Mclust : Déceler des groupes dans un jeu de données grâce aux mélanges gaussiens.
|
|
|
- Ève Alain
- il y a 10 ans
- Total affichages :
Transcription
1 Adrien Perrard. UMR 7205, MNHN Mclust : Déceler des groupes dans un jeu de données grâce aux mélanges gaussiens.
2 Partition et mélanges gaussiens
3 Partition et mélanges gaussiens
4 Partition et mélanges gaussiens
5 Partition et mélanges gaussiens Density Dry weight (mg)
6 Partition et mélanges gaussiens Density Dry weight (mg) Méthodes de partition («clustering»): - classification hiérarchique (hclust) - moyennes mobiles (kmeans) - mélanges gaussiens (Mclust)
7 Partition et mélanges gaussiens Ici, on a 2 groupes bien définis dans nos «mesures»... A<-rnorm(100,0,2) B<-rnorm(100,3,0.5) N<-c(A,B) plot(n,xlim=c(-2,5),ylim=c(0,0.5),type="n") abline(h=0); rug(a,col=2);rug(b,col=3) lines(density(a),col=2); lines(density(b),col=3);
8 Partition et mélanges gaussiens
9 Partition et mélanges gaussiens Fonction «Mclust» En supposant que les groupes aient une variation suivant une distribution Normale : library(mclust) Mclust(N)->McN > str(mcn) List of 11 $ modelname : chr "V" $ n : int 200 $ d : num 1 $ G : int 2 $ BIC : num [1:9, 1:2] $ bic : num -715 $ loglik : num -344 $ parameters :List of 4 $ z : num [1:200, 1:2] $ classification: num [1:200] $ uncertainty : num [1:200] plot(n,xlim=c(-2,5),ylim=c(0,0.5),type="n") abline(h=0) rug(n) lines(density(n))
10 Partition et mélanges gaussiens Fonction «Mclust» En supposant que les groupes aient une variation suivant une distribution Normale : - Combien de groupes? > McN$G [1] 2
11 Partition et mélanges gaussiens Fonction «Mclust» En supposant que les groupes aient une variation suivant une distribution Normale : - Combien de groupes? - Classification des individus? rug(n[which(mcn$classification==1)],col=2) rug(n[which(mcn$classification==2)],col=3) > classerror(mcn$class,gl(2,300))$errorrate [1] 0.025
12 Partition et mélanges gaussiens Fonction «Mclust» En supposant que les groupes aient une variation suivant une distribution Normale : - Combien de groupes? - Classification des individus? - Degré d incertitude d attribution des individus aux groupes? points(n,mcn$uncertainty,pch=20)
13 Partition et mélanges gaussiens Différents groupes dont la moyenne est équivalente? C<-rnorm(300,0,2) D<-rnorm(300,0,0.5) E<-c(C,D) plot(e,ylim=c(0,0.5),type="n") abline(h=0,v=0) rug(c,col=3);rug(d,col=2) lines(density(a),col=2); lines(density(b),col=3);
14 Partition et mélanges gaussiens Différents groupes dont la moyenne est équivalente?
15 Partition et mélanges gaussiens Différents groupes dont la moyenne est équivalente? - Les groupes sont détectés Mclust(E)->McE > McE$G [1] 2
16 Partition et mélanges gaussiens Différents groupes dont la moyenne est équivalente? - Les groupes sont détectés - Mais le taux de classification correcte est plus faible rug(e[which(mce$classification==1)],col=2) rug(e[which(mce$classification==2)],col=3) > classerror(mce$class,gl(2,300))$errorrate [1] 0.21
17 Partition et mélanges gaussiens Différents groupes dont la moyenne est équivalente? - Les groupes sont détectés - Mais le taux de classification correcte est plus faible - Et l incertitude d attribution plus forte points(e,mce$uncertainty,pch=20)
18 Partition et mélanges gaussiens Mais quand même!
19 Dans les coulisses... Mélanges gaussiens (Gaussian mixture models) : Maximiser la vraisemblance d une partition par une méthode de mélange ( = «mixture») : attribution à un groupe K une probabilité ( ) (méthode de «classification» valeurs discrètes)
20 Dans les coulisses... Mélanges gaussiens (Gaussian mixture models) : Maximiser la vraisemblance d une partition par une méthode de mélange ( = «mixture») : attribution à un groupe K une probabilité ( ) (méthode de «classification» valeurs discrètes) Modèle du groupe K Probabilité qu une observation appartienne au groupe K Probabilité que l observation i appartienne au groupe K Fonction de densité du groupe K
21 Dans les coulisses... Mélanges gaussiens (Gaussian mixture models) : Maximiser la vraisemblance d une partition par une méthode de mélange ( = «mixture») : attribution à un groupe K une probabilité ( ) (méthode de «classification» valeurs discrètes) Modèle du groupe K Probabilité qu une observation appartienne au groupe K Probabilité que l observation i appartienne au groupe K Fonction de densité du groupe K Le modèle θ est défini par la moyenne (μ) et la variance (σ)
22 Dans les coulisses... Algorithme EM «Expectation-Maximization» Optimisation du maximum de vraisemblance de la partition des données
23 Dans les coulisses... Algorithme EM «Expectation-Maximization» Optimisation du maximum de vraisemblance de la partition des données Première partition (classification) z ik
24 Dans les coulisses... Algorithme EM «Expectation-Maximization» Optimisation du maximum de vraisemblance de la partition des données Première partition (classification) z ik, μ k, σ k Etape «M»: calcul des paramètres maximisant la vraisemblance
25 Dans les coulisses... Algorithme EM «Expectation-Maximization» Optimisation du maximum de vraisemblance de la partition des données Etape «E»: estimation de z ik Première partition (classification) z ik, μ k, σ k Etape «M»: calcul des paramètres maximisant la vraisemblance Répété jusqu à la convergence
26 Dans les coulisses... Sélection du modèle par critère Bayesien (BIC ~ 2 log(bayes factor) )
27 Dans les coulisses... Sélection du modèle par critère Bayesien (BIC ~ 2 log(bayes factor) ) Vraisemblance maximisée du mélange gaussien du modèle M BIC 2 loglik M (x, θ k ) (# params )M log(n)
28 Dans les coulisses... Sélection du modèle par critère Bayesien (BIC ~ 2 log(bayes factor) ) Vraisemblance maximisée du mélange gaussien du modèle M BIC 2 loglik M (x, θ k ) (# params )M log(n) Sélection du modèle M Sélection du nombre de groupes plot(mce) #Apparait après validation dans la barre des tâches du terminal.
29 Et avec plus de dimensions... Mesure des ailes en morphométrie géométrique : 38 variables Mélanges gaussiens : Même principe qu en uni-varié Seul les modèles θ k changent : μ k (scalaire) μ k (vecteur) σ k Σ k (Matrice de variances-covariances)
30 Et avec plus de dimensions...
31 Et avec plus de dimensions...
32 Et avec plus de dimensions...
33 Et avec plus de dimensions...
34 Et avec plus de dimensions...
35 Et avec plus de dimensions...
36 Et avec plus de dimensions...
37 Et avec plus de dimensions... Correspond aux groupes biologiques (erreur de classification ~ 5%) Groupes Sp1 ouv Sp1 reine 44 Sp2 ouv Sp2 reine 40 1
38 Warnings et limites de la méthode Nécessité de données de plein rang Messages d'avis : 1: In summary.mclustbic(bic, data, G = G, modelnames = modelnames) : best model occurs at the min or max # of components considered 2: In Mclust(Vcaste2$scores) : optimal number of clusters occurs at min choice Tailles des échantillons Nombre de groupe maximal Temps de calcul...
39 Autres fonctions de mclust Partition hiérarchique: -hc Estimation de densité: - densitymclust Analyses discriminantes - MclustDA(trainData, trainclass) - cv.mclustda(objmclustda) - predict.mclustda(objmclustda,otherdata) Plot - mclust2dplot / surfaceplot # plot pour données bivariées - coordproj / MclustDR # plot pour données multivariées Autres: - classerror (McObj$classification,groups)
40 Merci de votre attention! Banfield, J. D., & Raftery, A. E Model-based Gaussian and non-gaussian clustering. Biometrics 49: Fraley, C., & Raftery, A. E How many clusters? Which clustering method? Answers via model-based cluster analysis. The Computer Journal 41: Fraley, C., & Raftery, A mclust: Model-based clustering/normal mixture modeling. R package version 3.
Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring
Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems
Détection de têtes dans un nuage de points 3D à l aide d un modèle de mélange sphérique
Détection de têtes dans un nuage de points 3D à l aide d un modèle de mélange sphérique Denis Brazey & Bruno Portier 2 Société Prynɛl, RD974 290 Corpeau, France [email protected] 2 Normandie Université,
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM
La segmentation à l aide de EG-SAS A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM Définition de la segmentation - Au lieu de considérer une population dans son ensemble,
Soutenance de stage Laboratoire des Signaux et Systèmes
Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud
Contributions à l apprentissage statistique en grande dimension, adaptatif et sur données atypiques
Université Paris 1 Panthéon Sorbonne Mémoire présenté par Charles BOUVEYRON pour l obtention de l Habilitation à Diriger des Recherches Spécialité : Mathématiques Appliquées Contributions à l apprentissage
Classification non supervisée
AgroParisTech Classification non supervisée E. Lebarbier, T. Mary-Huard Table des matières 1 Introduction 4 2 Méthodes de partitionnement 5 2.1 Mesures de similarité et de dissimilarité, distances.................
Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique
Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55
Introduction au Data-Mining
Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme
Analyse en Composantes Principales
Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées
Modèles pour données répétées
Résumé Les données répétées, ou données longitudinales, constituent un domaine à la fois important et assez particulier de la statistique. On entend par données répétées des données telles que, pour chaque
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
Arbres binaires de décision
1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression
Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS
Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence
Resolution limit in community detection
Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.
MCMC et approximations en champ moyen pour les modèles de Markov
MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:
AICp. Vincent Vandewalle. To cite this version: HAL Id: inria-00386678 https://hal.inria.fr/inria-00386678
Sélection prédictive d un modèle génératif par le critère AICp Vincent Vandewalle To cite this version: Vincent Vandewalle. Sélection prédictive d un modèle génératif par le critère AICp. 41èmes Journées
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Analyses multivariées avec R Commander (via le package FactoMineR) Qu est ce que R? Introduction à R Qu est ce que R?
Analyses multivariées avec R Commander Analyses multivariées avec R Commander (via le package FactoMineR) Plate-forme de Support en Méthodologie et Calcul Statistique (SMCS) - UCL 1 Introduction à R 2
Économetrie non paramétrique I. Estimation d une densité
Économetrie non paramétrique I. Estimation d une densité Stéphane Adjemian Université d Évry Janvier 2004 1 1 Introduction 1.1 Pourquoi estimer une densité? Étudier la distribution des richesses... Proposer
chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d
Laboratoire de Mécanique et Ingénieriesnieries EA 3867 - FR TIMS / CNRS 2856 ER MPS Modélisation stochastique d un d chargement d amplitude variable à partir de mesures Application à l approche fiabiliste
Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données
Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données Marc Boullé Orange Labs 2 avenue Pierre Marzin 22300 Lannion [email protected],
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université
Rapport de Stage. Titre : Clustering à l aide d une représentation supervisée
Nicolas Creff Du 1er février au 31 juillet 2011 Promotion 2011 Majeure SCIA Rapport de Stage Titre : Clustering à l aide d une représentation supervisée Sujet : Personnalisation de scores à l aide de la
Optimisation Discrète
Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et
Ministère de l Enseignement Supérieur et de la Recherche Scientifique
Ministère de l Enseignement Supérieur et de la Recherche Scientifique Institut National de Formation en Informatique (I.N.I) Oued Smar Alger Direction de la Post Graduation et de la Recherche Thème : Inférence
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de
Interception des signaux issus de communications MIMO
Interception des signaux issus de communications MIMO par Vincent Choqueuse Laboratoire E 3 I 2, EA 3876, ENSIETA Laboratoire LabSTICC, UMR CNRS 3192, UBO 26 novembre 2008 Interception des signaux issus
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
Post-processing of multimodel hydrological forecasts for the Baskatong catchment
+ Post-processing of multimodel hydrological forecasts for the Baskatong catchment Fabian Tito Arandia Martinez Marie-Amélie Boucher Jocelyn Gaudet Maria-Helena Ramos + Context n Master degree subject:
Introduction au datamining
Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des
Quantification Scalaire et Prédictive
Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction
Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.
Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences
Scénario: Données bancaires et segmentation de clientèle
Résumé Scénario: Données bancaires et segmentation de clientèle Exploration de données bancaires par des méthodes uni, bi et multidimensionnelles : ACP, AFCM k-means, CAH. 1 Présentation Le travail proposé
Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay [email protected]
Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay [email protected] Le concept de Mesure Virtuelle mesure virtuelle résultat d un modèle visant
Enjeux mathématiques et Statistiques du Big Data
Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, [email protected] Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris
Introduction au Data-Mining
Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane
INF6304 Interfaces Intelligentes
INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie
Master Informatique Spécialité Développement et Applications sur Plateformes Mobiles http://master-dapm.univ-tln.fr
Master Informatique Spécialité Développement et Applications sur Plateformes Mobiles http://master-dapm.univ-tln.fr Contacts : Responsable année 1 : Elisabeth Murisasco ([email protected]) Responsable
Aide-mémoire de statistique appliquée à la biologie
Maxime HERVÉ Aide-mémoire de statistique appliquée à la biologie Construire son étude et analyser les résultats à l aide du logiciel R Version 5(2) (2014) AVANT-PROPOS Les phénomènes biologiques ont cela
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
Apprentissage Automatique
Apprentissage Automatique Introduction-I [email protected] www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs
Caroline Hurault-Delarue 1, Cécile Chouquet 2, Nicolas Savy 2, Isabelle Lacroix 1, Christine Damase- Michel 1
Trajectoires individuelles d'exposition aux psychotropes au cours de la grossesse et partitionnement en fonction du profil d'exposition : utilisation des K-means pour données longitudinales Caroline Hurault-Delarue
I.D.S. Systèmes de détection d intrusion - Link Analysis. par: FOUQUIN MATHIEU. responsable: AKLI ADJAOUTE DEVÈZE BENJAMIN.
EPITA SCIA PROMO 2005 14-16 rue Voltaire 94270 Kremlin-Bicêtre I.D.S. Systèmes de détection d intrusion - Link Analysis Juillet 2004 par: DEVÈZE BENJAMIN FOUQUIN MATHIEU responsable: AKLI ADJAOUTE TABLE
Introduction aux outils BI de SQL Server 2014. Fouille de données avec SQL Server Analysis Services (SSAS)
MIT820: Entrepôts de données et intelligence artificielle Introduction aux outils BI de SQL Server 2014 Fouille de données avec SQL Server Analysis Services (SSAS) Description générale Ce tutoriel a pour
Programmation linéaire
Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire
Une approche non paramétrique Bayesienne pour l estimation de densité conditionnelle sur les rangs
Une approche non paramétrique Bayesienne pour l estimation de densité conditionnelle sur les rangs Carine Hue, Marc Boullé France Télécom R & D; 2, avenue Pierre Marzin; 22307 Lannion cedex [email protected];
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
MAP 553 Apprentissage statistique
MAP 553 Apprentissage statistique Université Paris Sud et Ecole Polytechnique http://www.cmap.polytechnique.fr/~giraud/map553/map553.html PC1 1/39 Apprentissage? 2/39 Apprentissage? L apprentissage au
Méthodes de Simulation
Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
Charles BOUVEYRON. Docteur en Mathématiques appliquées Maître de Conférences (section CNU 26) Université Paris 1 Panthéon-Sorbonne
Charles BOUVEYRON Docteur en Mathématiques appliquées Maître de Conférences (section CNU 26) Université Paris 1 Panthéon-Sorbonne Contacts Né le 12/01/1979 Nationalité française E-mail : [email protected]
Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE. 04/04/2008 Stéphane Tufféry - Data Mining - http://data.mining.free.fr
Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE 1 Plan du cours Qu est-ce que le data mining? A quoi sert le data mining? Les 2 grandes familles de techniques Le déroulement d un projet de data
L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :
La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.
4.2 Unités d enseignement du M1
88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter
Classification supervisée et non supervisée des données de grande dimension
Classification supervisée et non supervisée des données de grande dimension Charles BOUVEYRON 1 & Stéphane GIRARD 1 SAMOS-MATISSE, CES, UMR CNRS 8174 Université Paris 1 (Panthéon-Sorbonne) 9 rue de Tolbiac,
Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux
Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux hétérogènes Laurent Déjean Thales Airborne Systems/ENST-Bretagne Le 20 novembre 2006 Laurent Déjean Détection en
Introduction aux Statistiques et à l utilisation du logiciel R
Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil
Reconnaissance de gestes : approches 2D & 3D
Reconnaissance de gestes : approches 2D & 3D Maher Mkhinini et Patrick Horain Institut Mines-Télécom/Télécom SudParis Département Électronique et Physique, 9 rue Charles Fourier, 91011 Evry, France Email
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
TRAITEMENT DES DONNEES MANQUANTES AU MOYEN DE L ALGORITHME DE KOHONEN
TRAITEMENT DES DONNEES MANQUANTES AU MOYEN DE L ALGORITHME DE KOHONEN Marie Cottrell, Smaïl Ibbou, Patrick Letrémy SAMOS-MATISSE UMR 8595 90, rue de Tolbiac 75634 Paris Cedex 13 Résumé : Nous montrons
Modélisation du risque opérationnel Approche Bâle avancée
Modélisation du risque opérationnel Approche Bâle avancée Université Laval Conférence LABIFUL Département de Finance et Assurance 1 Mars, 2013. Ridha Mahfoudhi, Ph.D. Senior Manager Quantitative Analytics,
Lire ; Compter ; Tester... avec R
Lire ; Compter ; Tester... avec R Préparation des données / Analyse univariée / Analyse bivariée Christophe Genolini 2 Table des matières 1 Rappels théoriques 5 1.1 Vocabulaire....................................
Analyse de grandes bases de données en santé
.. Analyse de grandes bases de données en santé Alain Duhamel Michaël Genin Mohamed Lemdani EA 2694 / CERIM Master 2 Recherche Biologie et Santé Journée Thématique Fouille de Données Plan. 1 Problématique.
Données longitudinales et modèles de survie
ANALYSE DU Données longitudinales et modèles de survie 5. Modèles de régression en temps discret André Berchtold Département des sciences économiques, Université de Genève Cours de Master ANALYSE DU Plan
Le modèle de Black et Scholes
Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un
SEMIN- Gestion des couleurs sous R. Michel BAYLAC. MNHN Département Systématique et Evolution OSEB [email protected]
SEMIN- Gestion des couleurs sous R Michel BAYLAC MNHN Département Systématique et Evolution OSEB [email protected] SEMIN-R du MNHN 08 Janvier 2008 Sémin R du MNHN : 8 janvier 2008 Gestion des couleurs sous
K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau
Apport des modèles de krigeage à la simulation numérique K Ammar, F Bachoc, JM Martinez CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette, France Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des
Web Science. Master 1 IFI. Andrea G. B. Tettamanzi. Université de Nice Sophia Antipolis Département Informatique andrea.tettamanzi@unice.
Web Science Master 1 IFI Andrea G. B. Tettamanzi Université de Nice Sophia Antipolis Département Informatique [email protected] 1 Annonce : recherche apprenti Projet Géo-Incertitude Objectifs
Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI
1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage
Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I
Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques
Modélisation du comportement habituel de la personne en smarthome
Modélisation du comportement habituel de la personne en smarthome Arnaud Paris, Selma Arbaoui, Nathalie Cislo, Adnen El-Amraoui, Nacim Ramdani Université d Orléans, INSA-CVL, Laboratoire PRISME 26 mai
Mesure agnostique de la qualité des images.
Mesure agnostique de la qualité des images. Application en biométrie Christophe Charrier Université de Caen Basse-Normandie GREYC, UMR CNRS 6072 Caen, France 8 avril, 2013 C. Charrier NR-IQA 1 / 34 Sommaire
De la mesure à l analyse des risques
De la mesure à l analyse des risques Séminaire FFA Jean-Paul LAURENT Professeur à l'isfa [email protected] http://laurent.jeanpaul.free.fr/ 0 De la la mesure à l analyse des risques! Intégrer
Agrégation des portefeuilles de contrats d assurance vie
Agrégation des portefeuilles de contrats d assurance vie Est-il optimal de regrouper les contrats en fonction de l âge, du genre, et de l ancienneté des assurés? Pierre-O. Goffard Université d été de l
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Incertitude et variabilité : la nécessité de les intégrer dans les modèles
Incertitude et variabilité : la nécessité de les intégrer dans les modèles M. L. Delignette-Muller Laboratoire de Biométrie et Biologie Evolutive VetAgro Sup - Université de Lyon - CNRS UMR 5558 24 novembre
Évaluation de la régression bornée
Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement
Une comparaison de méthodes de discrimination des masses de véhicules automobiles
p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans
1 Complément sur la projection du nuage des individus
TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent
Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes
de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,[email protected]
E-Biothon : Une plate-forme pour accélérer les recherches en biologie, santé et environnement.
E-Biothon : Une plate-forme pour accélérer les recherches en biologie, santé et environnement. N.Bard, S.Boin, F.Bothorel, P.Collinet, M.Daydé, B. Depardon, F. Desprez, M.Flé, A.Franc, J.-F. Gibrat, D.
Cours de méthodes de scoring
UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-
Abstract : Mots clefs : Résistance thermique de contact ; Modèles prédictifs. 1 Introduction
Étude comparative et validation de modèles prédictifs de résistance thermique de contact dans le cas solide-liquide avec prise en compte de la tension superficielle Saannibe Ciryle SOME a, Didier DELAUNAY
IBM SPSS Regression 21
IBM SPSS Regression 21 Remarque : Avant d utiliser ces informations et le produit qu elles concernent, lisez les informations générales sous Remarques sur p. 46. Cette version s applique à IBM SPSS Statistics
Approche par groupe de gènes pour les données longitudinales d expression génique avec une application dans un essai vaccinal contre le VIH
Approche par groupe de gènes pour les données longitudinales d expression génique avec une application dans un essai vaccinal contre le VIH Boris Hejblum 1,2,3 & Rodolphe Thiébaut 1,2,3 1 Inserm, U897
Paramétrisation adaptée de transitoires pour la reconnaissance d instruments de musique
Paramétrisation adaptée de transitoires pour la reconnaissance d instruments de musique Pierre LEVEAU Mémoire de stage de DEA ATIAM année 2003-2004 Mars - Juillet 2004 Université Pierre et Marie Curie
Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie
Partie I : Séries statistiques descriptives univariées (SSDU) A Introduction Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie et tous sont organisés selon le même
Filtrage stochastique non linéaire par la théorie de représentation des martingales
Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de
ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring
ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des
Conception d un lecteur de musique intelligent basé sur l apprentissage automatique.
Université de Mons Faculté des Sciences Institut d Informatique Service d Algorithmique Conception d un lecteur de musique intelligent basé sur l apprentissage automatique. Mémoire réalisé par Xavier DUBUC
Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN
Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques
Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57
Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation
MASTER 2 SCIENCES HUMAINES ET SOCIALES Mention Psychologie. Spécialité : Recherches en psychologie
S3 Spécialité : Recherches en psychologie UE OBLIGATOIRES UE 1 : Epistémologie et méthodes de recherche en psychologie Ce séminaire aborde plusieurs aspects de la recherche en psychologie. Il présente
1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert
1 de 46 Algorithmique Trouver et Trier Florent Hivert Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert 2 de 46 Algorithmes et structures de données La plupart des bons algorithmes
Contributions aux méthodes d estimation en aveugle
Université Joseph Fourier Année 2005 INPG Contributions aux méthodes d estimation en aveugle THÈSE DE DOCTORAT Spécialité : Traitement de signal et Automatique École Doctorale de Grenoble soutenue le 01
Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto.
des des Data Mining Vincent Augusto École Nationale Supérieure des Mines de Saint-Étienne 2012-2013 1/65 des des 1 2 des des 3 4 Post-traitement 5 représentation : 6 2/65 des des Définition générale Le
