Chapitre P12 : Le magnétisme

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre P12 : Le magnétisme"

Transcription

1 : ) Qu'est-ce que le champ magnétique? 1) Comment détecter un champ magnétique? Expérience : Voir fiche Expériences 1 et 2 En un lieu donné, une aiguille aimantée, pouvant tourner dans un plan horizontal, s'oriente toujours selon la même direction et le même sens, tout comme une boussole. Si on l'écarte d'une position d'équilibre, elle reprend la même orientation après quelques oscillations : elle subit une action mécanique. Une aiguille aimantée permet donc de détecter le champ magnétique terrestre. Lorsque l'on approche un aimant droit de l'aiguille aimanté, son orientation change et dépend de sa position par rapport à l'aimant : elle est donc sensible au champ magnétique créé par l'aimant. Un aimant est une source de champ magnétique. Une aiguille aimantée permet de détecter un champ magnétique, quelle qu'en soit son origine. 2) Quelles sont les caractéristiques du champ magnétique? Le champ magnétique qui règne en un point de l'espace peut-être caractérisé par un vecteur, appelé vecteur champ magnétique et noté B. Ses caractéristiques sont les suivantes : point d'application : point de l'espace ou règne le champ magnétiques. Direction : celle prise par une aiguille aimantée dont le centre est placé en ce point. Sens : par convention il va du pôle sud de l'aiguille vers son pôle nord. Valeur : elle se mesure avec un teslamètre et s'exprime en tesla (T). Expérience : Représenter, en explicitant votre méthode, le vecteur B en différents points de l'espace autour de l'aimant droit. Déterminer de quels paramètres dépend la valeur du champ magnétique créé par l'aimant. Matériel à disposition : aimant droit, aiguille aimantée, teslamètre. Méthode : l suffit de placer l'aiguille aimantée au point ou l'on veut tracer B pour obtenir sa direction et son sens. On mesure sa valeur à l'aide du teslamètre. Conclusion : La valeur d'un champ magnétique en un point dépend de la position de ce point par rapport à la source (ou aux sources) du champ magnétique. 1/10

2 On donne à titre indicatif quelques valeurs de champ magnétique émis par quelques sources (pour un même point) : Source Valeur de B (en T) Corps humain La Terre Aimant en céramique 0,02 Électroaimant De 1 à 5 Bobines supraconductrices De 10 à 40 3) Que se passe-t-il si deux champ magnétiques se superposent? Expérience : Voir fiche expérience On obtient : B2(M) B(M) D A1 M N D B1(M) N A2 Conclusion : En un point de l'espace où règnent plusieurs champs magnétiques, le champ magnétique résultant est égal à la somme vectorielle des différents champs. B total = B 1 B 2... B n 4) Comment visualiser un champ magnétique? Expérience : aimant + poudre de fer (ou plaque alvéolée) Observations de spectres magnétiques. 2/10

3 Observations : La poudre de fer s'est répartie selon des lignes. nterprétation : Sous l'action du champ magnétique créé par l'aimant, la limaille de fer (ou les aiguilles métalliques contenues dans les alvéoles de la plaque) se comportent comme un ensemble de petites aiguilles aimantées. Elles s'orientent en fonction du champ magnétique au point considéré. Conclusion : La figure observée à l'aide la poudre de fer est appelée spectre magnétique. Les lignes formées par la poudre de fer sont appelées des lignes de champs. Le champ magnétique est en tout point de cette ligne, tangent à la ligne de champ. La ligne de champ représente la direction du champ magnétique existant en tout point de la ligne. Quelques spectres magnétiques : Spectre magnétique créé par un aimant droit : Spectre créé par un aimant en U : Propriétés des lignes de champs : Les lignes de champs se referment toujours sur elles-mêmes. Les lignes de champs ont un sens, celui du champ magnétique, toujours du nord vers le sud. On voit que les lignes de champ situées entre les deux branches de l'aimant en U sont parallèles : les vecteurs champs magnétiques ont la même direction le même sens et la même valeur. On dit que le champ magnétique est uniforme. 3/10

4 ) Quelles sont les propriétés des champs magnétiques créés par des courants électriques? 1) L'expérience d'oersted : Expérience : On place une boussole à proximité d'un fil conducteur parcouru par un courant d'intensité de l'ordre de 5 à 10A. Observations : On constate que lorsque le fil est parcouru par un courant d'intensité suffisamment élevé, l'aiguille aimantée de la boussole change de direction. Dispositif d'oersted nterprétation : La déviation de l'aiguille aimantée de la boussole est due à l'apparition d'un champ magnétique qui se superpose au champ magnétique terrestre. BT BT Champ magnétique terrestre B ré sultant Fil conducteur M M B fil Champ magnétique créé par le fil rectiligne parcouru par un courant Voir la vidéo sur l'expérience d'oersted Conclusion : Les courants électriques sont des sources de champs magnétiques. Quelles sont les caractéristiques du champ créé par un fil rectiligne parcouru par un courant électrique? Les lignes de champ sont des cercles centrés sur le fil Le sens des lignes de champ se déterminer à l'aide de la règle du tire bouchon. Représente le sens du courant Représente le sens de la ligne de champ 4/10

5 B M créé en un point M quelconque par le fil rectiligne Le vecteur champ magnétique appartient au plan contenant le point M et perpendiculaire au fil. La valeur du champ au point M est proportionnelle à l'intensité du courant qui traverse le fil : soit B(M) = k. La constante k (exprimée en T.A-1) dépend du point ou l'on mesure le champ. 3) Champ magnétique créé par un solénoïde : Qu'est-ce qu'un solénoïde? On appelle spire, une boucle de courant fermée. Un solénoïde est un dipôle constitué d'un enroulement de spires circulaires autour d'un support cylindrique. Par définition, le rayon du cylindre doit être petit devant sa longueur. Exemple de solénoïde utilisé au laboratoire Étude du champ magnétique créé par un solénoïde lorsqu'il est parcouru par un courant électrique : Expérience : On réalise avec de la paille de fer, le spectre magnétique d'un solénoïde : Observations : Le sens des lignes de champ se déduit de la règle du tire bouchon. Sens de dans les spires Sens de B Les lignes de champ entrent par la face sud du solénoïde et sortent par la face nord. Comment déterminer les faces nord et sud du solénoïde : cela dépend du sens du courant dans les spires. Pour s'en souvenir : 5/10

6 Remarque : on peut aussi utiliser la règle de la main droite pour repérer la face nord d'un solénoïde. Si on enroule le courant avec la paume de la main droite, la direction qu'indique le pouce donne le lieu de la face nord. A l'intérieur du solénoïde, les lignes de champ sont des droites parallèles, le champ magnétique est donc uniforme. A l'extérieur, du solénoïde, les lignes de champ ressemblent à celle d'un aimant droit. La valeur du champ magnétique à l'intérieur du solénoïde vaut : B = μ0 n B est la valeur du champ magnétique en tesla (T) est l'intensité du courant parcourant le solénoïde en ampère (A) n : est le nombre de spire par unité de longueur (m-1) μ0 = 4 π 10-7 T.m.A-1 est une constante. Remarque : pour tout solénoïde : n = N, ou N est le nombre de spires que contient le solénoïde et L L la longueur du solénoïde en m. A retenir : La valeur d'un champ magnétique créé par un courant dépend de la géométrie de ce courant, de son intensité et de sa position par rapport au point de mesure. ) Quelle est l'action d'un champ magnétique sur un courant électrique : 1) La force de Laplace : a) Mise en évidence expérimentale du phénomène : Expérience du rail de Laplace : On dispose d'un aimant en U et d'un barreau de cuivre relié à un circuit électrique et dans lequel on fait passer un courant électrique. Schéma du montage : VOR la vidéo du résultat de l'expérience du rail le Laplace Observations : Lorsque le circuit est ouvert ( = 0A), il ne se passe rien. Si on ferme le circuit on observe alors une mise en mouvement du barreau de cuivre. nterprétation : La mise en mouvement du barreau de cuivre est provoquée par l'apparition d'une force électromagnétique qui s'exerce sur la barreau. Conclusion : Une portion de circuit parcourue par un courant électrique et placé dans un champ magnétique est soumise à une force électromagnétique, appelée force de Laplace. b) Caractéristiques de la force de Laplace : Direction : D'après la deuxième loi de Newton, nous savons que la force de Laplace a la même direction que le vecteur variation de vitesse. Ainsi, nous en déduisons que le force de Laplace est perpendiculaire à la direction du courant électrique. 6/10

7 Sens de la force de Laplace : Lorsque l'on inverse le sens du courant électrique parcourant le barreau de cuivre, on constate qu'il se met en mouvement dans le sens opposé. Le même phénomène est observé si on retourne l'aimant en U (en inversant les pôles). Le sens de la force de Laplace dépend donc du sens du courant électrique dans le conducteur ainsi que du sens du champ magnétique. Remarque : pour déterminer le sens de la force de Laplace, on utilise la règle de la main droite. En utilisant sa main droite, on dirige le pouce dans le sens du courant, l'index dans le sens du champ magnétique, le majeure tenue perpendiculairement aux autres doigts donne le sens de la force de Laplace. Règle de la main droite pour trouver le sens de la force de Laplace Valeur de la force de Laplace : La valeur de la force de Laplace est donnée est par la relation : F = L B sinα F est la valeur de la force de Laplace en newton (N) est l'intensité du courant électrique dans le conducteur en ampère (A) L est la longueur du conducteur concerné α est la valeur de l'angle entre le conducteur et la direction du champ magnétique Exercices 18 et 19 p 204 B 2) Applications : a) Le haut parleur électrodynamique : Description : Les principaux constituants du haut parleur sont l'aimant et la bobine. Ces deux éléments sont cylindriques de même axe, ainsi la bobine peut coulisser le long de l'aimant. Le champ magnétique a la même valeur en tout point de l'entrefer, et est toujours dirigé de l'intérieur vers l'extérieur. La membrane du haut-parleur est solidaire de la bobine. 7/10

8 Schéma en coupe d'un haut-parleur électrodynamique suspension membrane S F B spider N. S B Fonctionnement : La bobine est traversé par un courant électrique et subit donc en présence du champ magnétique imposé par l'aimant, une force de Laplace qui va la mettre en mouvement. La membrane étant solidaire de la bobine elle sera également mise en mouvement. Le courant étant alternatif, il change de sens régulièrement, ainsi la force de Laplace change elle aussi de sens. La bobine et donc la membrane se mettent à vibrer, faisant vibrer l'air ce qui produit un son. Le haut parleur est un convertisseur d'énergie électrique en énergie mécanique (mouvement de tranches d'air.) b) Le moteur à courant continu : Une autre application des forces de Laplace est le moteur électrique à courant continu. Très utilisé, il équipe notamment les TGV Sud-Est. Description : Le stator (aimant fixe) F Le rotor (bobine mobile) B Le moteur possède une partie mobile, le rotor, qui est constitué d'une bobine dans laquelle peut circuler un courant électrique. Le deuxième partie est une partie fixe, appelé stator, et qui est constituée d'un aimant. Le champ magnétique est radial, c'est à dire que ça direction est celle du rayon du cercle décrit par le rotor. 8/10

9 Le fonctionnement : Pour comprendre le fonctionnement nous raisonnons sur une des spires (rectangulaire) de la bobine constituant le rotor. (schéma ci dessus) Le courant circule dans la spire mais dans deux sens opposés de chaque coté de la spire. Ainsi par interaction avec le champ magnétique créé par le stator, il se crée deux forces de Laplace s'appliquant chacune sur un coté de la spire et qui tendent toutes les deux à faire tourner la spire dans le même sens. Pour que la spire puisse effectuer un tour complet, il faut inverser le courant dans la spire à chaque demitour. Cette inversion est réalisée par le collecteur. Les balais servent au transport du courant de la partie fixe à la partie mobile. Puissance des moteurs électriques usuels : Application Montre à aiguille Puissance Environ 1mW alimentation Continu Ventilateur d'ordinateur Environ 1W Continu mprimante 10 à 40W Continu ou alternatif Robot ménager 100 à 200W alternatif Démarreur automobile Environ 1kW continu Aspirateur Environ 1,5kW alternatif TGV Quelques MW Continu (Sud Est) Alternatif (depuis Atlantique) V) Le couplage électromécanique : 1) Qu'appelle-t-on couplage électromécanique? Un couplage est un transfert d'énergie entre deux systèmes. On parle de couplage électromécanique car on peut effectuer une conversion électrique-mécanique aussi bien qu'une conversion mécanique électrique avec le même système (par exemple le moteur à courant continu). 2) Mise en évidence de cette réciprocité : Exemple de l'alternateur : Quand on déplace un aimant devant une bobine, il apparaît une tension aux bornes de la bobine. Ce phénomène est utilisé pour produire de l'électricité. La mise en mouvement d'un aimant ou d'un électroaimant devant une bobine permet de convertir de l'énergie mécanique (mouvement de l'aimant) en énergie électrique. 9/10

10 Expérience de l'alternateur La tension créée par le mouvement de l'aimant au voisinage de la bobine est observée à l'oscilloscope. 10/10

Electromagnétisme. Chapitre 1 : Champ magnétique

Electromagnétisme. Chapitre 1 : Champ magnétique 2 e BC 1 Champ magnétique 1 Electromagnétisme Le magnétisme se manifeste par exemple lorsqu un aimant attire un clou en fer. C est un phénomène distinct de la gravitation, laquelle est une interaction

Plus en détail

S 5 F I) Notion de champ magnétique : 1) Mise en évidence : a) Expérience :

S 5 F I) Notion de champ magnétique : 1) Mise en évidence : a) Expérience : Chapitre 5 : CHAMP MAGNETIQUE S 5 F 1) Mise en évidence : a) Expérience : Des petites aiguilles aimantées montées sur pivots sont disposées près d'un aimant droit. Chaque aiguille constitue un dipôle orienté.

Plus en détail

MAGNETISME. 3) Effet du magnétisme 31) Action sur un aimant :

MAGNETISME. 3) Effet du magnétisme 31) Action sur un aimant : MAGNETISME 1) Les différentes sources de champ magnétique La terre crée le champ magnétique terrestre Les aimants naturels : les magnétites Fe 3 O 4 L acier que l on aimante Les électroaimants et circuits

Plus en détail

LE MAGNETISME DES AIMANTS ET DES COURANTS

LE MAGNETISME DES AIMANTS ET DES COURANTS LE MAGNETISME DES AIMANTS ET DES COURANTS 1. Les aimants Un aimant comporte toujours deux pôles appelés le pôle nord (N) et le pôle sud (S) situés, en général, à deux extrémités. Un aimant exerce une action

Plus en détail

Cours n 15 : Champ magnétique

Cours n 15 : Champ magnétique Cours n 15 : Champ magnétique 1) Champ magnétique 1.1) Définition et caractérisation 1.1.1) Définition Comme nous l avons fait en électrostatique en introduisant la notion de champ électrique, on introduit

Plus en détail

CHAPITRE 14. CHAMP MAGNETIQUE

CHAPITRE 14. CHAMP MAGNETIQUE CHAPITRE 14. CHAMP MAGNETIQUE 1. Notion de champ Si en un endroit à la surface de la Terre une boussole s'oriente en pointant plus ou moins vers le nord, c'est qu'il existe à l'endroit où elle se trouve,

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa annuel -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa annuel - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section i-prépa annuel - I. Vecteur champ magnétique : a) Détection : si l on saupoudre de limaille de fer un support horizontal au-dessous

Plus en détail

LE CHAMP MAGNETIQUE Table des matières

LE CHAMP MAGNETIQUE Table des matières LE CHAMP MAGNETQUE Table des matières NTRODUCTON :...2 MSE EN EVDENCE DU CHAMP MAGNETQUE :...2.1 Détection du champ magnétique avec une boussole :...2.2 Le champ magnétique :...3.2.1 Le vecteur champ magnétique

Plus en détail

CHAPITRE 8 LE CHAMP MAGNETIQUE

CHAPITRE 8 LE CHAMP MAGNETIQUE CHAPTRE 8 LE CHAMP MAGETQUE ) Champ magnétique 1) Magnétisme Phénomène connu depuis l'antiquité. Les corps possédant des propriétés magnétiques sont appelés des aimants naturel (fer, oxyde magnétique de

Plus en détail

Moteurs à courant continu Moteurs asynchrones

Moteurs à courant continu Moteurs asynchrones Chapitre 17 Sciences Physiques - BTS Moteurs à courant continu Moteurs asynchrones 1 Loi de Laplace 1.1 Etude expérimentale Le conducteur est parcouru par un courant continu ; il est placé dans un champ

Plus en détail

Charge électrique loi de Coulomb

Charge électrique loi de Coulomb Champ électrique champ magnétique Charge électrique loi de Coulomb 1/ répulsion réciproque de deux charges < r 12 > Q 1 Q 2 Les deux charges Q 1 et Q 2 se repoussent mutuellement avec une force F 12 telle

Plus en détail

Chapitre 7. Électromagnétisme. 7.1 Magnétisme. 7.1.1 Aimants

Chapitre 7. Électromagnétisme. 7.1 Magnétisme. 7.1.1 Aimants Chapitre 7 Électromagnétisme 7.1 Magnétisme 7.1.1 Aimants Les aimants furent découverts d abord en Chine et puis en Grèce. Les premiers aimants sont des pierres noires qui ont la propriété d attirer des

Plus en détail

TD16 Machine synchrone et MCC

TD16 Machine synchrone et MCC TD16 Machine synchrone et MCC 161 Machine synchrone simpliste A Travaux Dirigés Un aimant cylindrique allongé peut tourner autour de l'axe passant par son centre et perpendiculaire à son moment magnétique.

Plus en détail

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres LE M O TE U R A C O U R A N T C O N TI N U La loi de LAPLACE Un conducteur traversé par un courant et placé dans un champ magnétique est soumis à une force dont le sens est déterminée par la règle des

Plus en détail

Electricité et magnétisme

Electricité et magnétisme Le champ magnétique Activité 1 a) O α S N s G n b) Bobine O s G n α I Document 1 Une petite aiguille aimantée suspendue par son centre de gravité G à un fil sans torsion est placée au voisinage d un aimant

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

B - LE CHAMP ELECTRIQUE

B - LE CHAMP ELECTRIQUE B - L CHAP LCTRIQU B - 1 - L VCTUR CHAP LCTRIQU L'orientation du vecteur champ électrique dépend de la nature (positive ou négative) de la charge qui le produit. L effet de ce champ (attraction ou répulsion)

Plus en détail

Electricité. Chapitre 1: Champ électrique

Electricité. Chapitre 1: Champ électrique 2 e BC 1 Champ électrique 1 Electricité L interaction électromagnétique a été évoqué dans la partie «Interactions fondamentales» en énonçant la loi de Coulomb, et en analysant des phénomènes macroscopiques

Plus en détail

LE COURANT ELECTRIQUE CONTINU

LE COURANT ELECTRIQUE CONTINU LE COURT ELECTRQUE COTU 1- perçu historique de l'électricité Voir polycop 2- Le courant électrique l existe deux types de courant. EDF. faire tirages feuille exercice et T annexe Montrer effet induction

Plus en détail

CHAPITRE 2 : Interaction magnétique

CHAPITRE 2 : Interaction magnétique CHAPITRE 2 : Interaction magnétique Prérequis 1. L aiguille d une boussole possède : plusieurs pôles Nord et plusieurs pôles Sud, uniquement un pôle Nord et un pôle Sud, plusieurs pôles Nord ou plusieurs

Plus en détail

Le moteur à courant continu à aimants permanents

Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Principe, caractéristiques Alimentation, variation de vitesse Puissance, rendement Réversibilité Cette

Plus en détail

Chapitre 3: Dynamique

Chapitre 3: Dynamique Introduction Le mot dynamique désigne ou qualifie ce qui est relatif au mouvement. Il est l opposé du mot statique. Le mouvement d un point matériel est liée à son interaction avec le monde extérieur ce

Plus en détail

Electromagnétisme. Les aimants sont des objets capables d'en attirer d'autres grâce à une force étrange appelée «force magnétique».

Electromagnétisme. Les aimants sont des objets capables d'en attirer d'autres grâce à une force étrange appelée «force magnétique». Electromagnétisme (Sources principales : «C'est pas sorcier : Magnétisme», articles «Ligne à haute tension», «Circuit magnétique», «Haute tension» de Wikipedia, «Courant continu et courant alternatif»

Plus en détail

TPE : travaux pratiques encadrés.

TPE : travaux pratiques encadrés. TPE : travaux pratiques encadrés. Problématique : Qu est- ce que le magnétisme? Comment l appliquer à la création d un verrou magnétique? Lucie Lalmand. Nathalie Lambin. Année 2006-2007. Elodie Devos.

Plus en détail

Electrotechnique. Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/

Electrotechnique. Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/ Electrotechnique Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/ 1 Sommaire 1 ère partie : machines électriques Chapitre 1 Machine à courant continu Chapitre 2 Puissances électriques

Plus en détail

Session de Juillet 2001. Durée 2 H Documents interdits.

Session de Juillet 2001. Durée 2 H Documents interdits. Session de Juillet 2001 Durée 2 H Documents interdits. Exercice 1 : Oscillations forcées de dipôles électriques Lors d une séance de travaux pratiques, les élèves sont conduits à étudier les dipôles en

Plus en détail

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m EEl 1 ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS MESURE DU RAPPORT e/m 1. THEORIE 1.1. Effet d un champ électrique sur une charge électrique Dans un champ électrique E une

Plus en détail

Guide de l enseignant

Guide de l enseignant Le Centre de Découverte des Sciences de la Terre (CDST) Conseil Général de Martinique Guide de l enseignant Exposition : Qu y a-t-il derrière la prise? Conçue et réalisée par la Cité des Sciences et de

Plus en détail

Cercle trigonométrique et mesures d angles

Cercle trigonométrique et mesures d angles Cercle trigonométrique et mesures d angles I) Le cercle trigonométrique Définition : Le cercle trigonométrique de centre O est un cercle qui a pour rayon 1 et qui est muni d un sens direct : le sens inverse

Plus en détail

Mouvement et vitesse . A A B

Mouvement et vitesse . A A B Chapitre 1 Mouvement et vitesse I/ Caractère relatif d'un mouvement Le mouvement d'un objet est décrit par rapport à un autre objet qui sert de référence ( le référentiel) exemple : assis dans une voiture

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

4.1 Charges en mouvement - Courant et intensité électriques

4.1 Charges en mouvement - Courant et intensité électriques Chapitre 4 Distributions de courants En électrostatique, les charges restent immobiles. Leur déplacement est à l origine des courants électriques qui sont la source du champ magnétique que nous étudierons

Plus en détail

Courant électrique et distributions de courants

Courant électrique et distributions de courants Cours d électromagnétisme Courant électrique et distributions de courants 1 Courant électrique 1.1 Définition du courant électrique On appelle courant électrique tout mouvement d ensemble des particules

Plus en détail

Chapitre 3 : Dynamique du point matériel

Chapitre 3 : Dynamique du point matériel Cours de Mécanique du Point matériel Chapitre 3 : Dynamique SMPC1 Chapitre 3 : Dynamique du point matériel I Lois fondamentales de la dynamiques I.1)- Définitions Le Référentiel de Copernic: Le référentiel

Plus en détail

électricité Pourquoi le courant, dans nos maison, est-il alternatif?

électricité Pourquoi le courant, dans nos maison, est-il alternatif? CHAPITRE 4 : Production de l él électricité Pourquoi le courant, dans nos maison, est-il alternatif? D où vient le courant? Comment arrive-t-il jusqu à nous? 1 la fabrication du courant 2 Les transformateurs

Plus en détail

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES) Chapitre 3 LES APPARELS A DEVATON EN COURANT CONTNU ( LES APPRELS MAGNETOELECTRQUES) - PRNCPE DE FONCTONNEMENT : Le principe de fonctionnement d un appareil magnéto-électrique est basé sur les forces agissant

Plus en détail

Electromagnétisme. Bipolarité Un champ magnétique possède toujours un pôle nord et un pôle sud. Ils sont indissociables.

Electromagnétisme. Bipolarité Un champ magnétique possède toujours un pôle nord et un pôle sud. Ils sont indissociables. Electromagnétisme Les champs magnétiques Les sources de champs magnétiques existent à l état naturel (Terre, aimant naturel) ou peuvent être crées artificiellement (aimant, électro-aimant). L unité du

Plus en détail

Observation : Le courant induit circule dans le sens opposé.

Observation : Le courant induit circule dans le sens opposé. 2 e BC 3 Induction électromagnétique 21 Chapitre 3: Induction électromagnétique 1. Mise en évidence du phénomène : expériences fondamentales a) Expérience 1 1. Introduisons un aimant dans une bobine connectée

Plus en détail

moteur asynchrone MOTEUR ASYNCHRONE

moteur asynchrone MOTEUR ASYNCHRONE MOTEUR ASYNCHRONE Rappel: trois bobines, dont les axes font entre eux des angles de 120 et alimentées par un réseau triphasé équilibré, crée dans l'entrefer un champ magnétique radial, tournant à la fréquence

Plus en détail

On peut mesurer l intensité (ou la «valeur») d une force à l aide d un dynamomètre. L intensité d une force s exprime en newton, symbole : N

On peut mesurer l intensité (ou la «valeur») d une force à l aide d un dynamomètre. L intensité d une force s exprime en newton, symbole : N CH5 FORCES ET PRINCIPE D INERTIE A) POURQUOI LE MOUVEMENT D UN OBJET EST-IL MODIFIE? POURQUOI SE DEFORME-T-IL? I - RAPPELS. L existence d une force est conditionnée à l identification d une interaction,

Plus en détail

Physique 30 Labo L intensité du champ magnétique. Contexte : Problème : Variables : Matériel : Marche à suivre :

Physique 30 Labo L intensité du champ magnétique. Contexte : Problème : Variables : Matériel : Marche à suivre : Physique 30 Labo L intensité du champ magnétique Contexte : La plupart des gens qui ont déjà joué avec un aimant permanent savent que plus on s en approche, plus la force magnétique est grande. Il est

Plus en détail

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au 1 2 C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position est constant et il est égal au rayon du cercle. = 3 A- ouvement circulaire non uniforme

Plus en détail

Chapitre 5 : Condensateurs

Chapitre 5 : Condensateurs 2 e B et C 5 Condensateurs 37 Chapitre 5 : Condensateurs 1. Qu est-ce qu un condensateur? a) Expérience de mise en évidence 1. Un électroscope est chargé négativement au moyen d'un bâton d'ébonite frotté

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

La gravitation universelle

La gravitation universelle La gravitation universelle Pourquoi les planètes du système solaire restent-elles en orbite autour du Soleil? 1) Qu'est-ce que la gravitation universelle? activité : Attraction universelle La cohésion

Plus en détail

CH 06 UTILISATION DE L OSCILLOSCOPE

CH 06 UTILISATION DE L OSCILLOSCOPE CH 06 UTILISATION DE L OSCILLOSCOPE Pendant tout le TP vous utiliserez la Fiche méthode de l oscilloscope OX 71 Livre Bordas, Collection ESPACE, 2008, p 183 I- FONCTIONNEMENT Mettre l appareil sous tension.

Plus en détail

Transmettre la voix à distance

Transmettre la voix à distance Pour quoi faire? Par quels moyens? Ressentir et observer sa voix, c était un très vieux rêve, comme l était aussi celui de voler dans les airs Aujourd hui, les moyens de communication modernes permettent

Plus en détail

N' = 1440 tr/min ; P 1 = 4500W ; P 2 = 2000 W

N' = 1440 tr/min ; P 1 = 4500W ; P 2 = 2000 W MOTEUR ASYNCHRONE 1) Un moteur asynchrone triphasé à rotor bobiné et à bagues est alimenté par un réseau triphasé 50 Hz dont la tension entre phases est U = 380 V. Les enroulements du stator et du rotor

Plus en détail

3- Mesurer l intensité du courant dans un circuit Faire le schéma du montage en utilisant les symboles normalisés.

3- Mesurer l intensité du courant dans un circuit Faire le schéma du montage en utilisant les symboles normalisés. 1 1 Connaître la grandeur et l unité de l intensité électrique. Faire un schéma d un circuit électrique et indiquer le sens du courant 1- Sens du courant et Nature du courant De nombreuses expériences

Plus en détail

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012 Cours d électricité Dipôles simples en régime alternatif Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année: 2011-2012 Plan du

Plus en détail

C - LE CHAMP MAGNÉTIQUE

C - LE CHAMP MAGNÉTIQUE C - LE CHAMP MAGNÉTQUE C - 1 - ORGNE DES CHAMPS MAGNÉTQUES L existence de champs magnétiques est liée aux déplacements de charges électriques. En plus d un champ électrique, une charge électrique en mouement

Plus en détail

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire Chapitre VII Forces électromagnétiques VII.a. Force de Lorentz La force à laquelle est soumis, à un instant t, un point matériel de charge q, situé en M et se déplaçant à une vitesse v(t) par rapport à

Plus en détail

GENERALITES SUR LES APPAREILS DE MESURE

GENERALITES SUR LES APPAREILS DE MESURE Chapitre 2 GENERALITES SUR LES APPAREILS DE MESURE I- LES APPAREILS DE MESURE ANALOGIQUES: Un appareil de mesure comprend généralement un ou plusieurs inducteurs fixes ( aimant permanant ou électroaimant)

Plus en détail

PRODUCTION D ENERGIE ELECTRIQUE DANS UNE CENTRALE

PRODUCTION D ENERGIE ELECTRIQUE DANS UNE CENTRALE Séance n 2 : PRODUCTION D ENERGIE ELECTRIQUE DANS UNE CENTRALE A. POURQUOI ET COMMENT PRODUIRE DE L ELECTRICITE? Activité documentaire et de questionnement : Document n 1 : A notre époque, et sans électricité,

Plus en détail

Exercices. Sirius 1 ère S - Livre du professeur Chapitre 15. Champs et forces. Exercices d application. 5 minutes chrono!

Exercices. Sirius 1 ère S - Livre du professeur Chapitre 15. Champs et forces. Exercices d application. 5 minutes chrono! Exercices Exercices d application 5 minutes chrono 1. Mots manquants a. scalaire b. aimants/courants c. aiguille aimantée d. électrostatique. e. uniforme/ parallèles. f. la verticale/la Terre g. gravitation/la

Plus en détail

Comment les forces agissent sur le mouvement?

Comment les forces agissent sur le mouvement? SP. 5 forces et principe d inertie cours Comment les forces agissent sur le mouvement? 1) notion d action et de force : a) Actions exercées sur un système : Actions de contact : Solide posé sur une table

Plus en détail

Partie A : Principe du moteur asynchrone (37%)

Partie A : Principe du moteur asynchrone (37%) Les trois parties A, B et C de cette épreuve sont indépendantes. Partie A : Principe du moteur asynchrone (37%) Aucune connaissance préalable du moteur asynchrone n est nécessaire pour l étude de cette

Plus en détail

S 4 F. I) Définitions : 1) En statique et en dynamique :

S 4 F. I) Définitions : 1) En statique et en dynamique : Chapitre 1 : NOTION DE FORCE S 4 F I) Définitions : 1) En statique et en dynamique : Une force, ou action mécanique, peut être définie comme : - toute cause capable de déformer un objet (statique). Exemple

Plus en détail

Chapitre 7 - Relativité du mouvement

Chapitre 7 - Relativité du mouvement Un bus roule lentement dans une ville. Alain (A) est assis dans le bus, Brigitte (B) marche dans l'allée vers l'arrière du bus pour faire des signes à Claude (C) qui est au bord de la route. Brigitte marche

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique C est en 1831 que Michael Faraday découvre le phénomène d induction, il découvre qu un courant électrique est créé dans un conducteur lorsqu il est soumis à un champ magnétique

Plus en détail

3. Magnétisme. Electricité

3. Magnétisme. Electricité 3. Magnétisme 3.1 Champ magnétique et aimant Les aimants ont la propriété de dévier les aiguilles de boussole et d'attirer les clous. L'origine de cette propriété est complexe. Nous nous contenterons pour

Plus en détail

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F Chapitre 7 : CHARGES, COURANT, TENSION S 3 F I) Electrostatique : 1) Les charges électriques : On étudie l électricité statique qui apparaît par frottement sur un barreau d ébonite puis sur un barreau

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

I) La puissance nominale 1) Que signifie la valeur en Watt portée sur les lampes? Activité 1 P162

I) La puissance nominale 1) Que signifie la valeur en Watt portée sur les lampes? Activité 1 P162 Chapitre 4 : Puissance et énergie électrique Dernier chapitre d'électricité, nous allons voir ce que sont les Watts et les kwh, ce que nous devons à notre fournisseur d'énergie électrique. I) La puissance

Plus en détail

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle.

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle. TP force centrifuge Ce TP est évalué à l'aide d'un questionnaire moodle. Objectif : Étudier la force centrifuge dans le cas d un objet ponctuel en rotation uniforme autour d un axe fixe. 1 Présentation

Plus en détail

M HAMED EL GADDAB & MONGI SLIM

M HAMED EL GADDAB & MONGI SLIM Sous la direction : M HAMED EL GADDAB & MONGI SLIM Préparation et élaboration : AMOR YOUSSEF Présentation et animation : MAHMOUD EL GAZAH MOHSEN BEN LAMINE AMOR YOUSSEF Année scolaire : 2007-2008 RECUEIL

Plus en détail

CH12 : Solide en mouvement de translation

CH12 : Solide en mouvement de translation BTS électrotechnique 1 ère année - Sciences physiques appliquées CH12 : Solide en mouvement de translation Motorisation des systèmes Enjeu : Problématique : En tant que technicien supérieur, il vous revient

Plus en détail

CHAPITRE XI : Le magnétisme

CHAPITRE XI : Le magnétisme CHAPITRE XI : Le magnétisme XI. 1 Les scientifiques n'ont découvert qu'au XIX ème le lien qui existe entre le magnétisme et l'électricité. Pourtant le magnétisme était connu depuis fort longtemps. Son

Plus en détail

Travaux Dirigés Machines Electriques

Travaux Dirigés Machines Electriques TRAVAUX DIRIGES N 3 : MACHINE ASYNCHRONE Exercice 1 Un moteur asynchrone tétrapolaire, stator monté en triangle, fonctionne dans les conditions suivantes : tension entre phases U = 380 V ; fréquence f

Plus en détail

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g. PHYSQ 130: Hooke 1 LOI DE HOOKE: CAS DU RESSORT 1 Introduction La loi de Hooke est fondamentale dans l étude du mouvement oscillatoire. Elle est utilisée, entre autres, dans les théories décrivant les

Plus en détail

Examen de la maturita bilingue de physique. Corrigé officiel

Examen de la maturita bilingue de physique. Corrigé officiel Examen de la maturita bilingue de physique Session de mai 2013 Corrigé officiel Questions de cours Mécanique I. 1a) Référentiel le cadre par rapport auquel on étudie le mouvement. 1b) Réf. terrestre est

Plus en détail

- cas d une charge isolée en mouvement et par extension d un ensemble de

- cas d une charge isolée en mouvement et par extension d un ensemble de Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k

Plus en détail

TENSION et COURANT ALTERNATIF

TENSION et COURANT ALTERNATIF Chapitre 2 TENSION et COURANT ALTERNATIF I/ Principe de fonctionnement d'un oscilloscope 1- Schéma Plaques de déviation horizontale et verticale Tube à vide Faisceau d'électrons B Cathode Anode + Spot

Plus en détail

1.1) Stator ( inducteur )

1.1) Stator ( inducteur ) 1 ) Constitution Ces moteurs sont robustes, faciles à construire et peu coûteux. Ils sont intéressants, lorsque la vitesse du dispositif à entraîner n'a pas à être rigoureusement constante. 1.1) Stator

Plus en détail

obs.1 Lentilles activité

obs.1 Lentilles activité obs.1 Lentilles activité (Lentille mince convergente) 1) première partie : étude qualitative Dans cette manipulation, on va utiliser un banc d optique. On va positionner la lentille de distance focale

Plus en détail

Définition. Lampe à incandescence. Le vérin

Définition. Lampe à incandescence. Le vérin Définition Un actionneur est un système qui convertit une énergie d entrée sous une certaine forme en une énergie utilisable sous une autre forme. Il est donc possible de le modéliser ainsi. Une ampoule,

Plus en détail

SELECTION D'ACCES A LA FORMATION DE MASSEUR-KINÉSITHÉRAPEUTE

SELECTION D'ACCES A LA FORMATION DE MASSEUR-KINÉSITHÉRAPEUTE J. 12 1279 ASSISTANCE tàk HÔPITAUX PUBLI QllE DE PARIS CENTRE DE LA FORMATION ET DU DÉVELOPPEMENT DES COMPÉTENCES SERVICE CONCOURS ET FORMATION DIPLÔMANTE SELECTION D'ACCES A LA FORMATION DE MASSEUR-KINÉSITHÉRAPEUTE

Plus en détail

Chapitre 2 : L alternateur et la tension alternative

Chapitre 2 : L alternateur et la tension alternative Chapitre 2 : L alternateur et la tension alternative L alternateur joue donc un grand rôle dans la production d énergie électrique. Comment fonctionne-t-il et quelle est la tension produite? I) Principe

Plus en détail

Chapitre 1 Magnétostatique

Chapitre 1 Magnétostatique Chapitre 1 Magnétostatique I. Généralités et définitions Les propriétés électriques et magnétiques de la matière ont été révélées par l observa tion de forces : Si, à un endroit, une charge fixe subit

Plus en détail

Electricité et magnétisme - TD n 10 Induction

Electricité et magnétisme - TD n 10 Induction Electricité et magnétisme - TD n 1 Induction 1. Inductance mutuelle - transformateur On considère un solénoïde de section circulaire, de rayon R 1, de longueur, et constitué de N 1 spires. A l intérieur

Plus en détail

B = (R 2 + (x x c ) 2 )

B = (R 2 + (x x c ) 2 ) PHYSQ 126: Champ magnétique induit 1 CHAMP MAGNÉTIQUE INDUIT 1 But Cette expérience 1 a pour but d étudier le champ magnétique créé par un courant électrique, tel que décrit par la loi de Biot-Savart 2.

Plus en détail

Chap2 : Les lois des circuits.

Chap2 : Les lois des circuits. Chap2 : Les lois des circuits. Items Connaissances Acquis Loi d additivité de l intensité dans un circuit comportant une dérivation. Loi d unicité des tensions aux bornes de deux dipôles en dérivation.

Plus en détail

3 ème COURS Electricité Chapitre 1 LA PRODUCTION D'ÉNERGIE ÉLECTRIQUE CORRECTION DES EXERCICES. Téléchargé sur http://gwenaelm.free.

3 ème COURS Electricité Chapitre 1 LA PRODUCTION D'ÉNERGIE ÉLECTRIQUE CORRECTION DES EXERCICES. Téléchargé sur http://gwenaelm.free. 3 ème COURS Electricité Chapitre 1 LA PRODUCTION D'ÉNERGIE ÉLECTRIQUE CORRECTION DES EXERCICES Téléchargé sur http://gwenaelm.free.fr/2008-9 Correction : Exercice 10 p 159 Centrale nucléaire : Energie

Plus en détail

1 Introduction. CIRCUITS RLC À COURANT ALTERNATIF

1 Introduction. CIRCUITS RLC À COURANT ALTERNATIF PHYSQ 126: Circuits RLC 1 CIRCUITS RLC À COURANT ALTERNATIF 1 Introduction. Le but de cette expérience est d introduire le concept de courant alternatif (en anglais, Alternating Current ou AC) et d étudier

Plus en détail

LES PREACTIONNEURS ELECTRIQUES

LES PREACTIONNEURS ELECTRIQUES I Définition Le préactionneur électrique est un constituant de gestion de l énergie électrique fournie à l actionneur. Ils distribuent donc, sur ordre de la Partie Commande (située dans la chaîne information),

Plus en détail

Activité Dipôles électriques

Activité Dipôles électriques 1. Résistance Activité Dipôles électriques Une résistance est un composant électronique ou électrique dont la principale caractéristique est d'opposer une plus ou moins grande résistance à la circulation

Plus en détail

Exercices Electricité

Exercices Electricité Exercices Electricité EL1 Champ électrique 1 Deux charges ponctuelles Soit une charge ponctuelle q1 27 C située en x 0 et une charge q2 3 C en x 1m. a) En quel point (autre que l infini) la force électrique

Plus en détail

La méthode des deux wattmètres nous donne les puissance active et réactive absorbées par le moteur:

La méthode des deux wattmètres nous donne les puissance active et réactive absorbées par le moteur: EXERCICE N 1 Un moteur asynchrone triphasé à rotor bobiné et à bagues est alimenté par un réseau triphasé 50 Hz dont la tension entre phases est U = 380 V. Les enroulements du stator et du rotor sont en

Plus en détail

T.P. numéro 27 : moteur asynchrone.

T.P. numéro 27 : moteur asynchrone. T.P. numéro 27 : moteur asynchrone. Buts du TP : le but de ce TP est l étude du moteur asynchrone triphasé. On étudie la plaque signalétique du moteur, puis on effectue un essai à vide et enfin un essai

Plus en détail

avec E qui ne dépend que de la fréquence de rotation.

avec E qui ne dépend que de la fréquence de rotation. Comment régler la vitesse d un moteur électrique?. Comment régler la vitesse d un moteur à courant continu? Capacités Connaissances Exemples d activités Connaître le modèle équivalent simplifié de l induit

Plus en détail

Comment mesure-t-on la masse des planètes?

Comment mesure-t-on la masse des planètes? Comment mesure-t-on la masse des planètes? Evidemment, les planètes ne sont pas mises sur une balance. Ce sont les mathématiques et les lois physiques qui nous permettent de connaître leur masse. Encore

Plus en détail

CHAPITRE 07 MISE EN EVIDENCE DU CHAMP ELECTRIQUE

CHAPITRE 07 MISE EN EVIDENCE DU CHAMP ELECTRIQUE CHAPITRE 07 MISE EN EVIDENCE DU CHAMP EECTRIQUE I) Champ électrique A l'intérieur des armatures d'un condensateur plan, le champ est uniforme. Ses caractéristiques sont : A l'intérieur des armatures d'un

Plus en détail

Le circuit de charge

Le circuit de charge 1 1. Mise en situation : 2. Définition : comprend l intégralité des pièces permettant l alimentation électrique de l ensemble des consommateurs du véhicule et la charge de la batterie 3. Fonction globale

Plus en détail

REFERENCE MODULE REFERENCE DOCUMENT DATE DE CREATION. PHY-FLU1 Livret physique des fluides 1 20/07/01 PHYSIQUE DES FLUIDES

REFERENCE MODULE REFERENCE DOCUMENT DATE DE CREATION. PHY-FLU1 Livret physique des fluides 1 20/07/01 PHYSIQUE DES FLUIDES PHYSIQUE DES FLUIDES 1 1. MASSE-UNITES DE FORCE Masse (m).la masse d un corps caractérise la quantité de matière de ce corps en Kilogrammes ( Kg - unité S.I) Le Poids (p) d un corps peut s exprimer par

Plus en détail

Mécanique des solides déformables

Mécanique des solides déformables Mécanique des solides déformables Auteur Michel MAYA 1 Descriptions 2 Représentations graphiques Ce cours est mis à disposition selon les termes de la licence Creative Commons Paternité + Pas d utilisation

Plus en détail

PUISSANCE ELECTRIQUE

PUISSANCE ELECTRIQUE PUISSANCE ELECTRIQUE I COURANT CONTINU 1 absorbée par un récepteur 2 Puissance thermique et effet Joule 3 Bilan des puissances a) Conducteur ohmique Conducteur P abs Ohmique P ut = P j le rendement est

Plus en détail

UTILISATION DE L'OSCILLOSCOPE

UTILISATION DE L'OSCILLOSCOPE 3 ème COURS Electricité Chapitre 4 UTILISTION DE L'OSCILLOSCOPE Je dois savoir Mesurer une tension Mesurer une durée Ce qu'est un oscillogramme Reconnaître l'oscillogramme d'une tension Mesurer période

Plus en détail

Instruments de mesure

Instruments de mesure Chapitre 9a LES DIFFERENTS TYPES D'INSTRUMENTS DE MESURE Sommaire Le multimètre L'oscilloscope Le fréquencemètre le wattmètre Le cosphimètre Le générateur de fonctions Le traceur de Bodes Les instruments

Plus en détail

Le Haut-parleur : I) Qu est ce qu un son? II) Le haut-parleur à travers le temps : III) Le principe de son fonctionnement : 1) Principale fonction

Le Haut-parleur : I) Qu est ce qu un son? II) Le haut-parleur à travers le temps : III) Le principe de son fonctionnement : 1) Principale fonction Le Haut-parleur : I) Qu est ce qu un son? II) Le haut-parleur à travers le temps : III) Le principe de son fonctionnement : 1) Principale fonction 2) Description du transducteur 3) Composition 4) Principe

Plus en détail

CH IV) Courant alternatif Oscilloscope.

CH IV) Courant alternatif Oscilloscope. CH IV) Courant alternatif Oscilloscope. Il existe deux types de courant, le courant continu et le courant alternatif. I) Courant alternatif : Observons une coupe transversale d une «dynamo» de vélo. Galet

Plus en détail