CH28 : Les transferts thermiques

Documents pareils
Chapitre 11 Bilans thermiques

L énergie sous toutes ses formes : définitions

Premier principe de la thermodynamique - conservation de l énergie

MESURE DE LA TEMPERATURE

de faible capacité (inférieure ou égale à 75 litres) doivent être certifiés et porter la marque NF électricité performance.

GENERALITES SUR LA MESURE DE TEMPERATURE

Chapitre 02. La lumière des étoiles. Exercices :

Eau chaude sanitaire FICHE TECHNIQUE

de l eau chaude pour toute l a famille, disponible à tout moment. Pompe à chaleur pour la production d Eau Chaude Sanitaire pompes á chaleur

Module HVAC - fonctionnalités

QU EST-CE QU UN CHAUFFE-EAU THERMODYNAMIQUE?

Thermodynamique (Échange thermique)

2.0. Ballon de stockage : Marque : Modèle : Capacité : L. Lien vers la documentation technique :

Les calculatrices sont autorisées

DIFFRACTion des ondes

L énergie de l air extérieur pour une eau chaude sanitaire naturellement moins chère

36% T.Flow VMC hygroréglable & chauffe eau thermodynamique QUAND LA VENTILATION RÉINVENTE L EAU CHAUDE. BÉNÉFICIEZ DE

INTRODUCTION À LA SPECTROSCOPIE

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

Communauté de Communes des 4B Sud-Charente

Système d énergie solaire et de gain énergétique

Production d eau chaude sanitaire thermodynamique, que dois-je savoir?

LE CHAUFFAGE. Peu d entretien. Entretien. fréquent. Peu d entretien. Pas d entretien. Pas d entretien. Entretien. fréquent. Peu d entretien.

Application à l astrophysique ACTIVITE

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes).

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

Etude et amélioration du comportement thermique d une habitation

ANALYSE SPECTRALE. monochromateur

Formation Bâtiment Durable :

Chapitre 6 La lumière des étoiles Physique

Formulaire standardisé pour un chauffe-eau solaire

Formulaire standardisé pour un chauffe-eau solaire

Contrôle thermographique Tarifs et prestations :

Conseils techniques. L'isolant doit disposer de numéros de certification ACERMI et CE en cours de validité. R 5,5m²K/w

Page : 1 de 6 MAJ: _Chaudieresbuches_serie VX_FR_ odt. Gamme de chaudières VX avec régulation GEFIcontrol :

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

Résidence des Badinières

DROUHIN Bernard. Le chauffe-eau solaire

CAMPING-CAR. La chaleur douce et silencieuse

Remeha ZentaSOL. La nouvelle norme en matière de simplicité, design et rendement

Correction ex feuille Etoiles-Spectres.

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

Magnitudes des étoiles

Semi-conducteurs. 1 Montage expérimental. Expérience n 29

Économie d énergie dans les centrales frigorifiques : La haute pression flottante

Incitants relatifs à l installation de pompes à chaleur en Région wallonne

Annexe 3 Captation d énergie


LE PLANCHER CHAUFFANT BASSE TEMPERATURE

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Phénomènes dangereux et modélisation des effets

J O U R N E E S G EOT H E R M I E EN R E G I O N C E N T R E

PHYSIQUE Discipline fondamentale

Rt 5. L isolant Thermo-réfléchissant. Isolation Maximum... Épaisseur Minimum! Système de recouvrements plats

Comprendre l Univers grâce aux messages de la lumière

Les moyens d observations en astronomie & astrophysique

Atelier : L énergie nucléaire en Astrophysique

Mode d emploi du kit de mesure

Prescriptions techniques et de construction pour les locaux à compteurs

Et la ventilation créa l eau chaude

Systèmes de récupération de chaleur des eaux de drainage

Maison Modèle BIG BOX Altersmith

RELAIS STATIQUE. Tension commutée

DIAGNOSTIC DE PERFORMANCE ENERGETIQUE TERTIAIRE

Le chauffe-eau thermodynamique à l horizon

C Nias Dual. Chaudières murales à tirage forcé, foyer étanche et ballon eau chaude sanitaire. chaleur à vivre. Nord Africa

Auré. AuréaSystème. Les solutions solaires. Chauffe-Eau Solaire. Combiné Solaire Pulsatoire 90% Système solaire AUTO-VIDANGEABLE et ANTI-SURCHAUFFE

CHAUFFAGE PAR LE BOIS ESPACE AQUALUDIQUE DE CARHAIX PREMIER RETOUR D EXPERIENCE APRES TROIS ANNEES DE FONCTIONNEMENT

L opération étudiée : le SDEF

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Comment optimiser la performance énergétique de son logement?

Caractéristiques des ondes

SOMMAIRE ARTIPRIX PIQUAGES - FORAGES - PERCEMENTS DES MURS FORAGES DANS MURS FORAGES DANS PLANCHERS PERCEMENTS SAIGNÉES SCELLEMENTS

Le bac à graisses PRETRAITEMENT. Schéma de principe. Volume du bac à graisses. Pose

Mesure de la dépense énergétique

neotower Principe de fonctionnement

Une introduction aux chauffe-eau solaires domestiques

Que nous enseigne la base de données PAE?

Calculs Computional fluide dynamiques (CFD) des serres à membrane de Van der Heide

Applications des supraconducteurs en courant fort

TEMPÉRATURE DE SURFACE D'UNE ÉTOILE

Performances énergétiques de capteurs solaires hybrides PV-T pour la production d eau chaude sanitaire.

Le triac en commutation : Commande des relais statiques : Princ ipe électronique

L École nationale des pompiers du Québec. Dans le cadre de son programme de formation Pompier I

Arrêté Royal du 7 juillet 1994 fixant les normes de base en matière de prévention contre l incendie et l explosion : Notice explicative

Champ électromagnétique?

Sommaire. Références Le diagnostic gaz - Sommaire. Le diagnostic gaz - Sommaire

Ce dispositif fiscal, mis en place en 2005, est en vigueur jusqu'en 2016.

ISOLANTS EN FIBRES DE BOIS SyLvAcTIS. En isolation, le progrès c est aussi de savoir s inspirer de la nature. Entreprise certifiée

Vers le renouveau du logement social Un besoin impératif A.DE HERDE

Températion. Six avantages qui créent l ambiance.

consommations d énergie

CONSTRUCTION. QUELLES SONT les NORmES ET LES REGLES POUR CONSTRUIRE UN BATIMENT?

NOTICE DE RENSEIGNEMENTS CONCERNANT LES ETABLISSEMENTS RELEVANT DU CODE DU TRAVAIL

Aide à l'application Chauffage et production d'eau chaude sanitaire Edition décembre 2007

en Appartement Besoins, Choix du Système, Coûts...

Exemple de repérage de tableau électrique

Transcription:

BTS électrotechnique 1 ère année - Sciences physiques appliquées CH28 : Les transferts thermiques Enjeu : Dimensionnement d une armoire électrique. Problématique : Pour un fonctionnement normal des éléments contenus dans une armoire électrique, la température interne de celle-ci ne doit pas dépasser les 35 C. Un premier dimensionnement a permis de déterminer la puissance thermique totale dissipée par les éléments de cette armoire : 710W. L armoire a pour dimension 1000x1200x470 (en mm). Le matériau qui la constitue a pour épaisseur e=2mm et pour résistance thermique ρ th =125 K.m.W -1. On considère que l échange thermique s effectue de manière homogène au travers des six faces de l armoire. Sachant que l air ambiant de la pièce où se situe le système est de 18 C, faut-il prévoir une ventilation de l armoire? Rapport au programme : A4. ÉLECTROTHERMIE A4.1. Les différents modes de transmission de la chaleur : convection, conduction, rayonnement A4.2. Résistance et capacité thermiques : modélisation Objectifs : A l issue de la leçon, l étudiant doit : 28.1 Savoir différentier température et chaleur. 28.2 Savoir convertir en kelvin des températures exprimées en degrés Celsius. 28.3 Savoir décrire les 3 modes de transfert thermique en citant un exemple. 28.4 Savoir calculer le flux thermique traversant une surface par conduction connaissant la résistance thermique et les températures de chaque côté de la surface. 28.5 Savoir calculer la résistance thermique connaissant la surface d échange thermique et l épaisseur traversée par le flux thermique. 28.6 Savoir utiliser les relations permettant de calculer la densité de flux dans les 3 modes de transferts.

Travail à effectuer : Lire attentivement l annexe (en essayant de le comprendre). Répondre à la problématique au travers des questions suivantes (au brouillon) : 1. A partir des dimensions de l armoire, calculer la valeur de surface totale sur laquelle l échange thermique s effectue. 2. Calculer la résistance thermique correspondant à cette surface. 3. Calculer la valeur de la température interne de l armoire si toute la puissance thermique dissipée par ses éléments se transfert entièrement par conduction au travers des parois. 4. Faut-il prévoir une ventilation? 5. Quelle puissance maximale peut-on dissiper par conduction au travers des parois de l armoire si on ne veut pas dépasser la valeur maximale de température admissible à l intérieur de celle-ci? 6. Quelle puissance faudrait-il alors évacuer par ventilation? 7. A quel mode de transfert thermique correspond cette ventilation? En utilisant l annexe, réaliser la fiche résumée du chapitre. Pour cela, réécrire les différents objectifs et indiquer pour chacun la relation, la définition ou la méthode permettant de l atteindre.

BTS CRSA 1 ère année - Sciences physiques et chimiques appliquées Annexe du CH28 : cours d électrothermie 1. Qu est-ce que la chaleur? La chaleur est une forme d énergie (thermique) qui peut être échangée entre deux corps. Ainsi, si l on dispose de deux sources de chaleur, l une froide, l autre chaude, il se produit un échange de chaleur de la source chaude vers la source froide, jusqu à atteindre l équilibre des températures. source chaude échange de chaleur source froide Cet échange de chaleur (flux de chaleur) dépend essentiellement de la quantité de matière des deux sources, de l écart de température, de la capacité des sources à absorber ou transmettre la chaleur et de la surface d échange. Lorsqu un système reçoit de la chaleur, sa température n augmente pas systématiquement (par exemple lors des changements d états). Chaleur et température sont donc deux grandeurs distinctes. 2. Qu est-ce que la température? Il est difficile de donner une définition exacte de la température, car ce n est pas une grandeur mesurable directement Ainsi si on ajoute dans un récipient 1 litre d eau à 30 C et 1 litre d eau à 20 C, on n obtient pas un litre d eau à 50 C. On est donc amené à repérer les températures au moyen d échelles. On peut la définir de deux façons différentes : à l'échelle atomique, elle est liée à l'énergie cinétique moyenne des constituants de la matière (agitation microscopique). au niveau macroscopique, certaines propriétés des corps dépendant de la température (volume massique, résistivité électrique, etc.) peuvent être choisies pour construire des échelles empiriques de température. 3. Quelles sont les échelles de températures les plus utilisées? Il existe deux types d échelles de température, à savoir : relative : basée sur des points particuliers (changement d état, par exemple). C est le cas des échelles Celsius et Fahrenheit. absolue : basée sur l état d agitation de la matière (échelle Kelvin) Echelle centésimale ou Celsius : L'échelle centésimale fut inventée en 1743 par le suédois Anders Celsius (1701-1744) physicien et astronome. Sur cette échelle, définie sous pression atmosphérique, on fixe arbitrairement : la valeur de 0 à la température de congélation de l eau la valeur de 100 à la température d ébullition de l'eau. L'échelle Celsius est l'échelle de température la plus employée dans la vie courante.

Echelle Fahrenheit : C est l une des plus anciennes échelles élaborée en 1720 par le physicien allemand Gabriel Daniel Fahrenheit (1686-1736) qui consacra ses travaux à la thermométrie. Cette échelle prend pour références arbitraires, à pression atmosphérique : la valeur de 32 pour la température de congélation de l eau la valeur de 212 pour l ébullition de l eau. C est l échelle en usage dans les pays anglo-saxons. Echelle Kelvin : Inventée par le mathématicien et physicien écossais Sir William Thomson Kelvin (1824-1907) au XIX e siècle, à partir de ses travaux sur la thermodynamique, c'est l échelle employée en science (S.I.). Cette échelle n est plus liée à des références arbitraires liées à certaines propriétés d un corps, mais à un état d agitation de la matière. L origine de cette échelle est appelée «zéro absolu». C est la température limite basse pour laquelle un gaz parfait occupant un volume donné, verrait sa pression tendre vers zéro. On ne peut donc pas descendre en dessous de ces zéros. On passe de l échelle Kelvin à l échelle Celsius par la relation : T (K)= 273,15 + T ( C) Une variation de température de 1 C correspond à une variation de température de 1K. Température de congélation de l eau : T=273.15 K Température d ébullition de l eau : T= 373,15 K Les conversions les plus utilisées sont réunies dans le tableau suivant : Kelvin ( K) Celsius ( C) Fahrenheit ( F) Kelvin ( K) 1 C + 273,15 Celsius ( C) K - 273,15 1 ( F 32) / 1,8 Fahrenheit ( F) C x1,8 + 32 1 4. Qu est-ce que le flux thermique (puissance thermique) : La flux thermique P th (également appelée puissance thermique) est la quantité d énergie thermique qui traverse une surface S par unité de temps : [W] P = Q Δt [J] [s] 5. Quels sont les 3 modes de transfert thermiques : Les échanges thermiques peuvent s effectuer de 3 manières : Par conduction : Le transfert thermique s effectue directement à travers la matière (solide ou liquide). L agitation thermique se propage d atome en atome. C est un mode de transfert sans apport de matière.

La transmission de chaleur entre deux zones de température différente s effectue de la zone la plus chaude vers la zone la plus froide. Exemples : La conduction thermique explique le fait que lorsqu on laisse une extrémité d un ustensile de cuisine en métal dans de l eau bouillante, au bout d un certain temps on risque de se bruler en touchant l autre extrémité. Les pertes d énergie thermique d un bâtiment au travers des vitrages s effectuent également par conduction. Par convection : C est un mode de transfert thermique propre aux fluides et lié au déplacement de matière. Exemples : dans une installation de chauffage centrale, l eau chaude se déplace pour aller au contact de l air froid. A l inverse, dans une centrale électrique, l eau froide des circuits de refroidissement se déplace vers la source chaude à refroidir. Les pertes d énergie dans les bâtiments par le biais des VMC (Ventilation Mécanique Contrôlée) s effectuent par convection. Les VMC double flux permettent de limiter ces pertes (l air chaux rejeté réchauffe l air froid entrant) Par rayonnement : émission d énergie rayonnante entre deux corps. Pour la conduction et la convection, le transfert de chaleur nécessite la présence de matière. Cependant, le Soleil transmet de la chaleur en passant par le vide. Il existe donc un troisième mode de transfert qui ne nécessite pas de matière : le rayonnement thermique (selon le même mode de transfert que les ondes électromagnétiques). Dans le vide, la seule transmission de chaleur possible est donc le rayonnement. Mais un transfert thermique par rayonnement s effectue également au travers de la matière (exemples : dans l air, dans le verre, ). Exemple : Dans les bâtiments, le gain thermique apporté par le soleil au travers les vitrages s effectue par rayonnement. 6. Comment calculer le flux thermique échangé au travers d une paroi par conduction? La loi d ohm thermique permet le calcul de ce flux : T A T B = R th P Cette loi porte son nom par analogie avec l électricité : Avec : P en W (T A -T B ) en K (mais on peut laisser en C) R th : résistance thermique du matériau en K.W -1 Résistance thermique : Résistance électrique : P L L T A T B V A V B Différence de température : T A -T B Résistance thermique : R th Puissance (ou flux) thermique : P T A T B = R th P Différence de potentiel :V A -V B Résistance électrique : R Intensité du courant I V A V B = RI

7. Comment déterminer la résistance thermique? Il faut connaître la résistivité thermique du matériau ρ th (donnée constructeur), la surface à travers laquelle a lieu l échange thermique et la longueur L traversée par le flux thermique. On a alors : R th = ρ th L S Avec : R th en K.W -1 S : en m 2 L : en m ρ th : conductivité thermique du matériau en K.m.W -1 Remarque : pour les matériaux utilisés dans le bâtiment, les fabricants indique généralement la conductivité thermique λ th : ρ th = 1 λ th 8. Comment calcul-t-on la densité de puissance thermique en conduction? Considérons une vitre comportant une surface S conductrice de la chaleur séparant l extérieur de l intérieur. On constate que la puissance thermique transmise et proportionnelle à S. On introduit alors pour un matériau, la densité de puissance thermique (appelée également densité de flux thermique) la grandeur φ exprimée en W.m -2 telle que : [W.m -2 ] φ = P S [W] [m 2 ] 9. Quelles sont les lois qui sont propres à la convection? La densité de flux est donnée par : Avec : φ en W.m -2 φ = h(t A T B ) h : coefficient de transfert convectif en W.m -2.K -1 (T A -T B ) en K (mais on peut laisser en C) 10. Quelles sont les lois qui sont propres au rayonnement? On utilise la loi de Stefan : La densité de puissance thermique émise par un corps chaud a pour expression : φ = σt 4 Avec : φ en W.m -2. σ =5,67.10-8 W.m -2.K -4 (Constante de Stefan) T : en K (mais pas en C!!!)