtenues par diverses déterminations différentes. 39

Electronégativité de PAULING H de quelques éléments 2,2 Li 0,97 Be 1,57 B 2,04 C 2,55 N 3,04 O 3,44 F 3,98 Na Mg Al Si P S Cl 0,93 1,23 1,61 1,90 2,19 2,58 3,16 K 0,91 Rb 0,89 Ca 1,32 Sr 0,95 Ga 1,81 In 1,78 Ge 2,01 Sn 1,96 As 2,18 Sb Se 2,55 Br 2,96 2,05 2,66 I 40

Electronégativités des éléments Li Be B C N O F Na Mg Al Si P S Cl K Ca Ga Ge As Se Br Rb Sr In Sn Sb Te I Pauling 0,98 1,57 2,04 2,55 3,04 3,44 3,98 0,93 1,31 1,61 1,9 2,19 2,58 3,16 0,82 1 1,81 2,01 2,18 2,55 2,96 0,82 0,95 1,78 1,96 2,05 2,66 Mulliken 0,94 1,46 2,01 2,63 2,33 3,17 3,91 0,93 1,32 1,81 2,44 1,81 2,41 3 0,8 1,95 1,75 2,23 2,76 1,8 1,65 2,1 2,56 Alred-Rochow 0,97 1,47 2,01 2,5 3,07 3,5 4,1 1,01 1,23 1,47 1,74 2,06 2,45 2,83 0,91 1,04 1,82 2,02 2,2 2,48 2,74 0,89 0,99 1,49 1,72 1,82 2,01 2,21 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 5 4 3 2 1 0 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 Li F Alred-Rochow F Na Pauling Cl K Cl 0 10 20 30 Li Li Na F Mulliken Na K 0 10 20 30 Cl 0 10 20 30 Les discontinuités dans l échelle de Mulliken correspondent aux éléments pour lesquels l affinité électronique est inconnue. 41 K Rb Br Rb Br Br In I I I

légèrement Z* R légèrement X Sens d augmentation de X dans la classification 42

LES RAYONS IONIQUES Expérimentalement, on peut estimer les distance de contact des anions et des cations dans les cristaux de solides ioniques. Pauling a posé que ces distances de contact étaient simplement égales à la somme des rayons des deux ions. R A R C Anion d Cation d = R A + R C 43

L ajout d un ou plusieurs électrons augmente les répulsions et diminue donc Z* ce qui fait augmenter le rayon. Les anions sont donc toujours plus gros que leurs atomes neutres d origine. Inversement, si on enlève des électrons les répulsions diminuent donc Z* augmente ce qui fait diminuer le rayon. Les cations sont donc toujours plus petits que leurs atomes neutres d origine. Exemples Li R = 1,23 A Li + R = 0,60 A Al R = 1,25 A Al 3+ R = 0,50 A F R = 0,64 A F - R = 1,36 A 44

Valeurs de quelques rayons ioniques (en A ) Ag + 1,26 Al 3+ 0,50 As 5+ 0,47 Au + 1,37 Ba 2+ 1,35 Be 2+ 0,31 Bi 3+ 1,20 Bi 5+ 0,74 C 4+ 0,15 Ca 2+ 0,99 Cd 2+ 0,97 Co 3+ 0,63 Co 2+ 0,72 Cs + 1,69 Cu + 0,96 Cu 2+ 0,69 Fe 2+ 0,76 Fe 3+ 0,64 Ga + 1,13 Ga 3+ 0,62 Ge 4+ 0,53 Hg 2+ 1,10 K + 1,33 Li + 0,60 Mg 2+ 0,65 Na + 0,95 N 3+ 0,11 Ni 2+ 0,72 Ni 3+ 0,62 P 5+ 0,34 Pb 4+ 0,84 Pb 2+ 1,20 Pd 2+ Pt 2+ Rb + Rh 2+ Sb 5+ Si 4+ Sn 4+ Sn 2+ 0,86 0,96 1,48 0,86 0,62 0,41 0, 71 1,12 Sr 2+ Ti 2+ Ti 4+ V 3+ V 5+ W 4 + Y 3+ Zn 2+ 1,13 0,90 0,68 0,74 0,59 0,64 0,93 0,74 As 3-2,22 O 2-1,40 Br - 1,95 P 3-2,12 C 4-2,60 S 2-1,84 Cl - 1,81 Se 2-1,98 F - 1,36 Sb 3-2,45 H - 2,08 Si 4-2,71 I - 2,16 Te 2-2,21 N 3-1,71 45

Conclusion Ce chapitre nous a permis d étudier quelques propriétés atomiques importantes et leur variation selon la position de l élément dans la classification. Le modèle simple de Slater permet de prévoir facilement cette évolution. La périodicité des propriétés atomiques a ainsi été bien mise en évidence. Nous nous sommes limités essentiellement aux éléments des blocs s et p. Les éléments d et f peuvent être traités de la même manière. 46