Estimations de convexité pour des équations elliptiques nonlinéaires



Documents pareils
Symétrie des solutions d équations semi-linéaires elliptiques

0 h(s)ds et h [t = 1 [t, [ h, t IR +. Φ L 2 (IR + ) Φ sur U par

APPENDIX 6 BONUS RING FORMAT

Arithmetical properties of idempotents in group algebras

Natixis Asset Management Response to the European Commission Green Paper on shadow banking

RULE 5 - SERVICE OF DOCUMENTS RÈGLE 5 SIGNIFICATION DE DOCUMENTS. Rule 5 / Règle 5

Principe de symétrisation pour la construction d un test adaptatif

Cheque Holding Policy Disclosure (Banks) Regulations. Règlement sur la communication de la politique de retenue de chèques (banques) CONSOLIDATION

Calculation of Interest Regulations. Règlement sur le calcul des intérêts CONSOLIDATION CODIFICATION. Current to August 4, 2015 À jour au 4 août 2015

Contents Windows

Instructions Mozilla Thunderbird Page 1

Règlement relatif à l examen fait conformément à la Déclaration canadienne des droits. Canadian Bill of Rights Examination Regulations CODIFICATION

MELTING POTES, LA SECTION INTERNATIONALE DU BELLASSO (Association étudiante de lʼensaparis-belleville) PRESENTE :

Archived Content. Contenu archivé

Nouveautés printemps 2013

Modèles bi-dimensionnels de coques linéairement élastiques: Estimations de l écart entre leurs solutions.

Contrôle d'accès Access control. Notice technique / Technical Manual

AMENDMENT TO BILL 32 AMENDEMENT AU PROJET DE LOI 32

FÉDÉRATION INTERNATIONALE DE NATATION Diving

Form of Deeds Relating to Certain Successions of Cree and Naskapi Beneficiaries Regulations

English Q&A #1 Braille Services Requirement PPTC Q1. Would you like our proposal to be shipped or do you prefer an electronic submission?

DOCUMENTATION - FRANCAIS... 2

UNIVERSITY OF MALTA FACULTY OF ARTS. French as Main Area in an ordinary Bachelor s Degree

Credit Note and Debit Note Information (GST/ HST) Regulations

Gestion des prestations Volontaire

Notice Technique / Technical Manual

Le passé composé. C'est le passé! Tout ça c'est du passé! That's the past! All that's in the past!

Forthcoming Database

APPENDIX 2. Provisions to be included in the contract between the Provider and the. Holder

Application Form/ Formulaire de demande

DOCUMENTATION - FRANCAIS... 2

Bourses d excellence pour les masters orientés vers la recherche

NORME INTERNATIONALE INTERNATIONAL STANDARD. Dispositifs à semiconducteurs Dispositifs discrets. Semiconductor devices Discrete devices

First Nations Assessment Inspection Regulations. Règlement sur l inspection aux fins d évaluation foncière des premières nations CONSOLIDATION

Paxton. ins Net2 desktop reader USB

Export Permit (Steel Monitoring) Regulations. Règlement sur les licences d exportation (surveillance de l acier) CONSOLIDATION CODIFICATION

Interest Rate for Customs Purposes Regulations. Règlement sur le taux d intérêt aux fins des douanes CONSOLIDATION CODIFICATION

Scénarios économiques en assurance

PIB : Définition : mesure de l activité économique réalisée à l échelle d une nation sur une période donnée.

INVESTMENT REGULATIONS R In force October 1, RÈGLEMENT SUR LES INVESTISSEMENTS R En vigueur le 1 er octobre 2001

LOI SUR LA RECONNAISSANCE DE L'ADOPTION SELON LES COUTUMES AUTOCHTONES ABORIGINAL CUSTOM ADOPTION RECOGNITION ACT

Practice Direction. Class Proceedings

3615 SELFIE. HOW-TO / GUIDE D'UTILISATION

Le No.1 de l économie d énergie pour patinoires.

Démonstration de la conjecture de Dumont

Editing and managing Systems engineering processes at Snecma

that the child(ren) was/were in need of protection under Part III of the Child and Family Services Act, and the court made an order on

Règlement sur le télémarketing et les centres d'appel. Call Centres Telemarketing Sales Regulation

Resident Canadian (Insurance Companies) Regulations. Règlement sur les résidents canadiens (sociétés d assurances) CONSOLIDATION CODIFICATION

Once the installation is complete, you can delete the temporary Zip files..

Stratégie DataCenters Société Générale Enjeux, objectifs et rôle d un partenaire comme Data4

INDIVIDUALS AND LEGAL ENTITIES: If the dividends have not been paid yet, you may be eligible for the simplified procedure.

Acce s aux applications informatiques Supply Chain Fournisseurs

Loi sur la Semaine nationale du don de sang. National Blood Donor Week Act CODIFICATION CONSOLIDATION. S.C. 2008, c. 4 L.C. 2008, ch.

AUDIT COMMITTEE: TERMS OF REFERENCE

Instructions pour mettre à jour un HFFv2 v1.x.yy v2.0.00

How to Login to Career Page

CLIM/GTP/27/8 ANNEX III/ANNEXE III. Category 1 New indications/ 1 re catégorie Nouvelles indications

Ordonnance sur le paiement à un enfant ou à une personne qui n est pas saine d esprit. Infant or Person of Unsound Mind Payment Order CODIFICATION

PARIS ROISSY CHARLES DE GAULLE

BILAN du projet PEPS 1 EOLIN (Eolien LMI INSA)

FCM 2015 ANNUAL CONFERENCE AND TRADE SHOW Terms and Conditions for Delegates and Companions Shaw Convention Centre, Edmonton, AB June 5 8, 2015

If you understand the roles nouns (and their accompanying baggage) play in a sentence...

Exemple PLS avec SAS

Discours du Ministre Tassarajen Pillay Chedumbrum. Ministre des Technologies de l'information et de la Communication (TIC) Worshop on Dot.

Utiliser une WebCam. Micro-ordinateurs, informations, idées, trucs et astuces

WEB page builder and server for SCADA applications usable from a WEB navigator

RISK-BASED TRANSPORTATION PLANNING PRACTICE: OVERALL METIIODOLOGY AND A CASE EXAMPLE"' RESUME

THÈSE. présentée à TÉLÉCOM PARISTECH. pour obtenir le grade de. DOCTEUR de TÉLÉCOM PARISTECH. Mention Informatique et Réseaux. par.

LE FORMAT DES RAPPORTS DU PERSONNEL DES COMMISSIONS DE DISTRICT D AMENAGEMENT FORMAT OF DISTRICT PLANNING COMMISSION STAFF REPORTS

1.The pronouns me, te, nous, and vous are object pronouns.

EXISTENCE OF ALGEBRAIC HECKE CHARACTERS ( C. R. ACAD. SCI. PARIS SER. I MATH, 332(2001) ) Tonghai Yang

Lavatory Faucet. Instruction Manual. Questions?

VTP. LAN Switching and Wireless Chapitre 4

Comprendre l impact de l utilisation des réseaux sociaux en entreprise SYNTHESE DES RESULTATS : EUROPE ET FRANCE

Warning: Failure to follow these warnings could result in property damage, or personal injury.

Ships Elevator Regulations. Règlement sur les ascenseurs de navires CODIFICATION CONSOLIDATION. C.R.C., c C.R.C., ch. 1482

Frequently Asked Questions

If the corporation is or intends to become a registered charity as defined in the Income Tax Act, a copy of these documents must be sent to:

FOURTH SESSION : "MRP & CRP"

CEST POUR MIEUX PLACER MES PDF

sur le réseau de distribution

String topology for loop stacks

PROJET DE LOI. An Act to Amend the Employment Standards Act. Loi modifiant la Loi sur les normes d emploi

Règlement sur les baux visés à la Loi no 1 de 1977 portant affectation de crédits. Appropriation Act No. 1, 1977, Leasing Regulations CODIFICATION

Exercices sur SQL server 2000

C. R. Acad. Sci. Paris, Ser. I

EU- Luxemburg- WHO Universal Health Coverage Partnership:

Appointment or Deployment of Alternates Regulations. Règlement sur la nomination ou la mutation de remplaçants CONSOLIDATION CODIFICATION

Support Orders and Support Provisions (Banks and Authorized Foreign Banks) Regulations

Bill 12 Projet de loi 12

Package Contents. System Requirements. Before You Begin

Spécial Catégorie 6 Patch Cords

CLASSIFICATION REPORT OF REACTION TO FIRE PERFORMANCE IN ACCORDANCE WITH EN : 2007

CLASSIFICATION REPORT OF REACTION TO FIRE PERFORMANCE IN ACCORDANCE WITH EN : 2007

THE LAW SOCIETY OF UPPER CANADA BY-LAW 19 [HANDLING OF MONEY AND OTHER PROPERTY] MOTION TO BE MOVED AT THE MEETING OF CONVOCATION ON JANUARY 24, 2002

Guide d installation Deco Drain inc. DD200

General Import Permit No. 13 Beef and Veal for Personal Use. Licence générale d importation n O 13 bœuf et veau pour usage personnel CONSOLIDATION

Guide d'installation rapide TFM-560X YO.13

Transcription:

Estimations de convexité pour des équations elliptiques nonlinéaires et application à des problèmes de frontière libre Jean DOLBEAULT a, Régis MONNEAU b a Ceremade (UMR CNRS no. 7534), Université Paris IX-Dauphine, Place de Lattre de Tassigny, 75775 Paris Cédex 16, France. Courriel : dolbeaul@ceremade.dauphine.fr b CERMICS, Ecole Nationale des Ponts et Chaussées, 6 et 8 avenue Blaise Pascal, Cité Descartes, Champs-sur-Marne, 77455 Marne-La-Vallée, France. Courriel : e-mail: monneau@cermics.enpc.fr Résumé. On établit la convexité de l ensemble délimité par la frontière libre correspondant à une équation quasi-linéaire dans un domaine convexe en dimension 2. La méthode repose sur l étude de la courbure des lignes de niveau aux points qui réalisent le maximum de la dérivée normale à niveau donné, pour des solutions analytiques d équations elliptiques complètement non-linéaires. La méthode fournit aussi une estimation du gradient en fonction du minimum de la courbure (signée) du bord du domaine, qui n est pas nécessairement supposé convexe. Convexity estimates for nonlinear elliptic equations and application to free boundary problems Abstract. We prove the convexity of the set which is delimited by the free boundary corresponding to a quasi-linear elliptic equation in a 2-dimensional convex domain. The method relies on the study of the curvature of the level lines at the points which realize the maximum of the normal derivative at a given level, for analytic solutions of fully nonlinear elliptic equations. The method also provides an estimate of the gradient in terms of the minimum of the (signed) curvature of the boundary of the domain, which is not necessarily assumed to be convex. Version Française abrégée Considérons dans un domaine Ω IR 2 le problème de frontière libre défini par div ( a( 2 ) u ) = f(u) dans Ω \ Λ (1) 0 = u Λ < u < u Ω = u 0, (2) n u = 0 sur Λ. (3) où u 0 est une constante positive donnée, Λ Ω un ensemble fermé et n u la dérivée de u normale au bord de Λ, sortante. Théorème 1 Supposons a(0), f(0) > 0. Si q a(q), u f(u) sont des fonctions croissantes de classe C 1 et C 0 respectivement, si Ω est convexe et si u est solution de (1)-(2)-(3), alors Λ est aussi convexe. Ce résultat généralise des travaux antérieurs correspondant à des choix particuliers pour f et a: voir [6], [5], et [2] lorsque la condition (3) est remplacée par n u = Const > 0. Nous allons démontrer le Théorème 1 en nous plaçant dans un cadre beaucoup plus général, mais en supposant les solutions analytiques. Nous supposerons que n u = λ(k) 0 sur Λ, (4)

J. Dolbeault, R. Monneau où λ est une fonction de la courbure K de Λ. Soit n et τ les vecteurs unitaires respectivement normal et tangent à la courbe de niveau, tels que (τ, n) est une base directe de IR 2. Nous allons considérer les solutions analytiques de l équation complètement non-linéaire qui n a de sens que sous la G(D nn u, D ττ u, D nτ u,, u) = 0 dans Ω\Λ, (5) (A0) Condition de compatibilité: il existe une fonction G telle que G(a, b, c, 0, u) = G(a + b, ab c 2, u). Définissons α = (G) D, β = nnu (G) D ττ u et γ = (G) D nτ u. Nous introduisons maintenant les hypothèses suivantes: (A1) Condition de gradient non nul: (A2) Conditions d ellipticité: t (0, u 0 ], x Ω \ Λ, u(x) = t, u(x) 0. X α > 0, X β > 0, X (4αβ γ2 ) 0, X étant l ensemble des points qui réalisent le maximum du gradient sur leur ligne de niveau: { } X = (A3) Condition sur la frontière libre: x Ω \ Λ : u(x) = max u(y) y Ω\Λ u(y)=u(x) Λ est analytique et l application K λ(k) est analytique, décroissante. De plus si λ(k) 0 sur Λ, alors on demande que G(0, 0, 0, 0, 0) < 0 et que le champ de vecteur n = u soit analytique jusqu au bord Λ. Dans ce cadre et pour des solutions analytiques uniquement, on montre les résultats suivants. Proposition 2 Sous les hypothèses (A0)-(A1)-(A2)-(A3), si u est une solution analytique (jusqu au bord fixe Ω) du problème de frontière libre (5)-(2)-(4) (y compris dans le cas Λ = ), alors on a les propriétés suivantes: i) Le gradient de u est borné par une constante qui ne dépend que de G, de λ(k) L ( Λ), de u 0 et du minimum de la courbure signée de Ω. ii) Le minimum de la courbure signée de Λ est plus grand que le minimum de la courbure signée de Ω. En particulier, si Ω est convexe, alors chaque composante connexe de Λ est aussi convexe. Ce résultat repose sur des estimations données par un système de deux équations différentielles ordinaires, que l on définit de la manière suivante. Pour une solution analytique de (5) sur Ω \ Λ (y compris dans le cas Λ = ), on définit Γ t = {x Ω : u(x) = t}, m(t) = max y Γ t u(y), et X t = {x Γ t : u(x) = m(t)}, pour tout t (0, u 0 ). Soit K(t) := y X t Dττu (y). 2.

Convexity of the free boundary Théorème 3 Sous les hypothèses (A0)-(A1)-(A2), soit u une solution analytique de (5). Avec les notations précédentes, m et K sont solutions sur (0, u 0 ) de G(m dm, mk, 0, m, t) = 0, (6) dt dk dt K2 m. (7) 1. Main results Consider a solution of the following free boundary problem div ( a( 2 ) u ) = f(u) in Ω \ Λ (1) 0 = u Λ < u < u Ω = u 0, (2) n u = 0 on Λ. (3) where u 0 is a given nonnegative constant, Λ is a closed subset of a bounded domain Ω in IR 2 and n u is the normal (to Λ) outgoing derivative of u. This problem arises for instance from an obstacle problem. Theorem 1 Assume that a(0), f(0) > 0 and that q a(q), u f(u) are increasing functions of class C 1 and C 0 respectively. If Ω is convex and if u is a solution of (1)-(2)-(3), then Λ is also convex. This theorem has been proved in the special case where a a 0 and f f 0 are constants by A. Friedman and D. Phillips [6] in two dimensions, and then extended to any dimension by B. Kawohl [5]. Similar results were also proved (in any dimensions) for a a 0, f 0 and n u = const > 0 in place of n u = 0 by L.A. Caffarelli and J. Spruck [2]. We will prove Theorem 1 in a much more general framework, except that we will deal only with analytic solutions for reasons that will be made clear later (see Lemma 4). We will assume n u = λ(k) 0 on Λ, (4) where λ is a function of the curvature K of Λ. Here we denote by n and τ normal and tangent unit vectors to a level set, so that (τ, n) is a direct orthonormal basis in IR 2, and n = u. When u 0, the curvature is defined by K = Dττ u. We shall consider the analytic solutions of the fully nonlinear elliptic equation G(D nn u, D ττ u, D nτ u,, u) = 0 in Ω \ Λ, (5) where G is an analytic function. The vectors n and τ are well defined if u 0. For the equation to make sense in case of a patch of zero gradient, we therefore require the following (A0) Compatibility condition: we assume the existence of a function G such that G(a, b, c, 0, u) = G(a + b, ab c 2, u) a, b, c, u. We define the coefficients α = (G) D, β = nnu (G) D ττ u and γ = (G) D nτ u and introduce the following assumptions: 3

J. Dolbeault, R. Monneau (A1) Non zero gradient condition: (A2) Ellipticity conditions: t (0, u 0 ], x Ω \ Λ, u(x) = t, u(x) 0. X α > 0, X β > 0, X (4αβ γ2 ) 0, where X is the set of points which realize the maximum of the gradient on their level line: X = (A3) Condition on the free boundary: { x Ω \ Λ : u(x) = max u(y) y Ω\Λ u(y)=u(x) We assume that Λ is analytic and that the map K λ(k) is analytic nonincreasing. Moreover if λ(k) 0 on Λ, then we assume that G(0, 0, 0, 0, 0) < 0 and that the vector field n = u is analytic up to Λ. These assumptions cover the case of quasilinear elliptic equations as well as the Monge-Ampère equations det(d 2 u) = f 0 (u, ) > 0. In this framework and for analytic solutions only, we prove the following result. Proposition 2 Under assumptions (A0)-(A1)-(A2)-(A3), if u is an analytic solution (up to the fixed boundary Ω) to the free boundary problem (5)-(2)-(4) (including the case Λ = ), then we have the following properties: i) There exists a constant M which only depends on G, λ(k) L ( Λ), u 0 and the minimum of the signed curvature of Ω such that L (Ω\Λ) M. ii) The minimum of the signed curvature of Λ is bigger than the minimum of the signed curvature of Ω: K K. Λ Ω As a consequence, if Ω is convex, each connected component of Λ is also convex. In this note we shall only sketch the proofs and refer to [3] for more details. The key point of the method is Theorem 3 (see below). 2. Curvature and maximum of the gradient Throughout this section, we assume that u is an analytic solution of Equation (5) on Ω \Λ (with eventually Λ = ). Notations. We shall note σ u = σ u the derivative of u along the unit vector σ and D σσ u := (σ, D 2 u σ). Since the tangent and normal unit vectors τ and ν depend on x, τ ( τ u) D ττ u in general, and one has to use the Fréchet formula τ n = Kτ, τ τ = Kn, n n = ρτ, n τ = ρn, 4 }.

where K = 1 D ττu is the curvature of the level line and ρ = 1 D nτu. For t > 0, let Γ t = {x Ω : u(x) = t}, m(t) = max y Γ t u(y), and X t = {x Γ t : u(x) = m(t)}. Convexity of the free boundary With a straightforward abuse of notations, we define K(t) := y X t Dττ u (y). The following result is the core of our method. Theorem 3 Under assumptions (A0)-(A1)-(A2), consider an analytic solution u of Equation (5). With the above notations, m is continuous and derivable outside an enumerable closed set in (0, u 0 ) such that G(m dm dt, mk, 0, m, t) = 0 for a.e. t (0, u 0), (6) where the inequality has to be understood in the sense of distributions. dk dt K2 m, (7) Remarks: In higher dimensions, we can formally get a similar result for the mean curvature of the level sets. In the case of a radially symmetric solution (when Ω is a ball), Inequality (7) becomes an equality. The result of Theorem 3 can therefore be compared with comparison results based on rearrangement techniques, like the ones obtained by G. Talenti in another context [9]. In the nonradial case, we prove a refined version of (7): dk dt where the minimum has to be taken over the set X t. K2 m 1 m ( ) 2 α β γ min τ ( Dττ u ), We will not give a complete proof of this result, but simply sketch the method in a simple case: assume that t x t is a curve (on an open set in t) such that u(x t ) = n u(x t ) = m(t) and u(x t ) = t. It is straightforward to establish that n dxt dt = 1/m(t), and then to prove that m dm dt = d dt (1 2 u(xt ) 2 ) = D nn u(x t ), which using the definition of K and 0 = τ ( 1 2 2 ) x=x t = D nτ u(x t ) = 0, gives (6). Inequality (7) is slightly more difficult to establish. It is essentially based on 0 G(t) := 2 τ( 1 2 2 ) x=x t, which allows to prove that either τ K = 0 and dk dt = K2 m + G m, or 3 τ K 0, G < 0 and dk dt = K2 m + G m + α 3 β m( τk) 2 1 G + γ β m τk, where τ K(t) stands for τ ( Dττ u ) x=xt. In that case, the conclusion follows by an optimization on G. 2. Sketch of the proofs As a conclusion, we shall justify the assumptions made in the proof of Theorem 3 and briefly sketch the main steps of the proofs of Proposition 2, and Theorem 1. Lemma 4 Under assumption (A1), if u is an analytic solution of (5)-(2)-(4), then either X = t (0,u0)X t is locally included in a finite union of analytic curves, or X Ω \ Λ. If X Ω \ Λ we can prove that the solution is radially symmetric and Ω is a ball. 5

J. Dolbeault, R. Monneau According to this lemma, when X Ω \ Λ, let us call C the collection of all such curves: m(t) = sup u(γ 0 (t)). γ 0 C Given two curves γ 1, γ 2 C the curvatures K(γ 1 (t)) and K(γ 2 (t)) can be different and in general this implies that K(t) = γ 0 C K(γ 0(t)) may have some jumps. A detailed analysis of t K(γ 0 (t)) for t corresponding to an endpoint of such a curve shows that the jumps of t K(t) are always nonpositive. This allows to complete the proof of Theorem 3 (in the generic case). Any accumulation point of t (0,ǫ) X t as ǫ 0 realizes the minimum of the curvature of Λ. This is based on a delicate study of the asymptotic behaviour of u near Λ and one has to distinguish between the cases λ > 0 and λ = 0. Proposition 2 is then easy to prove and is a consequence of Theorem 3. Details are left to the reader. Theorem 1 is deduced from Proposition 2 and from considerations on uniqueness and regularity. The free boundary corresponding to an analytic solution of (1)-(2)-(3) is indeed analytic. The proof uses a control of the regularity of the free boundary by a perturbation method based on the papers by L.A. Caffarelli [1] on the obstacle problem and by D. Kinderlehrer and L. Nirenberg [7] on the analyticity of the free boundary. Theorem 1 for non necessarily analytic solutions then follows by a density argument. Références bibliographiques [1] L.A. Caffarelli, Compactness method in free boundary problems, Comm. P.D.E., 5 (4), 427-448, (1980). [2] L.A. Caffarelli, J. Spruck, Convexity properties of solutions to some classical variational problems, Comm. P.D.E., 7 (11), 1337-1379, (1982). [3] J. Dolbeault, R. Monneau, Convexity properties of the free boundary and gradient estimates for quasi-linear elliptic equations, Preprint. [4] A. Friedman, Variational principles and free boundary problems, Pure and Applied Mathematics, ISSN 0079-8185, Wiley-Interscience, (1982). [5] A. Friedman, D. Phillips, The free boundary of a semilinear elliptic equation. Trans. Amer. Math. Soc., 282, 153-182, (1984). [6] B. Kawohl, When are solutions to nonlinear elliptic boundary value problems convex? Comm. P.D.E., 10, 1213-1225, (1985). [7] D. Kinderlehrer, L. Nirenberg, Regularity in free boundary problems, Bull. A.M.S., 7, 65-222, (1982). [8] J.F. Rodrigues, Obstacle problems in mathematical Physics, North-Holland, (1987). [9] G. Talenti, Some estimates of solutions to Monge-Ampère type equations in dimension two, Ann. Scuola Norm. Sup. Pisa Cl. Sci., IV. Ser. 8, 183-230, (1981). 6